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Abstract

A ring R is called a (proper) quotient no-zero-divisor ring if every (proper) nonzero factor ring of
R has no zero-divisors. A characterization of a quotient no-zero-divisor ring is given. Using it,
the additive groups of quotient no-zero-divisor rings are determined. In addition, for an arbitrary
positive integer n, a quotient no-zero-divisor ring with exactly n proper ideals is constructed.
Finally, proper quotient no-zero-divisor rings and their additive groups are classified.

1991 Mathematics subject classification (Amer. Math. Soc): primary 16 A 45; secondary 16 A
02, 16 A 48.

1. Introduction

As in Feigelstock [1], a ring R is called a quotient no-zero-divisor ring if every
homomorphic image of R has no zero-divisors. Similarly a ring R is called a
proper quotient no-zero-divisor ring if every proper homomorphic image of R
has no zero-divisors. Feigelstock [1, Question 4.1.13] asked: What can be said
about the quotient no-zero-divisor rings and the proper quotient no-zero-divisor
rings? In this paper, we consider this question. We first give a characterization
of a quotient no-zero-divisor ring. As a corollary, we obtain that the additive
group of a quotient no-zero-divisor ring is either a direct sum of copies of the
additive group of the field of rational numbers or a direct sum of cyclic groups
of order p for some fixed prime p. In addition, we show that a quotient no-
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zero-divisor ring satisfying a polynomial identity is a division ring. We next
construct a quotient no-zero-divisor ring with exactly n proper ideals for an
arbitrary positive integer n. We do not know whether there exists a quotient
no-zero-divisor ring with infinitely many ideals or not. However we give an
example of a Hausdorif topological ring R such that R has infinitely many
closed proper ideals and all of them are completely prime. In the second half
of this paper, we study the proper quotient no-zero-divisor rings. We classify
the proper quotient no-zero-divisor rings into four types and determine their
structures. As a result, we describe the structure of the additive groups of proper
quotient no-zero-divisor rings.

2. Quotient no-zero-divisor rings

A proper ideal P of a ring R is said to be completely prime if R/P has no zero-
divisors. Thus R is a quotient no-zero-divisor ring if and only if every proper
ideal of R is completely prime. For each element a of a ring R, (a) denotes the
principal ideal of R generated by a, that is, (a) = Ra + aR + RaR + "La. A
ring R is called a chain ring if the lattice of ideals of R is totally ordered. We
shall now give a characterization of a quotient no-zero-divisor ring.

THEOREM 1. The following statements are equivalent:
(1) R is a quotient no-zero-divisor ring;
(2) R is a chain ring satisfying (a) = (a2) for all elements a in R.

PROOF. (1) =» (2). Let a be an element of R. If (a2) = R, then clearly we
have (a) = (a2). So suppose that (a2) ^ R. Then (a2) is completely prime by
hypothesis, and so we get a e (a2). Therefore we have (a) = (a2). To prove
that R is a chain ring, let I, J be two ideals of R. Assume, to the contrary, that
/ <t_ J and J <£ I and take a € / \ / and b e J\I. Then we see that ab e / C\J,
and so / n / is not completely prime. This is contrary to our hypothesis. Thus
R is a chain ring.

(2) =» (1). Let P be a proper ideal of R. To prove that P is completely prime,
let a, b be two elements of ?̂ such that ab e P. Then, for any x e R U Z, we
have bxa e (bxa) - ((bxa)2) C (ab) C P. Hence (b)(a) c P. Since R is
a chain ring, without loss of generality, we may assume that (b) C (a). Then
(b) - (b2) c (b)(b) c (b)(a) C P, that is, b e P. This proves that P is a
completely prime ideal.
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Let Q+ denote the additive group of the field of rational numbers, and for
any positive integer n, let Z(n) denote the cyclic group of order n. We shall
determine the additive groups of quotient no-zero-divisor rings.

COROLLARY 1. Let G be an abelian group. Then the following statements
are equivalent:

(1) G is the additive group of a quotient no-zero-divisor ring;
(2) G is isomorphic to either 0 a Q+ or 0 a Z(p) for some prime p, where

a is an arbitrary cardinal.

PROOF. (1) =>• (2). Suppose that G is the additive group of a quotient no-
zero-divisor ring R. Since R is an integral domain, the characteristic of R is
either 0 or a prime p. In the latter case, R is a vector space over a field of order
p, and hence G = 0 a Z(p) for some cardinal a. Suppose now that R is of
characteristic 0. Take an element a e R and a positive integer n. Then, by
Theorem 1, na e ((na)2) = n2(a2). Since R is of characteristic 0, we conclude
that a e nR. This implies that the additive group of R is a torsion-free divisible
group. By Fuchs [2, Theorem 23.1], G = ® a Q+ for some cardinal a.

(2) =>• (1). Needless to say, all fields are quotient no-zero-divisor rings. If
G = 0 a Q+, then G is the additive group of a field extension of degree a of
the field of rational numbers. On the other hand, if G = 0 a Z(p), then G is
the additive group of a field extension of degree a of a field of order p. This
completes the proof.

The first Weyl algebra Ai(Q) over the field Q of rational numbers is the
algebra on x, y over Q with the defining relation xy — yx = 1. It is well
known that A\(Q) is a simple domain with unity 1. It is easy to check that
R = A\(Q)x is a simple domain without unity. Hence R is an example of a
quotient no-zero-divisor ring without unity. As another corollary of Theorem 1,
we have the following.

COROLLARY 2. Let R be a quotient no-zero-divisor ring and let C denote the
center of R. Then R has a unity if and only ifC ^ 0.

PROOF. Suppose that C ^ 0, and take a nonzero element a of C. By The-
orem 1, we have (a) = (a2). Then we can write a — ae for some e e (a).
Then, for any x e R, we have a(x — xe) = xa — xae — 0. Similarly, we have
a(x — ex) = 0. Since R has no zero-divisors, these imply that x = xe = ex for
all x G R. Hence e is a unity of R.
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It is easy to see that a commutative quotient no-zero-divisor ring is a field.
More generally, we have the following.

PROPOSITION 1. Let R be a quotient no-zero-divisor ring. If R satisfies a
polynomial identity, then R is a division ring.

PROOF. Let C denote the center of R. Since R is prime, C ^ 0 by Herstein
[3, Theorem 1.4.2]. Hence, by Corollary 1, R has a unity 1. Let a be a nonzero
element of C. By Theorem 1, (a) = (a2). Hence there exists b e R such that
a — a2b. Since R is an integral domain, b is the inverse of a. Clearly b is in
C. Hence C is a field. By Rowen [6, Corollary 1.6.28], R is a simple Artinian
ring. Since R has no zero-divisors, R must be a division ring.

Let R be a chain ring. If the number of proper ideals of R is n, then R is called
an n -chain ring. We shall show that there exist n -chain quotient no-zero-divisor
rings for any positive integer n. Note that a 1-chain quotient no-zero-divisor
ring is nothing but a simple domain. Let K be a field and let A be an algebra
over K. Then, for each positive integer m, we let T^(A) — A ®K • • • ®K A
(tensor product taken m times). To construct n-chain quotient no-zero-divisor
rings, we use a simple domainD with center K such that T^(D) is an integral
domain for any positive integer m. We shall now give some examples of such
simple domains.

EXAMPLE 1.(1) Let K be a field of characteristic 0. Then, for each positive
integer n, the n-th Weyl algebra An(K) is a simple domain with 1 which is not
a division ring. The center of An(K) is K, and Tk

m(An(k)) = Amn(K). Hence
T^(An(K)) is an integral domain for any positive integer m.

(2) Let F be a field (of any characteristic) and let F(X) be the field of
rational functions in X over F. Let B — B(X, F(X)) be a ring defined as the
F(X)-algebra generated by x, x~\ y and y~l subject to the relation xy = kyx.
By Jategaonkar [4, Theorem 2.1], B is a simple domain with 1 which is not a
divisionring. Clearly the center of B is F(k). Since Tp(X){B) - B(X, r™(^(B)),
using induction on m and Jategaonkar [4, Proposition 1.1 (a)], we can show that
Tp(k)(B) is an integral domain for any positive integer m.

THEOREM 2. Let D be a simple domain with 1 which is not a division ring,
and let K denote the center of D. Suppose that T^(D) is an integral domain
for any positive integer m. Take a non-unit 0 ^ x e D and let Ri = K + xD.
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Define a subalgebra Rn ofT^(D) inductively: Rn — K + axD ®K Rn-\. Then
Rn is an (n + \)-chain quotient no-zero-divisor ring.

PROOF. Let / be a nonzero proper ideal of Rx. Since D is a simple domain,
we see that / D xDIxD — xD. Since R\/xD is isomorphic to the field K,
xD is a maximal ideal of Rx, and hence we conclude that I — xD. Thus 0,
xD and Rx are all the ideals of Rx. Obviously, 0 and xD are completely prime.
Therefore Rx is a 2-chain quotient no-zero-divisor ring. By induction on n,
we shall prove that the proper ideals of Rn are 0, T£(xD), T^~\xD) ®K Ru

Tx~2(xD)®KR2,..., xD®KRn_x and these are completely prime ideals. Let us
set RQ = K. Assume now that n > 1 and that the proper ideals of /?n_i are /0 =
0, 11 — T^~l(xD), . . . , / n _ i — xD <S>K Rn-2 and these are completely prime.
Since D is a simple ring with center K, by Renault [5, Theorem 5.1.3] the proper
ideals of D<g>K Rn_x are D®KI0 = 0, D®KIX,..., D<5$Kln_x. L e t / be a proper
ideal of Rn. Then (D <g> ~KRn-X)l(xD ®K Rn_x) = D®KIm for some m < n.
Then we obtain that (x <g> 1)1 (x <g> 1) C xD ®K lm. Since RJ(xD ®K Im) =
K+xD®K(Rn_x/Im) = K+xD®KRn-m_x = Rn_m,xD®K lm is completely
prime by the induction hypothesis. Since (x ® 1)1(x (8) 1) C xD <g>K Im c /
and x <8> 1 £ xD ®K Im, we conclude that / = xD ®K lm, and hence / is a
completely prime ideal of Rn. Ifm ^ 0, then/ = xD®KT£~m(xD)®KRm-X =
Tx~m+\xD) ®K Rm-X, and if m = 0, then / = 0. This completes the induction.

We do not know whether there exists a quotient no-zero-divisor ring with in-
finitely many ideals or not. However we shall construct a Hausdorff topological
ring R such that R has infinitely many closed proper ideals and all of them are
completely prime.

Let D be a simple domain with center K satisfying the hypothesis of The-
orem 2, Rn(n > 1) be the rings defined in Theorem 2 using D and let Ro = K.
Let n be a positive integer, and /„ the unique minimal ideal of /?„. As shown
in the proof of Theorem 2, we have a canonical isomorphism /?„// = Rn-X.
Let /„ : /?„ -*• /?„_! be the epimorphism induced by this isomorphism. Then
{Rn, fn} is an inverse system of rings.

THEOREM 3. The inverse limit S — lim Rn becomes a Hausdorff topological
ring all of whose closed proper ideals are completely prime.

PROOF. Let pn : 5 —> Rn denote the canonical projection, M_i = 5, and
Mn = Kerpn for each n > 0. By taking {Mn} to be a base of neighborhoods of
0, S becomes a topological ring. Since f \>-i Mn = 0, S is Hausdorff. Since
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Mn = S — Uaes\M (o + Mn),Mn is open and closed. Since S/Mn = Rn and each
Rn is an integral domain, Mn is a completely prime ideal for any n > 0. Now
let M be a nonzero closed ideal of S. We shall prove that M = Mm for some
w > —1. Since f \>- i M* = ° ^ ^ - i = S 3 Mo 3 Mi D .. •, there exists
an integer m > — 1 such that Mm D M and Mm+i ~fi M. Since 5/Aft = Rk for
each &, by taking the structure of the lattice of ideals of Rk into consideration,
we conclude that Mk + M = Mm for all k > m. Therefore Mm c M + Mk for
all k > 0. To prove that Mm c M, let a e Afm. Then a e M + Mk for all )t > 0.
Hence (a + Mt) D M ^ 0 for all k > 0. Since M is closed and {a + Mk \ k > 0}
is a base of neighborhoods of a, we conclude that a e M. This proves that

3. Proper quotient no-zero-divisor rings

We shall classify the proper quotient no-zero-divisor rings.

THEOREM 4. Let R be a ring. Then R is a proper quotient no-zero-divisor
ring if and only if one of the following holds:

(a) R is a quotient no-zero-divisor ring;
(b) R is a simple ring with zero-divisors;
(c) # is not an integral domain and R has a unique minimal ideal P such

that R/P is a quotient no-zero-divisor ring;
(d) R is the direct sum of two simple domains;
(e) There exist two quotient no-zero-divisor rings A and B with unique

proper minimal ideals P and Q respectively, such that there is an isomorphism

a : A/P -> B/Q, and R = {(a, b) € A x B\a(a + P) = b + Q}.

PROOF. Let R be a proper quotient no-zero-divisor ring such that 0 is not
a completely prime ideal. Suppose first that R is a chain ring. If R has no
nonzero proper ideals, then R satisfies (b). So we may assume that R has a
nonzero proper ideal. Let P denote the intersection of all nonzero proper ideals
of R. Since R is a chain ring and since every nonzero proper ideal is completely
prime, P is completely prime. Hence P is nonzero by hypothesis. In this case,
R satisfies (c). Suppose next that R has two ideals P and Q such that P <£_ Q
and Q <£ P. Then R/P n Q is not an integral domain, and so P D Q must be
zero. Let / be a nonzero ideal of R different from P and Q. Since R/I is an
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integral domain, either P c / or Q c / . Suppose that P <jt I. Then Q C /
and / n P c P. If / n P ^ 0, then Q c I n P, because P <£ I n P. Then
2 = ( / n / ' ) n g c / ) n ! 3 = 0, which is a contradiction. Hence/HP = 0 C <2,
and so / = £>. This contradicts the choice of / . Therefore / contains P.
Similarly we can prove that / contains Q. Hence P + Q is minimum among the
nonzero ideals of R different from P and Q. Now if P + Q = R, then R is the
direct sum of the simple domains P and Q, and so R satisfies (d). So assume
that P + Q + R. Let us set A = R/Q and B = R/P. By hypothesis A and B
are quotient no-zero-divisor rings. Since P n Q = 0, P and Q can be viewed as
ideals of A and B, respectively. By the above observation, P and Q are minimal
ideals of A and B respectively. Then we see A/P = R/(P + Q) = B/Q. Let
a : A/P —• B/Q denote this isomorphism. Consider the natural embedding
/ : R -+ A x B; f(a) = (a + Q,a + P) for all a e R. Let 5 denote the
set {(x, y) e A x B \ a(x + P) - y + Q}. We shall show that Im(f) = 5.
Clearly Im(f) is contained in S. Let (x, y) = (a + Q, b + P) e S, where a,
b are elements of R. Then a + (P + Q) = b + (P + Q) in R/(P + 0 ) , that
is, a — b G P + <2- Hence we can write a — b = p + q for some p e P and
q € Q. Now it is easy to see that / ( a — q) — (x, y). This proves / m ( / ) = S,
and hence R satisfies (e).

Conversely, if R satisfies one of (a)-(d), then clearly # is a proper quotient
no-zero-divisor ring. Assume now that R satisfies the condition (e). Then we
can easily see that the proper nonzero ideals of R are (P, 0) = {(/?, 0) e A x B \
p € P}, (0, Q), and

/ / ( / ) = {(a, b ) e A x B \ a € I, a { a + P) = b + Q ] ,

where / runs over all proper ideals of A containing P. Since R/(P,0) = B,
#/(0, Q) = A and R/H(I) = A/1, all of these nonzero ideals are completely
prime. This completes the proof.

We shall give examples of rings satisfying the conditions (c) or (e) in The-
orem 4.

EXAMPLE 2. (1) Let n > 1 be an integer and let R be an n -chain quotient
no-zero-divisor ring with unique minimal ideal P. Consider the set

S =
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By defining addition and multiplication in S as in ordinary matrices, S becomes
a ring. We can easily see that S satisfies the condition (c) in Theorem 4 and 5
is not a prime ring. On the other hand, let F be a field and let A be the ring of
countable matrices over F of the form

Cn 0 \
0 a

where a e F and Cn is an arbitrary n x n matrix over F and n is allowed to be
any integer. Then A is a prime ring satisfying (c) in Theorem 4.

(2) Let n > 1 be an integer and let R be an n -chain quotient no-zero-divisor
ring with unique minimal ideal P. Then 5 = {(a, b)€RxR\a — b e P} isa.
ring satisfying the condition (e) in Theorem 4.

As a result of Theorem 4, we can describe the structure of the additive groups
of proper quotient no-zero-divisor rings.

COROLLARY 3. Let R be a proper quotient no-zero-divisor ring and let R+

denote the additive group of R. Then one of the following holds:
(1) R+ — 0 a Q+ where a is a cardinal;
(2) R+ = 0 f f Z(p) where p is a prime and a is a cardinal;
(3) R+ = 0 a Q+ © ©^ Z(p) is a prime and a, /? are cardinals;
(4) R+ = 0 o Z(p) © 0 ^ Z(q) where p and q are distinct primes and a, /?

are cardinals;
(5) R+ = 0 a Z(p2) where p is a prime and a is a cardinal;
(6) R+ — 0 a Z(p) © 0 0 Z(p2) where p is a prime and a, ft are cardinals.

PROOF. If R satisfies the condition (a) in Theorem 4, then either (1) or (2)
holds by Corollary 1. Now suppose that R satisfies (b) in Theorem 4. Then
the characteristic of R is either a prime p or 0. If char(/?) = p, then (2)
holds. On the other hand, if chai(R) = 0, then nR = R for any positive
integer n, because nR is a nonzero ideal of #. This implies that R+ is divisible.
Hence (1) holds by Fuchs [2, Theorem 23.1]. Suppose next that R satisfies
the condition (c) in Theorem 4. Then R is a chain ring and P is the unique
minimal ideal of R. If P2 ^ 0, then P2 — P. In this case, R is a prime ring
and I2 = I for any ideals / of R, because every ideal of R/P is idempotent
by Theorem 1. If the characteristic of R is a prime p, then (2) holds. So
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assume that char(/?) = 0 and let n be an arbitrary positive integer. Then, since
nR = (nR)2 = n2R2 - n2R, we obtain nR = R. Then R+ is a torsion-free
divisible group, and hence (1) holds again by Fuchs [2, Theorem 23.1]. In case
P2 = 0, P is a right fl//>-module. If chai(R/P) — 0, then R/P is a vector
space over Q by Corollary 1, and hence the right R/ P -module P is also a vector
space over Q. Then R+ is isomorphic to P+ © (R/P)+, and hence (1) holds.
On the other hand, if char(/?/P) = p, then char(R) equals either p or p2. Then,
by Fuchs [2, Theorem 17.2], R+ satisfies either (2), (5) or (6). If R satisfies (d)
in Theorem 4, then R+ satisfies one of (l)-(4). Finally, suppose that R satisfies
the condition (e) in Theorem 4. Then, by Corollary 1, A is a vector space over
either Q or Z/pZ for some prime p. Similarly B is a vector space over either
Q or Z/qZ for some prime q. Since A/P is isomorphic to B/Q, it holds that
char(A) = char(fi). If chai(A) = char(B) = p > 0, then R+ satisfies (2),
because R is a subring of A x B. Suppose now that A and B are vector spaces
over Q. Then we can easily see that the isomorphism a : A/P -> B/Q is a
Q-space isomorphism. Therefore /? is also a vector space over Q, and hence (1)
holds in this case.

REMARK. Let p be a prime. Then Z/p2Z is a proper quotient no-zero-divisor
ring satisfying (5) of Corollary 3. However we do not know the existence of a
proper quotient no-zero-divisor ring satisfying (6) of Corollary 3.
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