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Introduction. Let G be a finite group with neutral element e which operates trivially
on the multiplicative group R* of a commutative ring with identity 1. Let H2{G, R*) =
Z\G, R*)/B2(G, R*) denote the second cohomology group of G with respect to the
trivial G-module R*. With every factor system (2-cocycle) feZ2(G, R*) we associate the
so called (central) twisted group algebra (R, G,f) of G over R (see [4, Chapter V, 23.7]
or [13, §4] for a definition). If / is cohomologous to /', then the i?-algebras (R, G, f) and
(R, G, /') are isomorphic. Hence, up to J?-algebra isomorphism, (R, G, f) is determined by
the cohomology class feH2(G, R*) determined by /. If R = k is a field of characteristic
not dividing the order \G\ of G, then a computation of the discriminant of (fc, G,/) shows
that (fc, G, f) is semisimple (see [13,4.2]).

In this paper we develop a method which shows how to construct splitting fields of
(fc, G, f) in the case where k is a number field and G is nilpotent.

If / = 1 the algebra (k, G, f) is the ordinary group algebra. In this case the problem is
completely solved by a well-known theorem of Roquette [12]. So we let / ^ 1 throughout.
Partial results are contained in [1] and [9, §9].

Parts of this paper grew out of discussions with Professor F. Lorenz for which I would
like to thank him very much.

1. Reduction to groups with nondegenerate center. We say that the finite nilpotent
group G has a nondegenerate center Z(G) with respect to the factor system feZ2(G, k*)
if the symplectic pairing <u :Z(G)xZ(G)-» fc* determined by the restriction / | Z <G) is
nondegenerate [13,2.2]. We reduce our problem to such a group G.

So let us start with an arbitrary finite nilpotent group G, a number field k and a factor
system feZ2(G, fc*). To compute the index of a simple component of (k, G,/) we may
assume without loss of generality that the central subgroup

Z(fl = {z e Z(G) | f(g, z) = f(z, g) for all g e G}

of G is trivial. Otherwise we consider the factor group G/Z(f). We get a factor system
teZ2(GIZ(f), (k,Z(/),/)*) and an isomorphism of k-algebras (fc, G,/) = <(*, Z(/),/),
GIZ{f), t) [11, Theorem 2.1].

Now we decompose (k, Z(f), f) into a direct sum of fields (k, Z(J), f) = XKt. We get
factor systems ff e Z2(G/Z(f), Kf) and an isomorphism of k-algebras' (k,G,f) =
X (Kit G/Z(f), tt). This isomorphism allows us to view a simple component of (k, G,f) as
a simple component of one of the algebras (Kh GIZ(f), tt), and the index of the first algebra
over k equals the index of the second over K{. So we may assume inductively that Z(/) is
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trivial. (The above technique was first applied in a somewhat different context in [11] and
was used in connection with splitting field questions in [9, §9].)

Now we consider the kernel

Zf = {ze Z(G) | f(z, z') = f{z', z) for all z' e Z(G)}

of the symplectic pairing oi\Z(G)x.Z(G)—> k*, and the subgroup

Zf = {g e G | /(g, z) = f(z, g) for all zzZ,}

of G. The pairing (of: G x Zf ^> k* determined by /(see [13, §2]) yields a homomorphism
<Of( , z): g >-» o>/(g, z) of G into k* for every zeZf, and Z ' is the intersection of the
kernels of these homomorphisms; in particular, Zf. is a normal subgroup of G. Further-
more, the pairing o>f: G x Zf —» k* yields a nondegenerate pairing of GjZ'xZf into fc*
which is also denoted by <of. Since Z(f) is trivial, we get a canonical isomorphism between
GIZJ and Hom(Zf, fc*) by mapping each xeG/Zf to the linear character o)f(x, ) of Z .̂
We note the following lemma.

LEMMA 1.1. The group G/Zf is canonically isomorphic to Hom(Zy, fc*). In particular, k
contains a primitive root of unity of order exp Zf.

Now let C be an algebraically closed field containing fc. A simple character a of
C®(fc, Zf,/), a£k, yields an element of Hom(Zf, C*/fc*), which we can take to be
faithful without loss of generality. So all values of aexpZ' belong to k. Hence by the second
part of Lemma 1.1 the field k(a) is a Kummer extension of fc. Hence by the second part of
Lemma 1.1 the field k{a) is a Kummer extension of fc. Multiplication of a by all the linear
characters w(x, ) e Hom(Zf, fc*), where xeG/Zf, yields exactly all fc-automorphisms of
fc(a). Hence we have the next lemma.

LEMMA 1.2. If a is a simple character of C®(fc, Zf, f) then the field k(a) is a Kummer
extension of k with Galois group *$(<*) canonically isomorphic to GIZf.

Now let x be a simple character of C®(fc, G,f) with values in fc and let a be a
simple component of Res^fo). A short computation shows that the fixed group I(a) of a
is equal to Zf. Clifford's theory, which is also valid for representations of twisted group
algebras, therefore yields a simple character £ of C<8>(fc, Zf, f) such that \ = Indz'(C) and
Resf^) = la for some natural number /. The last condition shows that the center fc(£) of
the simple component s£(Zf, £) of (fc, Zf, f) corresponding to £ is equal to fc(a). A simple
application of Frobenius' law of reciprocity (see e.g. [9,4.13]) establishes the next lemma.

LEMMA 1.3. For every x € G/Zf there is a a in the Galois group $(£) of fc(£) over k such
that Zx = f *

The following reduction theorem is contained in [3, 3.2] in a similar form for the case
/ = 1. The proof of it is easily carried over to the twisted case. For the convenience of the
reader we recall the main steps.

LEMMA 1.4. Let xbea simple character of C®{k, G, f) with values in fc. If the index of
s&(Z{, £) is equal to 1 then si(G, x) is similar to a crossed product r(k(£)/fc, c) for a factor
system c: ^(^)x §(£)-» fc(£)* in the sense of Galois cohomology.

https://doi.org/10.1017/S0017089500003724 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003724


TWISTED GROUP ALGEBRA 57

Proof. Let c<rT = s<TsTs^ be a factor system associated with the extension 1—>Zf-»
G->«(£)-> l,let{eg | g e G} be a canonical fc -basis of (k, G, f) and let /3: (fc, Zf,f)^>si(Zf, £)
be the k-algebra epimorphism associated with £ G operates on si(Zf, £) accord-
ing to ig(j3(en)) = P(egenc~1) for all neZf, g e G . Consider the following algebra of rank
(fc(a):fc) over s£(Zf, £)s=Mat4O)(k(£)): l / = © Mat£O)(k(|))u<r with multiplication rules

WCTOM;'= i v (a ) , aeMat£a)(fc(£)), U^IL, = fi{e-c^)u^. The map 7 of (k,G,f) into J7 de-
fined by y(ens<i) = f(n,stT)~l(i(en)u(r,toT all g = ns< reG, is an epimorphism of k-algebras.
It is obvious that U = s$(G, x)- %(€) operates on Mat4(i)(fc(£)) as it operates on the
coefficients of a matrix, i.e. as it operates on £

The map a'1"!^ :Mat€(1)(fc(£))-»Mat4(1)(fc(£)) is a k(£)-automorphism by Lemma
1.3. By a well-known theorem of Skolem-Noether there is an invertible matrix B^e
Mat€(1)(fc(£)) such that, for all aeMat€(1)(fc(£)), we have (a~1oi!J(a) = BZ1aB<T. Set
Ca = o-(Ba). Then we have i^(a) = Ca

xaCa. Setting v>a = Caua, we have t^au"1 = cr(a) and
vavr = caTv^r for a factor system c of S ^ ) x (S(£) into fc(£)* in the sense of Galois
cohomology. The crossed product r(fc(f)/fc, c) = © k(£)tv with respect to c is a
subalgebra of U with centralizer Mat€(1)(fc). <rti9S({)

We shall call crossed product algebras of the type described in Lemma 1.4, Kummer
algebras.

COROLLARY 1.5. The index of s&(G, x) is equal to the index of r(fc(^)/k, c).

Now let the index m of s&(Zs, g) be greater than 1. Form the m-fold direct product
G(m)=G* . . . x G, the (outer) product fm) = fx ... xf and the (outer tensor) product
£(m) = £ x . . . x 1 Then we have ^(Z«m ) , £(m)) = si(Zf, 0 ® k ( O . . .<g>fc({).s*(Z', £), fc(£(m)) =
k(|), x<m) = Indg£i(£(m)) and the index of s£(Zfim\ ?m)) is equal to 1. Hence there is a
factor system cm of ®(£)x <g(£) into k(£)* such that the index of j#(G(m), xim)) is equal to
the index K of T(k(^)/k, cm). Hence the index of s&(G, x) is equal to Km.

If the kernel of the symplectic pairing of Z(Zf) x Z(Zf) into fc* determined by /1 z(2r)
is not trivial, we repeat the whole process. After r steps we arrive at a group M with
nondegenerate center with respect to a factor system f of MxM into a certain fielH
extension L of k. At each step we get a Kummer algebra of the type described above.
More precisely, we have proved the following lemma.

LEMMA 1.6. The index of s£(G,x) is equal to the product of the index of a simple
component sd(M, p) of a twisted group algebra (L, M, / ') , where the group M has a
nondegenerate center with respect to / ' , with the indices of a certain number of Kummer
algebras. The number of these Kummer algebras is equal to the number of reduction steps
which are used to arrive at a group with nondegenerate center.

2. Groups with nondegenerate center. Now let the finite nilpotent group have a
nondegenerate center with respect to a factor system feZ2(G, k*). Let <p be a simple
character of C®(k,Z(G),f) which occurs as constituent of the restriction of a simple
character x of C®(fc, G,f) to Z(G). We assume fc(*) = fc. By [13, Proposition 4.1], the
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k-algebra (k,Z(G),f) is central simple, i.e. si(Z(G), <p) = (k, Z{G),f). Therefore I(<p) =
G. Clifford's theory yields a factor system feZ2(G/Z(G), k*) and a simple character \ of
C®{k,GIZ{G),f) such that k(x)=k and si(G,x) = si(Z(G),<p)®ksi{GIZ(G),x) (see
[5, §2]); the statements there refer to the ordinary group algebra but the proofs remain
unchanged in the twisted case.

If G/Z(G) is not abelian, we can repeat the whole reduction process from the
beginning. Let us put our results together in the following lemma.

LEMMA 2.1. Let G be a finite nilpotent group with nondegenerate center with respect to
feZ2(G, k*), let \ be a simple character of C<8>(fc, G,f) with values in k and let <p be a
simple character ofC®(k, Z(G), f) which occurs as a constituent of Res§(G)(x). Then there is
a (central) factor system feZ2(G/Z(G),k*) and a simple character x °f C<8>
(k, G/Z(G), f) such that the central simple k-algebras si(G, x) and
(k,Z(G),f)®ks£(GIZ(G),x) are isomorphic.

3. Central simple twisted group algebras of abelian groups. The preceding results,
especially Lemmas 1.6 and 2.1, have shown the importance of the following two types of
algebras: (I) central simple twisted group algebras of abelian groups, (II) crossed products
of Kummer extensions with respect to factor systems in the sense of Galois cohomology.

LEMMA 3.1. Every cyclic Kummer algebra is a central simple twisted group algebra of an
abelian group.

Proof. Let T(K/fc, c) be a Kummer algebra. Suppose that K=k(\fa) is a cyclic
n - l

extension of k with Galois group S = <cr>. Then T(Klk,c) = r(Klk,a,b), b=H c^..

Choose a primitive nth root of unity £ in k. Then we may describe r(K/k, c) by generators
(</a)', «fb)\ 0<i, / S B - 1 , with relations (</a)(</b) = £(</b)(</o). 'SxS operates on
T(K/k, a, b) in an obvious way as a group of k-algebra automorphisms. It fixes exactly the
center k. So by [13,7.4] there is a (central) factor system /eZ2Ci0x <g, k*) such that
T(Klk,*,b)s(k,<Sx%f).

We see that it is important to know the structure of central simple twisted group
algebras of abelian groups. So let G be an abelian group, /eZ2(G, fc*) such that the
symplectic pairing o>: G x G -» k* associated with / is nondegenerate. We decompose the
"symplectic space" (G, <o) into an orthogonal direct product of "hyperbolic planes"
(G, w)sX(Z(mi)x/(mi),wi), see [14, Theorem 3.8]. It follows that (k,G,f) =

(8)(k,2(mi)xZ(mi),/). Let
ntj — 1 nij — 1

Z(mi)xZ(mi) = <xi)x<ye), c(xi)= f ] /fexD, c(yf)= U f(yh yf).

Then, choosing a primitive mfth root of unity § in k, we may describe (k, 2(mf) x 2(mj), /)
by generators

V3 C</cJy~))1,
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with relations

(m<fcjx~))( m<fcjy7)) = fi( m<fcjy~))( V ^ O O ) .
It follows that the index of this algebra divides mt. mf divides the order w of the group of
roots of unity in fc. Since k is a number field, the index equals the exponent in the Brauer
group and we see that the wth exponent of the class of (k, G, /) in the Brauer group of k
is trivial. Hence we have proved the next theorem.

THEOREM 3.3. The index of a central simple twisted group algebra of an abelian group
over a number field k divides the order of the group of roots of unity in k.

Let Brw(k) denote the subgroup of the Brauer group of k whose elements have
orders dividing w and let W denote the group of roots of unity in k. It is proved in
algebraic K-theory (Bass, Tate) that there is an isomorphism h1:K2klwK2k—» W<8>
Brw(fc). Hence (k, G,f) determines an element of K2k/wK2k which may be represented
not just by a product of symbols but actually by a symbol, see [7]. Call this symbol
{Suf-ila- The structure of (k,G,f), especially its splitting properties, is determined com-
pletely by {fu / 2 } G mod wK2k, which in turn may be "computed explicitly" with the aid of

the local norm residue symbols (^jr2) f°r all primes ft of k, see [6].

4. An estimation for the Schur index. Now we are in a position to determine the
index of a simple component of a twisted group algebra (k, G, f) of the finite nilpotent
group G over a number field k, at least in principle, because by Lemmas 1.6, 2.1 and 3.1
this problem may be reduced to the case of a central simple twisted group algebra of an
abelian group which is determined by a symbol. The formulation of a complete result is
left to the reader. We content ourselves with some examples in Section 5 and the following
simple estimation for the Schur index which follows directly from the above discussion.

THEOREM 4.1. There is a radical extension L of k which is determined by the reduction
process described in Lemmas 1.6 and 2.1 such that, for a simple component s£{G,x) of
(k, G, f), the algebra L®k(x)s£(G, x) is similar to a tensor product of central simple twisted
group algebras of abelian groups. In particular, by Theorem 3.2, the index of s&(G, x)
divides (L: k)wL, where wL denotes the order of the group of roots of unity in L.

5. Examples. As first example we consider an abelian group G. Let N be the kernel
of the symplectic pairing <o:GxG^>k* associated with feZ2(G,k*). Let G=G/N.
Then « defines a nondegenerate pairing from GxG to k* which is also denoted by co.
Let (k, N, f) = X K{ be a decomposition into a direct sum of fields. By Reid's reduction

process described in Section 1 there are factor systems t^: G x G—* K* such that
(k, G, f) = X(Kh G, tt). It follows from the explicit construction of the tt that the pairing

determined by them is a>. From this and Theorem 3.2 we conclude that the index of a
simple component (Kh G, tt) divides w, the order of the group of roots of unity of k.
Moreover, we get a norm criterion for the splitting of (K,, G, 0 see [9,9.17].

Now let G = P be an extra special p-group, i.e. the center Z(P) of P has order p and
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coincides with the commutator subgroup P' of P and PIP' is isomorphic to a direct
product of 2m copies of 2 (p), meN. Let feZ2(P, k*). In studying the index of a simple
component of (k, P, f) we shall make use of the results in [10]. We have either Z(/) = P'
orZ(/ ) = {e}.

In the first case we have, by Reid's reduction process, in the usual notation: (fc, P, /) =
>C(Xf, PIP', tj). The index of a simple component of (fc, P, /) over k is equal to the index of

a simple component of some (X,, PIP', t{) over Kj. Since P/P' is abelian, we can apply the
results of the abelian case.

If Z(j) = {e} then, by [10, (1.2)], the group P is the nonabelian group of order p3 and
exponent p if p?2, and the dihedral group of order 8 if p = 2. Therefore Zf=Z(p),
Zf s= Z(p) x Z(p). Let a be a simple character of C® (fc, Zf, f) which occurs as a constituent
in the restriction of a simple character x of C®(fc, G, f) to Zf. Let fc(x) = fc, K = fc(a). Let
£ be a simple character of C<8)(k,Zf,f) which induces x and £|z, = '<*, l e W Since
Zf/Zf = Z(p) is cyclic we have 1 = 1. Hence £ is one-dimensional. Since fc(£) = fc(a), £ is
realisable over K and by Theorem 1.4 the simple component s&(P, x) belonging to x is
similar to a cyclic Kummer algebra F(K/k, c). The index of this algebra is either equal to 1
or to p because x(l) = p. A norm criterion for T(K/k, c) determines which case actually
occurs.

The final example is concerned with a metacyclic p-group P, p ^ 2. Let s&(P, x) be a
simple component of (k,P,f) with fc(x) = fc. We have (k,P,/) = X(^i,P, 0 , where

P has a non-degenerate center with respect to th_ see [8, (5.3)]. The index of
s&(P, x) is equal to the index of a simple component s&(P, x) of some (Kit P,tt). We have
Kj = k because of our assumption k(x)=k. By Lemma 2.1, we have sA{P,x) =
sl(Z(P), <p)®kst(P/Z(P),x)JoT some (central) factor system feZ2(P/Z(P), k*), a simple
character x of C®(k, P/Z(P), f) and a simple character <p of C®(fc, Z(P), f) which occurs
as constituent of the restriction of x t o Z(P). Continuing this process we get a norm
criterion for the splitting of sd(P, x) and as upper estimation for its index the order of the
group of roots of unity of k(x) = k.

6. The general case. Let G be an arbitrary finite group and feZ2(G,k*). To
construct splitting fields for (k, G, f) we may proceed as follows: at first we choose an
extension K of k such that every K-elementary subgroup of G is elementary (in
particular nilpotent). We may take for K the field fc({£p | p | |G|}), £p a primitive pth root
of unity. By [9,(9.2)] we have: a simple component of K<S)(k, G,f) has index 1 over
L s K if for every elementary subgroup H of G all simple components of K<8>(k,H,f)
have index 1 over L. Probably the step from k to K is not "sharp enough". To answer
these questions we have to compute the defect set belonging to (k, G, f) in the sense of
axiomatic representation theory.
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