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Magnetic helicity is a fundamental quantity of magnetohydrodynamics that carries
topological information about the magnetic field. By ‘topological information’, we
usually refer to the linkage of magnetic field lines. For domains that are not simply
connected, however, helicity also depends on the topology of the domain. In this
paper we expand the standard definition of magnetic helicity in simply connected
domains to multiply connected domains in R3 of arbitrary topology. We also discuss
how using the classic Biot–Savart operator simplifies the expression for helicity and
how domain topology affects the physical interpretation of helicity.
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1. Introduction
The classical definition of magnetic helicity in magnetohydrodynamics (MHD) is for

a bounded simply connected domain. Let Ω be such a domain with boundary ∂Ω and
outward unit normal n. Consider a magnetic field B in the space

V = {B ∈ (L2(Ω))3 : div B= 0,B · n= 0}. (1.1)

Then the magnetic helicity (hereafter helicity) is

H =
∫
Ω

A · B, (1.2)

where B = curl A. It is well known that H is an invariant of ideal MHD (Woltjer
1958) and is also well conserved in resistive MHD with very small magnetic diffusion
(Berger 1984; Faraco & Lindberg 2018). It is also well known that H is gauge
invariant, that is, H is not affected by the change A→ A + gradχ , for some scalar
function χ .

The topological interpretation of H is due, originally, to Moffatt (1969). By
considering the Coulomb gauge, div A = 0, Moffatt (1969) showed that H could
be interpreted in terms of the Gauss linking number weighted by magnetic flux. The
linking number can refer to the linkage of thin flux tubes (e.g. Moffatt 1969) or
field lines (e.g. Arnold & Khesin 1992). Since both helicity and magnetic flux are
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invariants of ideal MHD, this linkage is also invariant. The topology of field lines has
also been studied in magnetic fields that are not everywhere tangent to the domain
boundary (e.g. Berger & Field 1984) but we will not consider such fields in this
work.

Moving to multiply connected domains, there have been two general approaches to
determining helicity. The first comes from plasma physics and focuses on a toroidal
domain suitable for fusion devices (e.g. Taylor & Newton 2015). This domain is not
simply connected and H from (1.2) is not (in general) gauge invariant in such a
domain. The main reference in the plasma physics literature to the gauge-invariant
form of helicity in a torus is Bevir & Gray (1980), who state that the correct form
of helicity is

H =
∫
Ω

A · B−
∮
γ1

A · t1

∮
γ2

A · t2, (1.3)

where Ω no longer refers to a simply connected domain (which will be assumed
for the rest of this work), γ1 and γ2 are closed paths on ∂Ω travelling around the
major and minor circumferences of the torus, respectively, and t1 and t2 are the
associated unit tangent vectors of the paths. The derivation of (1.3), which we refer
to as the Bevir–Gray formula, in the plasma physics literature is based on making
the transformation A→ A+ gradχ but with χ now being multivalued (e.g. Biskamp
1993; Marsh 1996). After the transformation is performed, the domain is cut in order
to make χ single-valued, and the result is the second term on the right-hand side of
(1.3). This approach is difficult to generalize to domains of more complex topology.
Later, we will derive a generalized version of the Bevir–Gray formula by means of
the Helmholtz decomposition of vectors in multiply connected domains.

Whereas the approach in plasma physics has been to focus on a particular domain
and not specify a particular vector potential, the second approach to determining
helicity in multiply connected domains has been to specify the vector potential and
consider arbitrary domains. In a series of papers by Cantarella and collaborators
(Cantarella 2000; Cantarella et al. 2000; Cantarella, DeTurck & Gluck 2001, 2002),
the vector potential is chosen to satisfy the Coulomb gauge and takes the form of
the Biot–Savart operator,

BS(B)(x)=
1

4π

∫
Ω

B(y)×
x− y
|x− y|3

dy. (1.4)

This operator appears in other contexts in electromagnetism and, as mentioned
previously, was used in Moffatt (1969) to interpret helicity in terms of the Gauss
linking number.1 One particularly interesting property of the Biot–Savart operator is
that it can be made self-adjoint, leading to the application of spectral theory where
magnetic fields that maximize the helicity in a domain correspond to linear force-free
fields (e.g. Cantarella et al. 2000; Valli 2019). In this paper, we will refer to helicity
expressed in terms of the Biot–Savart operator as Biot–Savart helicity. This term is
purely for convenience and does not imply a new object: Biot–Savart helicity is still
helicity but written in a particular way.

In this work we show that the two approaches to finding helicity in multiply
connected domains, described above, can be unified. We first generalize (1.3) to

1When Gauss’s formula was published officially in 1867, it was included as part of a collection of material
relating to electromagnetic induction (Epple 1998). This represents one of the many early links between topology
and electromagnetism.
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Helicity in multiply connected domains 3

FIGURE 1. A domain with g= 2. The cycles are shown in brown and cyan, following the
notation in the main text. The oriented surfaces bounded by the cycles γ ′j and γj define
the cutting surfaces Σj and Σ ′j , respectively.

connected domains of arbitrary topology in a systematic way. We then show how the
gauge-invariant helicity in multiply connected domains is coincident with Biot–Savart
helicity. This leads to a discussion of how the (often quoted) mutual helicity (Moffatt
1969; Laurence & Avellaneda 1993; Cantarella 2000) follows from the general helicity
formula. The paper ends with a summary and a discussion of the interpretation of
helicity in periodic domains.

2. Helicity in multiply connected domains
2.1. Geometrical set-up

We now describe the general geometrical set-up and introduce ideas from homology
which are necessary for treating multiply connected domains. A comprehensive review
of the application of homology to magnetic fields can be found in Blank, Friedrichs &
Grad (1957). A more recent and accessible account can be found in Cantarella et al.
(2002).

We consider a domain Ω ∈R3 that is a bounded open connected set with Lipschitz
continuous boundary ∂Ω and outer unit normal vector n. If the first Betti number of
Ω is (the genus) g> 0, then the first Betti number of ∂Ω is 2g (e.g. Cantarella et al.
2002). We can consider 2g non-bounding cycles on ∂Ω , {γj}

g
j=1∪{γ

′

j }
g
j=1

, that represent
the generators of the first homology group of ∂Ω . Each set of cycles is associated
with the closed domain and its complement in a ball containing the domain. The
{γj}

g
j=1 represent the generators of the first homology group of Ω and have unit tangent

vectors denoted by tj. The {γ ′j }
g
j=1

represent the generators of the first homology group

of Ω ′, where Ω ′=B \Ω and B is an open ball containing Ω . The unit tangent vector
of a cycle γ ′j is denoted t′j.

In Ω there are g cutting surfaces, {Σ}gj=1, that are connected orientable Lipschitz
surfaces satisfying Σj⊂Ω and ∂Σj⊂ ∂Ω . Each surface Σj satisfies ∂Σj= γ

′

j and cuts
the cycle γj. A similar set of cutting surfaces, {Σ ′}gj=1, exists in Ω ′. An illustration of
the geometrical set-up for a domain with g= 2 is shown in figure 1. For the sake of
definiteness, we choose the unit normal vector nΣj on Σj oriented in such a way that
(i) the unit tangent vector t′j on γ ′j = ∂Σj is oriented counterclockwise with respect to
nΣj (the ‘right-hand rule’) and (ii) the unit tangent vector tj crosses Σj consistently
with the direction of nΣj .

In the above description, if the boundary of Ω is not connected then some care
needs to be taken to make sure that a particular cutting surface remains in Ω or
Ω ′ but not in both. For the n-holed torus, such as the two-holed torus in figure 1,
this is not an issue. For a toroidal shell (e.g. O’Neil & Cerfon 2018), however, the
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(a)

(b) (c)

FIGURE 2. Toroidal shell with cutting surfaces. (a) A three-dimensional illustration of a
toroidal shell cut in half. The cutting surfaces Σ1 and Σ2 are indicated. (b) The major
cross-section (toroidal hole shown as dashed lines) where γ ′1 is the boundary of the
annulus Σ1 represented by the blue and red cycles. (c) The minor cross-section where
γ ′2 is the boundary of the annulus Σ2 represented by the orange and green cycles. Note
that the cross-sections are not to scale.

boundary is not connected, that is, the outer boundary of the solid torus is separated
from the inner boundary of the toroidal hole. A toroidal shell has g= 2 and so there
are two cycles for Ω and two for Ω ′. It is easy to see that the cutting surfaces Σ ′j ,
corresponding to the γj, lie entirely in Ω ′. Naively performing the same procedure
for the cutting surfaces Σj of the γ ′j , however, results in their overlapping with parts
of the complementary domain Ω ′. Restricting the Σj to lie entirely in Ω can be
achieved using homological properties. We explain the procedure by describing the
cutting surfaces for the cycles, γ ′1 and γ ′2, which orbit the central hole of the torus
and the toroidal hole, respectively. This situation is illustrated in figure 2.

The boundary of the first cutting surface, ∂Σ1 = γ
′

1, is indicated in figure 2(b) by
the red and blue cycles. Similarly, the boundary of the other cutting surface, ∂Σ2= γ

′

2,
is indicated in figure 2(c) by orange and green cycles. The surfaces Σ1 and Σ2 lie
entirely in Ω and are annuli.

For a given orientation of the normal n1 of Σ1,∫
Σ1

curlw · n1 =

∫
blue

w · t′1 −
∫

red
w · t′1, (2.1)

where w is a vector field and ‘blue’ and ‘red’ represent the cycles displayed in
figure 2(b). A similar result holds for Σ2. Note, however, that the red cycle is
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FIGURE 3. An example of a ‘cut’ domain that is not simply connected. Following the
description in the main text, the orange domain is the trefoil knot K. The green surface
is one of the cutting surfaces, shown here as two ‘discs’ with three ‘twisting bands’.
This image was produced with SeifertView (Jarke J. van Wijk, Technische Universiteit
Eindhoven).

bounding in Ω ′, thus γ ′1 and the blue cycle are equivalent homologically. The same
is true for γ ′2 and the green cycle in figure 2(c).

In this paper we will focus on (n-holed) tori and toroidal shells since these domains
have the most immediate applications, both as domains in their own right (e.g. Dewar
et al. 2015; O’Neil & Cerfon 2018) and in their connection to the common simulation
domains of periodic and doubly periodic cubes (we will return to discuss helicity in
periodic domains later). The ‘cut’ domains (those formed by removing the cutting
surfaces) for these cases are simply connected. This fact, however, is not true of all
domains in R3. For example, consider a domain Ω = B \ K where B is a ball, as
before, and K is a trefoil knot (Benedetti, Frigerio & Ghiloni 2012; Alonso Rodríguez
et al. 2018). An illustration of such a domain is displayed in figure 3. The procedure
that we will now describe can cope with all the cases described above, including this
last one.

2.2. Helmholtz decomposition and Neumann harmonic vector fields
The gauge transformation normally used in helicity studies, A → A + gradχ , is
only applicable in simply connected domains if χ is to remain single-valued. For
the regions under consideration with more complex topologies, we require the full
Helmholtz decomposition (e.g. Blank et al. 1957; Cantarella et al. 2002).

THEOREM 1 (Helmholtz). Any u ∈ (L2(Ω))3 can be decomposed as

u= curl P+ gradφ + ρ, (2.2)

where P is a vector field, φ a single-valued scalar function and ρ is in the space of
Neumann harmonic fields H, defined as

H= {ρ ∈ (L2(Ω))3 : curlρ = 0, divρ = 0, ρ · n= 0}. (2.3)
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In order to make use of H, we need its basis {ρj}
g
j=1. This can be found, for both

Ω and Ω ′ separately, by finding the solutions φj of suitable elliptic problems where
the appropriate cutting surfaces are removed from the domain under study. The basis
functions for the space of harmonic fields in Ω take the form ρj = g̃radφj, where
g̃radφj is the extension of gradφj to (L2(Ω))3 and each φj has a jump equal to 1 on
the corresponding cutting surface. The basis functions of the space of harmonic fields
in Ω ′ are constructed in a similar way and are denoted by {ρ ′j}

g
j=1

. For more details
on the construction of the basis functions, we direct the reader to Alonso Rodríguez
et al. (2018).

2.3. Zero flux magnetic fields
Consider two different vector potentials A1 and A2 for B∈V . Since curl (A1−A2)= 0
in Ω , it follows from Theorem 1 that we can write

A1 −A2 = gradχ + ρ in Ω, (2.4)

where χ is a scalar function and ρ ∈H. Some simple manipulation reveals∫
Ω

A1 · B−
∫
Ω

A2 · B=
∫
Ω

B · ρ. (2.5)

Therefore, if B⊥H then helicity is independent of the vector potential. Writing ρ in
terms of its basis functions, we require that∫

Ω

B · ρj = 0, for j= 1, . . . , g. (2.6)

This statement is nothing more than enforcing zero magnetic flux through every
cutting surface, ∫

Ω

B · ρj =

∫
Ω\Σj

B · ρj =

∫
Ω\Σj

B · gradφj

=

∫
∂(Ω\Σj)

B · njφj −

∫
Ω\Σj

(div B)φj

=

∫
Σj

B · nj[[φj]] =

∫
Σj

B · nj, (2.7)

where [[φj]] = φj|Σ+j
− φj|Σ−j

= 1, from the construction of the basis functions (Alonso
Rodríguez et al. 2018). Thus, by enforcing zero magnetic flux through all the cutting
surfaces of Ω , the helicity in the domain can be written as in (1.2).

This approach to defining helicity in multiply connected domains has been used in
several theoretical works (e.g. Jordan, Yoshida & Ito 1998; Faraco & Lindberg 2018).
For cases where there is non-zero magnetic flux, more work is needed to produce a
gauge-invariant helicity. We will now derive a more general formula which includes
the zero flux condition as a special case.

2.4. Generalized Bevir–Gray formula
Let us consider the following quantities,

H1 =

∫
Ω

A1 · B, H2 =

∫
Ω

A2 · B, (2.8a,b)
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where B = curl A1 and B = curl A2, respectively. Without the zero flux condition,
H1 and H2 are not, in general, gauge invariant in multiply connected domains.
Considering the difference of these quantities,

H1 −H2 =

∫
Ω

B · (A1 −A2)=

∫
Ω

curl A1 · (A1 −A2)

=

∫
∂Ω

n×A1 · (A1 −A2)=

∫
∂Ω

A1 × n · A2. (2.9)

The second line follows from integration by parts and using curl (A1−A2)= 0. Since
curl A1 · n= 0= curl A2 · n, the tangential traces A1 × n and A2 × n can be expressed,
via a Helmholtz decomposition on ∂Ω (e.g. Hiptmair, Kotiuga & Tordeux 2012;
Alonso Rodríguez et al. 2018), as

A1 × n= grad η× n+
g∑

j=1

αjρj × n+
g∑

j=1

βjρ
′

j × n, (2.10)

A2 × n= grad ξ × n+
g∑

j=1

δjρj × n+
g∑

j=1

µjρ
′

j × n, (2.11)

where η, ξ are scalar functions and αj, βj, δj, µj ∈R ( j= 1, . . . , g). Alonso Rodríguez
et al. (2018) derived the following useful identities:∫

∂Ω

grad η× n · grad ξ = 0,∫
∂Ω

grad η× n · ρj = 0,
∫
∂Ω

grad η× n · ρ ′i = 0,∫
∂Ω

ρi × n · ρj = 0,
∫
∂Ω

ρ ′i × n · ρ ′j = 0,∫
∂Ω

ρj × n · ρ ′i = δij =−

∫
∂Ω

ρ ′i × n · ρj,


(2.12)

for 1 6 i, j 6 g. Note that δij is the Kronecker delta. By making use of (2.10) and
(2.11) and the above identities, it can be shown that∫

∂Ω

A1 × n · A2 =

g∑
j=1

αjµj −

g∑
j=1

βjδj, (2.13)

where

αj =

∮
γj

A1 · tj, βj =

∮
γ ′j

A1 · t′j, (2.14a,b)

δj =

∮
γj

A2 · tj, µj =

∮
γ ′j

A2 · t′j. (2.15a,b)

Since γ ′j = ∂Σj, we have, by Stokes’s theorem,

βj =

∮
γ ′j

A1 · t′j =
∫
Σj

curl A1 · nj =

∫
Σj

B · nj. (2.16)
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By exactly the same reasoning,

µj =

∮
γ ′j

A2 · t′j =
∫
Σj

B · nj. (2.17)

Putting all these results together, we can now write

H1 −H2 =

∫
Ω

A1 · B−
∫
Ω

A2 · B=
g∑

j=1

(∮
γj

A1 · tj −

∮
γj

A2 · tj

)(∫
Σj

B · nj

)
. (2.18)

An alternative route to (2.18) is to consider a result from Blank et al. (1957). Based
on the consideration of vector identities, they derive a particular formula (see their
formula (6.5) on page 65) for the inner product of an irrotational vector x and a
solenoidal vector y, ∫

Ω

x · y=
g∑

j=1

∮
γj

x · tj

∫
Σj

y · nj, (2.19)

where the notation for cycles and surfaces is as before and the vector fields are
everywhere tangent to the boundary. In our application, x=A1 −A2 and y=B.

Returning to (2.18), it is clear that the quantity∫
Ω

A · B−
g∑

j=1

(∮
γj

A · tj

)(∫
Σj

B · nj

)
(2.20)

is independent of the choice of vector potential. We are, therefore, led to define the
gauge-invariant magnetic helicity as

Υ (B)=
∫
Ω

A · B−
g∑

j=1

(∮
γj

A · tj

)(∫
Σj

B · nj

)
. (2.21)

It is clear that for g= 1, equation (2.21) reduces to the Bevir–Gray formula. Also, if
B⊥H (zero flux), the helicity reduces to

Υ (B)=
∫
Ω

A · B. (2.22)

This is also the case for simply connected domains, for which H= {0}.

2.5. Biot–Savart helicity
As mentioned before, apart from the application of the Bevir–Gray formula in toroidal
domains, helicity in multiply connected domains has, generally, taken the form of
Biot–Savart helicity,

H(B)=
∫
Ω

BS(B) · B. (2.23)

The Biot–Savart helicity formula resembles that of helicity in simply connected
domains, that is to say, the second term on the right-hand side of (2.21) is missing.
We will now show that (2.21) and (2.23) are coincident. Following Cantarella et al.
(2001) and Valli (2019), it can be shown that the Biot–Savart operator, defined on
Ω , can be extended to R3.
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For B ∈ V , BS(B) ∈ V . Since B · n = 0 on ∂Ω and div B = 0 in Ω , the extended
magnetic field

B̃=
{

B in Ω,
0 in R3

\Ω,
(2.24)

satisfies div B̃= 0 in R3.
Equation (1.4) can be modified to

BS(B)(x)=
1

4π

∫
R3

B̃(y)×
x− y
|x− y|3

dy. (2.25)

We know from Cantarella et al. (2001) that curl BS(B) = B̃ and div B = 0 in R3.
Therefore, we can consider line integrals along closed paths and apply Stokes’s
theorem.

2.5.1. n-holed tori
We know that each Σ ′j ⊂Ω

′ ( j= 1, . . . , g) is a surface bounded by a simple cycle
γj (one with a connected boundary). We then have∮

γj

BS(B) · tj =

∫
Σ ′j

curl BS(B) · n′j = 0, (2.26)

since curl BS(B)= 0 in Ω ′. Thus, choosing A=BS(B) in (2.21), the helicity reduces
to

Υ (B)=
∫
Ω

BS(B) · B. (2.27)

Note that (2.27) can also be used for magnetic fields with zero flux, without having
to impose this as a condition to ensure gauge invariance.

In above approach to deriving (2.27) we have made the standard construction of
extending the Biot–Savart operator to R3 by assuming that the magnetic field is zero
outside the domain. By virtue of (2.27), the magnetic field in the domain can inherit
the field line topology interpretation of Moffatt (1969) and Arnold & Khesin (1992).
For applications where linkage with magnetic field outside the domain is important,
see § 2.6 below. First, however, we will investigate how the Biot–Savart operator can
be used to understand the linkage of field lines on the surface of the domain with the
domain itself.

2.5.2. Field line helicity on a toroidal boundary
Although the second term on the right-hand side of (2.21), related to the domain

topology, is zero for Biot–Savart helicity, this does not mean that integrals on the
domain boundary are unimportant. For the case of a standard torus (g = 1), the
property in (2.26) can be extended to define the field line helicity (e.g. Berger 1988;
Yeates & Hornig 2013) on the boundary when the path of integration follows a closed
field line. Such field lines are possible everywhere on the boundary of a torus as the
Euler characteristic of the boundary is zero. A prominent example of such a field
line is a torus knot (e.g. Oberti & Ricca 2018). For domains with g> 1, closed field
lines on the boundary are possible, but not everywhere on the boundary. This is due
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to the Euler characteristic being non-zero and, as a consequence of the ‘hairy ball’
theorem (e.g. Frankel 2004), smooth vector fields on the surfaces of these domains
must have at least one point where they vanish.

A closed path γ on the surface of a torus Ω can be expressed in terms of the basis
cycles γ1 and γ ′1 as

γ = L′γ1 + Lγ ′1, (2.28)

up to bounding cycles on ∂Ω , that are homologically trivial. Here L′ ∈Z is the linking
number between γ and γ ′1 (slightly deformed outside Ω , in order that there is no
intersection with γ ); similarly, L∈Z is the linking number between γ and γ1 (slightly
deformed inside Ω , in order that there is no intersection with γ ). Therefore, if w is
a vector field such that curl w · n= 0 on ∂Ω and t is the unit tangent vector on γ ,∮

γ

w · t= L′
∮
γ1

w · t1 + L
∮
γ ′1

w · t′1. (2.29)

Applying this result to the Biot–Savart vector field BS(B), for which (from (2.26)),∮
γ1

BS(B) · t1 = 0, (2.30)

it follows that ∮
γ

BS(B) · t= L
∮
γ ′1

BS(B) · t′1. (2.31)

Thus, by Stokes’s theorem, ∮
γ

BS(B) · t= L
∫
Σ1

B · n, (2.32)

where Σ1 is a cutting surface of Ω with ∂Σ1 = γ
′

1. The value L can be interpreted
as the number of loops of γ around the minor cross-section of the torus (say, the
‘linking number’ of the field line with the torus).

It is interesting to note that the field line helicity (the integral on the left-hand side
of (2.32)) ‘knows’ about the linkage of the boundary curve with field lines inside the
torus, by virtue of (2.25). This result is true for any magnetic field inside the torus,
no matter how complex the field line topology. The value of the field line helicity,
however, depends simply on the magnetic flux and a purely topological quantity
depending only on the curve and the domain. Equation (2.32) is analogous to the
voltage formula of a transformer (for a topological perspective on this formula, see
Gross & Kotiuga 2004).

2.5.3. Field line helicity on the boundary of a toroidal shell
The Biot–Savart helicity is coincident with the general helicity, equation (2.21), in

a toroidal shell by the same procedure as described for n-tori. The toroidal shell does,
however, have some extra physical interpretations related to the cutting surfaces and
field line helicities on the boundaries.

https://doi.org/10.1017/S0022377819000576 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000576


Helicity in multiply connected domains 11

As described in § 2.1, some care is required in order to identify the Σj cutting
surfaces. Given suitable cutting surfaces, the helicity for a toroidal shell is

Υ (B)=
∫
Ω

A · B−
∮
γ1

A · t1

∫
Σ1

B · n1 −

∮
γ2

A · t2

∫
Σ2

B · n2, (2.33)

where the notation is standard. The cutting surface Σ1 is that shown in figure 2(b)
and Σ2 is that shown in figure 2(c). Therefore, we can label the fluxes as∫

Σ1

B · n1 =ΨP,

∫
Σ2

B · n2 =ΨT, (2.34a,b)

where ΨP and ΨT are the poloidal and toroidal fluxes respectively. If we select A=
BS(B), then the general helicity formula naturally reduces to the form of (2.27) due
to the property in (2.26).

Considering the field line helicity in (2.32), there are now two separate boundaries
for a (closed) field line to lie on. For a field line lying on the outer boundary of a
toroidal shell, the interpretation is the same as that of a standard torus. That is, a
field line twisting around the minor circumference of the torus L times will have a
field line helicity of LΨT . For a field line on the inner boundary, the path of the line
integral can also be deformed into a union of circles around the major and minor
circumferences of the toroidal hole. This time, however, due to the property in (2.26),
the contribution to the integral from circles around the minor cross-section of the hole
is zero. The non-zero contribution comes from the major cross-section, and if a field
line on the inner boundary wraps around the major cross-section L times, its field line
helicity is LΨP.

2.6. Mutual helicity
Through the summation term on the right-hand side of (2.21), the domain topology
enters explicitly into the helicity formula for multiply connected domains. This term
is related to the mutual helicity (Laurence & Avellaneda 1993; Cantarella 2000), a
quantity that measures the linkage of the magnetic field in two domains, Ω and Ω ′,
say. Indeed, through (2.21) we can prove a representation formula for the mutual
helicity which is equivalent to that obtained by Cantarella (2000) for domains Ω ,
Ω ′ ⊂R3 of arbitrary topology.

With its topological connection to the Gauss linking number (e.g. Moffatt 1969;
Laurence & Avellaneda 1993), helicity is often written as

HU(B)=
1

4π

∫
U×U

(
B(x)×B(y) ·

x− y
|x− y|3

)
dx dy, (2.35)

where U is a bounded open set (but not necessarily connected) and B is a magnetic
field tangent to ∂U. If we consider two disjoint bounded domains M and N and we
set U =M ∪N and BM =B|M, BN =B|N , then it is easily checked that

HM∪N(B)=HM(BM)+HN(BN)+ 2H(BM,BN), (2.36)

where

H(BM,BN)=
1

4π

∫
M×N

(
BM(x)×BN(y) ·

x− y
|x− y|3

)
dx dy (2.37)

https://doi.org/10.1017/S0022377819000576 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000576


12 D. MacTaggart and A. Valli

is the mutual helicity. The self-helicities, HM(BM) and HN(BN), can be readily
expressed by means of the Biot–Savart operator,

HM(BM)=

∫
M

BS(BM) · BM, HN(BN)=

∫
N

BS(BN) · BN . (2.38a,b)

Consider an open cube Q such that M ∪N ⊂ Q. In this domain, we extend B by 0
in Q \M ∪N. We label this extension B̂ and note that it is divergence-free in Q and
tangent to ∂Q. Further, its helicity in Q coincides with that of B in M ∪N,

HQ(B̂)=HM∪N(B). (2.39)

Since Q is simply connected, we can use (2.21) with g= 0 to write

HQ(B̂)=
∫

Q
Â · B̂, (2.40)

where Â is any vector potential of B̂ in Q. Since B̂ is vanishing outside M ∪ N, it
follows that

HQ(B̂)=
∫

M
Â|M · B̂M +

∫
N

Â|N · B̂N . (2.41)

Using (2.21) in M (with genus gM) and in N (with genus gN), we have∫
M

Â|M · B̂M =ΥM(BM)+

gM∑
j=1

(∮
γM

j

Â|M · tM
j

)(∫
ΣM

j

BM · nM
j

)
(2.42)

and ∫
N

Â|N · B̂N =ΥN(BN)+

gN∑
l=1

(∮
γ N

l

Â|N · tN
l

)(∫
ΣN

l

BN · nN
l

)
. (2.43)

Using (2.27), HM(BM)= Υ (BM) and HN(BN)= Υ (BN). Substituting these results into
(2.42) and (2.43) and then substituting these into (2.36), the mutual helicity is found
to be

H(BM,BN) =
1
2

[
gM∑
j=1

(∮
γM

j

Â|M · tM
j

)(∫
ΣM

j

BM · nM
j

)

+

gN∑
l=1

(∮
γ N

l

Â|N · tN
l

)(∫
ΣN

l

BN · nN
l

)]
. (2.44)

A careful analysis of the values of the linking numbers between γM
j and γ N

l would
show that this formula is equivalent to that given in Cantarella (2000). For simplicity,
let us show that this is true in the case of two linked solid tori (Moffatt 1969;
Laurence & Avellaneda 1993; Cantarella 2000). We have gM = 1 and gN = 1; the
cycle γM

1 is the boundary of a surface Σ ′M, contained in Q \M, and the cycle γ N
1 is

the boundary of a surface Σ ′N , contained in Q \ N. Let us also assume that the unit
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tangent vector tM
1 crosses ΣM, the cross-section of the torus M, consistently with the

direction of normal vector nΣM on it, and similarly for tN
1 and the cross-section of N.

In this way the linking number of M and N has value 1. By Stokes’s theorem,∮
γM

1

Â|M · tM
1 =

∫
Σ ′M

curl Â · nΣ ′M =
∫
Σ ′M

B̂ · nΣ ′M . (2.45)

Since B̂= 0 outside M ∪N, it follows that∫
Σ ′M

B̂ · nΣ ′M =
∫
Σ ′M∩N

BN · nΣ ′M =
∫
ΣN

BN · nΣN . (2.46)

Similarly, ∮
γ N

1

Â|N · tN
1 =

∫
ΣM

BM · nΣM , (2.47)

and we obtain

H(BM,BN)=

(∫
ΣM

BM · nΣM

)(∫
ΣN

BN · nΣN

)
. (2.48)

3. Summary
In this paper we have unified the main approaches to calculating magnetic

helicity in multiply connected domains. The correct approach for determining a
gauge-invariant helicity is to consider the full Helmholtz decomposition, rather than
the standard gauge transformation suitable for simply connected domains. We derive
a gauge-invariant expression for helicity that generalizes the Bevir–Gray formula for
a torus and is suitable for any connected, bounded domain in R3, no matter how
complicated the topology.

The discovery of magnetic helicity as a topological quantity was originally made
by examining Biot–Savart helicity (Moffatt 1969). We show that the general helicity
formula, which holds for any vector potential, can naturally reduce to Biot–Savart
helicity. The line integrals of the Biot–Savart operator on closed paths on the domain
boundary can be interpreted as field line helicities, and these arise naturally from the
general formula (2.21). The general form for mutual helicity is also shown to follow
directly from (2.21).

In several works, a gauge-invariant helicity is found by imposing the constraint of
zero flux outside the domain in question; see, for example, Chui & Moffatt (1995)
for knotted domains and Taylor & Newton (2015), Hussain, Browning & Hood (2017)
for periodic toroidal domains. The helicities in these works are coincident with Biot–
Savart helicity by virtue of the property in (2.26).

What is clear from the general helicity formula is that the topology of the domain
must be taken into account for a correct interpretation of quantities in the domain.
Multiply connected domains are widely used in the context of MHD simulations.
For example, a cube with two identified boundaries is equivalent to a torus
topologically. Similarly, a cube with two pairs of identified boundaries is equivalent
to a toroidal shell topologically. If, in such periodic domains, the magnetic field is
tangent to the non-periodic boundaries, then the helicity can be interpreted in terms
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of (2.21) and, by extension, the Biot–Savart helicity (2.23). Care must be taken,
however, when interpreting helicity (and other quantities) for evolving magnetic fields
in periodic domains. For example, Berger (1997) discusses how periodic domains lead
to strange results, such as magnetic flux ropes turning themselves inside out through
magnetic reconnection. The issue here is one of mathematical modelling. That is, if
a periodic domain is used to model a magnetic field in a simply connected domain,
then there may be some unwanted effects due to the topology of the domain. For
the (2D) flux tube example in Berger (1997, Figure 3), the behaviour shown makes
perfect sense when considering the topology of the domain, the surface of a torus
in this case. The behaviour, however, is physically unrealistic for a simply connected
domain.

Another periodic domain that is popular in MHD simulations is the triply periodic
cube. This domain, however, cannot be embedded in R3 and (2.21) does not apply
in this case. Although it is possible to develop topological invariants in this domain
(e.g. DeTurck et al. 2013), the physical significance of these quantities remains to
investigated in depth.
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