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Let f(x) and g(x) be real functions defined on the interval [a, b], with f(x) at least
twice continuously differentiable, f'(x) monotone increasing, and g(x) of bounded
variation. We consider the exponential integral

f
Ja

/ = g(x)e(f(x))dx, (1)

where e{t) denotes exp2mt. The purpose of this note is to prove sharp forms of the
well-known estimates:

A: If f'(x) is nonzero on [a, b], then / has order of magnitude

/ = O(l/min I/'OOI). (2)

The constant of proportionality depends on the function g(x).
B: If f'(x) changes sign at x = c with a<c<b, then

g(c)e(f(c) +1/8)
Vf{c)

Bombieri and Iwaniec [1] remark that the methods of Hormander [5] give an asymptotic
expansion of the integral / when f(x) and g(x) are real-analytic. Such expansions were
considered in great detail by van der Corput [2]. Our results correspond to the leading
terms of the asymptotic series at the points a, b and c, to an accuracy corresponding to
the expected order of magnitude of the second term in the asymptotic series. We do not
need to assume the existence of high derivatives. Our estimates could have been obtained
by Stokes and Kelvin when they first considered the integral (1), but they appear to be
unknown to the highest authorities [2,3,4,6,7,8,9,10]. Sharp estimates are useful in
arguments involving sums of Fourier integrals or two-dimensional Fourier integrals, such
as occur in the Poisson summation formula and its generalisations (see [3] and [7]). The
spur for this work was the still more delicate summation formula of Voronoi, Hardy and
Wilton.

Our estimates are in terms of size parameters T and U, and length parameters M and
N, with M > b - a, for which certain derivatives of f(x) and g(x) satisfy

\f(r\x)\<BrTlMr, \gis\x)\<BsU/Ns (4)

for some constant 5 > 1. For assertion (B) we also require that

f"(x) > T/B2M2. (5)

This notation corresponds to the common situation of the Poisson summation formula [7]
applied to

f(x) = TF(x/M), g(x) = UG(x/M)w(x),
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where F(x) and G(x) are bounded functions, and w(x) is the smoothed characteristic
function of an interval [a0, b0] with

w(x) = 0 for x<ao-N,x>bo + N,

w(x) = l for ao + N<x<bo-N.

Our bounds are additive on intervals, in the sense that when we dissect the interval [a,b],
then the leading terms of the asymptotic expansions at the internal points of dissection
cancel one another. This is very useful if the orders of magnitude of the derivatives
change on the range of integration. Improper integrals from 0 to °° can usually be treated
by dissecting into subintervals of the form [a, 2a].

The fundamental estimate for integrals of the form (1) is the rth derivative test

= o((varg(x))/(mm\f"(x)\Ur)\
\\[a.b] II \[a,b] I)

where Var is the functional defined by the total variation on an interval plus the modulus
at either endpoint. We use this test with r = 1 or 2 to estimate residual terms.

THEOREM 1. Letf(x) be a real function, three times continuously differentiate, and let
g(x) be a real function, twice continuously differentiable on the interval [a,b], with the
estimate (4) holding for r = 2 and 3, and s = 0,1 and 2. Suppose that f'{x) and f"(x) do not
vanish on the interval [a, b]. Then we have

/ = l W v v 7/ 2mf'(b) 2mf'(a)

(B^TU/ M M2min\f'(x)\\ 1 \
V M2 \ N N2 TIM )mm\f'{xtr

THEOREM 2. Let f(x) be a real function, four times continuously differentiable, and let
g(x) be a real function, three times continuously differentiable on the interval [a,b],
satisfying the estimates (5) and (4) for r = 2,3 and 4 and s = 0,1 and 2. Suppose that f'(x)
changes sign from negative to positive at x = c with a<c<b. If T is sufficiently large in
terms of B, then we have

I g(x)e(f(x))dx = , 1-

X3 M
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Proof of Theorem 1. We integrate by parts to get

e(f(x))dg(x)j

357

2ni dxf'(x)

(f"(x)g(x)-f'(x)g'(x))e(f(x))
2nif'(x) \a • L (2m)2f'\x)

fbe(f(x)) d (f"(x)g(x)-f'(x)g'(x))
I (2m)2 dx f\x) aX'

and estimate the integrals by the first derivative test. We have

max
g(x)

dxf'{x)

The total variation is

= max r r2 BU B2TU

d2 g 8" 2f"g'

r r2 r2 r
rb j

<max|g"| —-dx + m<ix\f

dx

max

B2MU

N2

Hence

•max

TT

lf'l + \
B3TU B2TU B2TU

[a.b

M2

B3TU

M2

M M2mm\f'\
M2 min/'2V N N2 T/M

and the result follows by the first derivative test.

LEMMA 1. Let A and m be positive real numbers. Then

f e(ky2)dy =
J e(\m2)

• + •2VX 2m'\ 2mkm '

where

Proof. The complex error integral

Cm 1 + i
Limit e(\y2))dy=—7=
m-> =o J _ m 2VA

f'2

r
->a

f 1%

•
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is well known. We have

e{Xm2) J

AniXm 4mX

The integral from -°° to —m takes the same value. •

LEMMA 2. Let G(y) be a real function satisfying

for s = 0, 1,2 on the range a <y <b, where a<0<b. Then for A > 0 we have

f r v w* 2^w G(b)e(\b2) G(a)e(Xa2) (A \
C(y)e(Xy )) dy = 1- O I—JTT .

Proof. We divide the range of integration. Choose c by

c = 1/VX.

Then by the second derivative test

min(6,c)(•mm(fi,c)

•'max(o,-c)

Next we have

min(fc,2«)[
L AmXy

The total variation of G'{y)ly - G(y)/y2 for n <y <2n is O(A), so by the first derivative
test we have

n 4/riA \ y / / y y \X2n

Summing n through numbers of the form 2rc, with r = 0 ,1 ,2 , . . . , we get a contribution

O(A/X2c) = O(A/X3a).

The integrated terms cancel except at the top and bottom of the range, and

G(c)e(Xc2)=

4niXc

once more. We treat the range a <_y < - c similarly. D
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LEMMA 3. Let f(x) be a real function, four times continuously differentiable, and let
g(x) be a real function twice continuously differentiable on the interval [a, b], satisfying the
estimates (5) and (4) for r = 2, 3 and 4 and s = 0, 1 and 2. Suppose that f'(x) changes sign
from negative to positive at a point x = c with a<c<b. Let A=/"(c)/2. There is an
absolute constant 8 > 0, such that, ifa^ax<c and c<bx^b with

and

then we have

f(al)=f(bl)=f(c) +

0<m<8M/B5, (6)

f'g(x)e(f(x))dx=^
2nif'{bx)

2nif'(al)

Proof. We work with the Taylor series

o B4N m3

f(x)=f(c) + A(jt - cf + \3(x -cf + O
B4T \x - c\'

M4

and

g(x) = M - c)
B 2 t / | j c -

and the corresponding expansions of f'(x) and f"(x) as far as the term in A3, and of g'(x)
as far as the term in /u,,.

We define a new variable y by

Xy2=ttx)-f{c),
where y has the sign of x — c. Hence

and

Thus

dx 2Ay

d~y~f'(Xy

(7)

x - c
M

2\ \ 1/2

(8)

We must invert (8) to express x - c in terms of y. We suppose that 8 in (6) is so small that
(8) implies
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Now (8) gives x - c in terms of y, (x - c)2 and higher powers of x - c, and (7) gives
(x — c)2 in terms of y2 and higher powers of x — c. Substitution gives

We can now substitute in the Taylor series for f(x), f'(x) and f"(x) with remainder term
involving /<4)(JC), and the Taylor series for g(x) and g'(x) with remainder term involving
g"(x), to obtain the expansions

*%®-* + *,+0<y). (9)

for some coefficient K which we do not need to estimate, with

and

We have to calculate the expansions independently, since we cannot differentiate under
an order of magnitude sign in (10). An alternative method is to expand y and its
derivatives as power series in x - c, write the left hand side of (12) as

and substitute the identities

dy2

to obtain the estimate (12), from which (10) and (11) follow by integration. Some process
of series expansion seems to be necessary in evaluating the integral (1); our aim is to
simplify the argument by separating the expansion step from the integration.

After all this, then we can write

y

(y

:"

')3

d2

dy2
dx

8{X)dy

d3x

dy3

3(y"f •

(y

-y'yV

r

I g(x)e(f(x))dx = j _ J(x)e(f(x))-dy

fix)
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By Lemma 1

V(2A) 2mA 2mkm '
where

J =

by the first derivative test. The term in K integrates to zero.
Comparing (9), (10), (11) and (12), we see that G(y) satisfies the hypotheses of

Lemma 2 with a, b replaced by —m, m, and with

U
A

Combining (13) with the result of Lemma 2, we have

f,
Uix + Ky + G(y))e(f(c) + ky2)V> + I

L 4m\y J - , , , VVX L 4m\y

X-WZMZ \ N

= g(c)g(/(c) +1/8) | [gW£(/W)f + 0(§lMlR+^MR(l + ^L
Vf(c) I 2mf'(x) J,,, \m3T2 T3'2 \ B4J\

as asserted. •

Proof of Theorem 2. We have to optimise the choice of m between Theorem 1
applied to the ranges a to a, and 6, to b, and Lemma 3. If we ignore the conditions a <at

and fe, < b, then we can choose

m = M/Tm. (14)

This choice may or may not satisfy the conditions a < a,, or 6, < b. If either condition is
not satisfied, then we reduce the value of m so that

a = au m^c-a, (15)
or

b] = b, m~b-c. (16)

The terms in Lemma 3 containing negative powers of m are larger than they would be at
the optimum. To cover these cases, we must include in the upper bound the values of
these terms with the choices (15) and (16), which give the terms in l / ( c - a ) 3 and
1/(6 - cf in the theorem. Otherwise we use Theorem 1 on the ranges a to a, and bx to 6.
For 6 , < x < 6 w e have

>/'(*>,)s (6,-c)
mT

B2M2 B2M2'
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so the error term in Theorem 1 is

(&TV( M3 m \B6M6\ (B9M<U( mM

V M2 \ N2B2MJm3T3J \ m3T2 \ B2N2

This term absorbs the second error term in Lemma 3, and is itself dominated by the first
error term in Lemma 3 when (14) holds. The range a <x <flj is treated similarly. •
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