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Introduction. The concept of a Hilbert module (over an H*-algebra) arises as a
generalization of that of a complex Hilbert space when the complex field is replaced by an
(associative) H*-algebra with zero annihilator. P. P. Saworotnow [13] introduced Hilbert
modules and extended to its context some classical theorems from the theory of Hilbert
spaces, J. F. Smith [17] gave a complete structure theory for Hilbert modules, and G. R.
Giellis [9] obtained a nice characteristization of Hilbert modules.

Nevertheless, as far as we know, the fundamental concept of an orthonormal basis
for Hilbert spaces has not been extended until now to Hilbert modules, a fact which has
obstructed the development of a theory of operators of Hilbert-Schmidt type on a Hilbert
module. Such a theory, which actually we develop in Section 3 of this paper, has become a
crucial tool in the study of structurable H*-algebras begun by the authors [6]. See [4]. The
reason is that a large class of structurable H*-algebras can be built from particular types
of Hilbert modules, and structurable H*-algebras obtained in this way are of capital
importance in the general theory, because every topologically simple structurable
H*-algebra that is not of this form is either associative, Jordan, or finite-dimensional (see
[6, Theorem 1.3] and [4,1.11.2]). Then a large part of the proof of the main results in [4]
(asserting that all topologically simple Lie H*-algebras can be constructed from
topologically simple structurable H*-algebras by means of an infinite-dimensional
extension of the finite-dimensional Allison-Kantor-Koecher-Tits construction [1]) relies
on the theory of Hilbert-Schmidt type operators on Hilbert modules developed in this
paper. The reader is referred to [5] for more information about the relation between
Hilbert modules and structurable H*-algebras.

The key idea in our work is the appropriate concept we give of an orthonormal
system and an orthonormal basis in a Hilbert module (Definition 1.2), which is in
agreement with the familiar one for Hilbert spaces thanks to the simple observation that
the unit of C is the only minimal idempotent in C. Our approach (which is inspired by
[12], where Hilbert modules over finite-dimensional C*-algebras were studied) follows
then with minor variants the classical arguments in the case of Hilbert spaces. Thus we
prove (Theorem 1.6) that an orthonormal system in a Hilbert module is an orthonormal
basis if and only if either "Parseval's identity" or "Fourier expansion" are verified. We
prove (Corollary 1.10) the existence of orthonormal bases for a given Hilbert module and
also that all the orthonormal bases have the same cardinal (Proposition 1.11). The
existence of orthonormal bases allows us to provide an easy proof of the structure
theorems by J. F. Smith (Section 2). Finally, as we have already commented, Hilbert-
Schmidt type operators on Hilbert modules are introduced and studied (Section 3).

1. Orthonormal bases in Hilbert modules. We recall that an H*-algebra is a
complex algebra % with a conjugate-linear mapping e-*e* from % to %, called the
H*-algebra involution of %, and a complete inner product (. |.) satisfying e** = e,
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(ef)* =f*e* and (ef \g) = (e\ gf*) = (/ | e*g) for all e, / , g in %. Note that the product of
any H*-algebra % is continuous [7, Proposition 2 (i)], so (by multiplying the inner product
by a suitable positive number if necessary) % is a (complete) normed algebra in the usual
sense of the word, a fact that will be assumed in what follows.

Given a (complex associative) H*-algebra % with zero annihilator, the trace-class
T(%) of IS is defined as the set {ef:e,f e £}, and it is known ([15] and [14]) that r(g) is an
ideal of % which is a Banach *-algebra under a suitable norm r(.) related to the given
norm on % by ||e||2 = z(e*e) for all e in %. There exists a canonical continuous
commutative linear form on T(^) (called the trace of % and denoted by tr) related with
the inner product of % by tr(e/) = (e |/*) for. all e, / i n %. The reader is referred to [13],
[14], and [15] for these and other interesting results about the trace class of an H*-algebra
with zero annihilator.

Following [3, Definition 9.11], a left module over an associative complex algebra % is
a complex vector space W together with a bilinear mapping (e, w)—*e ° w from g x W t o
W satisfying e ° (/ ° w) = (ef) ° w for all e, f in % and w in W. The original definition of
Hilbert modules by P. P. Saworotnow [13, Definition 1], with some remarks in [13] and
[17], can be formulated as follows.

DEFINITION 1.1. A Hilbert %-module is a left module W over an H*-algebra % with
zero annihilator, provided with a mapping

[ | ]: W x W-* r(«) (the r e v a l u e d product)

satisfying, for all w}, w[, w2 in W, e in % and A in C, the following properties.
(i) [Awj | w2] = A[wj | w2\
(ii) [wi + w'1\w2] = [w1\ w2] + [w[\ w2].
(iii) [e ° M/J | w2] = e[w, | w2).
(iv) [wj | w2}* = [w21 Wj].
(v) For each nonzero w in W there is a nonzero / in % such that [H> | W] = / * /
(vi) W is a Hilbert space under the inner product (wj | w2): = tr([wi | w2]).

REMARK 1. As an immediate consequence of the above definition and the previous
comments we obtain

||w||2 = tr([w | w]) = r([w | w]) for all w in W.

Also from [15, Corollary 3] and [13, Theorem 2] we have

II [wi | >v2]|| < T([*W, | w2]) < || Wl || || wi||, for all wu w2 in W.

Finally \\e ° w|| < ||e|| ||w|| for all e in % and w in W [13, Lemma 1]. In what follows we
shall use these facts without further comment.

DEFINITION 1.2. Let W be a Hilbert ^-module. An element u in W is said to be a
basic element it e: = [u\u] is a (selfadjoint) minimal idempotent in % (that is, e is a
nonzero idempotent in % such that e%e = Ce). We define an orthonormal system in W as a
family of basic elements {MA}A<EA satisfying [«A I «,J = 0 for all A, n in A with A / / i , We
say that {MA}AEA is an orthonormal basis in W if it is an orthonormal system generating a
dense submodule of W. If N is a subset of a Hilbert module W, we define

Nl±]:={w e
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Clearly Nl±] is a closed submodule of W. It is known [13, Lemma 3] that, if N is a
submodule of W, then N[±] = A^, the orthogonal complement of N in W regarded as a
Hilbert space.

L E M M A 1.3. Let W be a Hilbert ^-module and let u in W be such that e:= [u \u] is an
idempotent in % Then

[w | u] = [w | u]e for all w in W.

Proof. Clearly A/: = {w e W:[w | u] = [w \ u]e} is a closed submodule of W and u lies
in M, so that, if N denotes the closed submodule generated by u, then N^M. On the
other hand, if w is in N[±\ then w is also in {u}[xl, so 0 = [w \u] = [w\ u]e, and so w lies in
M. Now we have W = N + N[±] c M. Therefore M = W. •

COROLLARY 1.4. //{MJASA « on orthonormal system in a Hilbert module W and if J is
a finite subset of A, then

\w ~ 2 lw I "A] ° "A I w - 2 [w I «A] ° "A =
L Ae7 AE7 J

for all w in W.

Proof. This is clear from axioms (iii) and (iv) in Definition 1.1, using the above
lemma. •

In the next proposition we study in detail the submodule generated by a basic
element in a Hilbert module. We note that every H*-algebra % with zero annihilator,
regarded as a left module over %, has a natural structure of Hilbert ^-module by denning
the t(<£)-valued product as [e \f]:=ef*, for all e,fin %. This structure is inherited by the
closed left ideals of %. Module isomorphisms between Hilbert ^-modules which preserve
the T($)-valued product are called Hilbert module isomorphisms.

PROPOSITION 1.5. Let W be a Hilbert %-module, let u be a basic element in W, and let
M denote the submodule of W generated by u. Then M is closed in W, the mapping
w-^[w\u]°u is the orthogonal projection from W onto M, and the mapping m -» [m | u]
is a Hilbert module isomorphism from M onto %e, where e:=[u | u]. As a consequence, M
is an irreducible %-module.

Proof. For any w in W, Lemma 1.3 gives [w - [w | u] ° u | u] = 0, so w — [w \ u] ° u
lies in Ml±\ This fact, together with the identity w = [w | u] ° u + (w — [w | u] ° u), shows
that w -* [w | u] o u is the orthogonal projection from W onto M. As a consequence, we
have M£?»iicM, and so M is closed in W. On the other hand, the mapping
w-*f(w):=[w \u] from W into %e (see again Lemma 1.3) is a non-zero module
homomorphism such that Ker(/) = {w}[J"1 = M[J"]. Therefore / \M: M —* %e is a one to one
module homomorphism. Moreover, by [3, Proposition 30.6], %e is a minimal left ideal of
%, and hence an irreducible left ^-module. Therefore actually / \M maps M onto %e.
Finally, from the equality [m | u] ° u = m for m in M, it follows that / \M is a Hilbert
module isomorphism. •

The following theorem provides a very useful characterization of orthonormal bases
in Hilbert modules.
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THEOREM 1.6. Let {MA}AEA be an orthonormal system in a Hilbert module W. Then the
following statements are equivalent.

(i) For all wu w2 in W the family {[wi | MA][W2 | uA]*}AeA is summable in the Banach
space (r(<£), T( . ) ) , with sum equal to [iv, | w2].

(ii) For every w in W', we have [w \w]= 2 [w | MA][W | MA]* (ParsevaVs identity) in
the Banach space (x(V), T( .)) . AeA

(iii) For every w in W, we have w = 2 [w \ MA] ° MA (Fourier expansion).
AeA

(iv) {«A}AsA is an orthonormal basis in W.

Proof. Clearly (i) implies (ii). Denote by SF the family of all finite subsets of A. By
Corollary 1.4,

12 /r

= T [\w ~ X [w I " A ] ° MA I W - 2 I
> I w] ~ X [w I «A][W I « A ] *

Ae7

for each J in 5F. Therefore (ii) is true if and only if (iii) is true. If w = 2 [w | MA] ° uA,
AeA

then w is a point limit of elements in the ^-submodule generated by {uA: A e A}.
Therefore (iii) implies (iv). Now, let us assume that condition (iv) holds. Since by

Proposition 1.5 the submodule generated by {MA:A e A} is \ 2 ek ° MA:7 e 9*, eK e %\, we

have that, for every w in W and e > 0, there exist Jo in 9* and eA in ^(A G JO) such that

w — 2 eK° MA < e. Then, for each J in SF with J0^J, as in the proof of Proposition
A e./0 ||

1.5, we have that 2 [w \ MA] ° MA is the orthogonal projection from w onto the submodule

generated by {MA : A e /} which is closed and contains 2 ex ° MA, SO by the orthogonal
projection theorem for W regarded as a Hilbert space Ae7°

Thus condition (iii) is verified. Finally, (i) follows from (ii) by the polarization law. •

REMARK 2. Parseval's identity leads to the equality 2 \\[w | M A ] | | 2 = | |W||2. Indeed,
AeA

2 I I M « A ] I I 2 = 2 t r (M« A ][ tv |u A ]*) = t r ( 2 [w\u,][w\u,]*) = lr([w\w])=\\w\\2.
AeA AeA AeA ^

Our next objective is to prove the existence of orthonormal bases.

PROPOSITION 1.7. Let W be a nonzero submodule of a Hilbert %-module. Then there
exist basic elements in W.

Proof. First we note that, if w is a nonzero element in W, then there exists a
selfadjoint minimal idempotent e in % such that e ° w ¥= 0. Otherwise, e ° w = 0 for every
self adjoint minimal idempotent e in % and so g e ° w = 0; hence <£°H> = 0 (see [3,
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Theorems 34.1 and 34.16]). Now axiom (iii) in Definition 1.1 gives [w | w] = 0, which
contradicts axiom (v) in the same definition. Let w e W\{0} and let e be a selfadjoint
minimal idempotent in % satisfying e ° w ¥= 0. Then Q¥^[e ° w\e ° w\- e[w | w]e = ae for
some positive number a. Finally u := a~V2e ° w is a basic element which lies in W. •

From the above proposition and Proposition 1.5 we obtain the following result.

COROLLARY 1.8. Every irreducible submodule of a Hilbert module is generated by a
basic element; hence it is closed.

THEOREM 1.9. Let S be a subset of a Hilbert module W. Then the following assertions
are equivalent:

(i) 5 is an orthonormal basis,
(ii) 5 is a maximal orthonormal system.

Proof. Clearly (i) implies (ii). Let us assume that condition (ii) holds, and let M be
the closed submodule generated by 5. If M ¥= W, then 0 ¥= M[±]. Therefore, by Proposition
1.7, there exists a basic element u in M[±\ Obviously Su{u} is an orthonormal system
strictly containing S, which is a contradiction. •

Proposition 1.7, Theorem 1.9, and Zorn's lemma lead to the following corollary.

COROLLARY 1.10. Every nonzero Hilbert module has an orthonormal basis.

We conclude this section by showing that all the orthonormal bases in a Hilbert
module W have the same cardinal number, which will be called the hilbertian dimension
of W over %.

PROPOSITION 1.11. Let {WAIASA and {V^^^M be two orthonormal bases in a Hilbert
%-module W. Then card(A) = card(M).

Proof. Assume that card(A) and card(M) are infinite. For fixed A in A, Parseval's
identity gives [«A|«A] = 2 [«A |fM][«A 1^]*- Hence M(A): = {w e M:[uA j v^J^O}

is a non empty countable subset of M ([8, Corollary 9.9, p. 220]). Since clearly
M = U M(A), we have

AsA

card(M) < 2) card(M(A)) < %o card(A) = card(A).
AsA

By symmetry we actually have card(A) = card(M). Now assume card(A/) > card(A) -n,
for a suitable finite number n, so that we may assume A = {1 , . . . , «} . By Fourier

n

expansion we can write W = © ?»«,. If card(M)>n and we choose vu...,vn different

n

elements in {vM}MeM, then N = © ^ ° v , - is a proper submodule in W. Since, by

Proposition 1.5, each g ° u , is an irreducible submodule of W, we are in a position to
apply Theorem 1 of [10, p. 61]. Therefore there is a non empty subset J in {1 , . . . , «} such
that
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Now Theorem 3 in [10, p. 62] gives n = card(A) = n + card(/), a contradiction. •

2. The structure of Hilbert modules. In this section we will show how the structure
theorems for Hilbert modules proved in [17] can be easily derived from our previous
results on orthonormal bases.

The following two definitions provide precise methods of construction of Hilbert
modules.

DEFINITION 2.1. Let M } , e / be a family of Hilbert ^-modules and let W be the vector
space

is/ is /

For each c in ? and {w,} in W the element {e ° w,) lies in W; so by defining
e ° {w,}:={e ° w,} for all {M>,} in W and e in %, W becomes a left module over <£. Since for
{w/} in IV the family {[w, | vw,]},s/ is absolutely summable for the norm T(.), the polarization
formula gives us that the family {[w, | w,']},e/ is summable, whenever {H>,}, {W'J} are in W.
Therefore, by defining [{w,} | {H','}]:= 2 [w, | w'A, it is straightforward to verify that W is a

is/

Hilbert f-module called the l2sum of the given family of Hilbert modules, and denoted

by © IV,.
16/

Given a family {<£,},e/ of H*-algebras with zero annihilator, using that the involution
of each % is isometric [7; Proposition 2(ix)], we can define pointwise a canonical structure

p

of H*-algebra in the Hilbert space © %.

DEFINITION 2.2. Let {%}isl be a family of H*-algebras, {H^},e/ be a family of Hilbert
<£,-modules and let W denote the vector space

For each {e,} in © % and {w,} in W, {c, ° w,} is in W, so {e,}°{w,}:={e, ° w,j defines a
i/i e /

/

© #,-module multiplication in W. If {w,} is in W and if for / in / we write [wt \ wt] = e,e*

for a suitable e,- in %, then 2 ||e,-||2 = 2 ||w,||2< +» , so that {e,} lies in © ,̂- and
/ ,2 V 16/

{[\Vj | w,]} = {e.-Ke,-}* belongs to T © %). In this way W becomes a Hilbert module over
Vie/ /

@% under the T( © ^ -valued product defined by [{w,-}| {*>;}] :={[w,,| w\]}. This
le/ Vie/ /

Hilbert module will be called the mixed product of the family {W;},e/ and will be denoted

l

To have a satisfactory structure theory for Hilbert modules, we recall [17] that it is

by X IV,.
iel
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enough to consider faithful Hilbert modules. If H is a complex Hilbert space and x,y are
in H, then the operator x®y denned by (x®y)(z) = (z \y)z for all z in H is in
r(^y(/ /)) , where ^f^(//) denotes the H*-algebra of all Hilbert-Schmidt operators on H.
Every complex Hilbert space H can be regarded as a Hilbert module over %?y(H), if the
module operation is denned by the action of the operator on the vector, and the
r(^f5«c'(//))-valued product is defined by [x \y]: = x®y for all x,y in H. We also recall that
an H*-algebra % is called topologically simple if $2 ¥= 0 and zero and <? are the only closed
ideals of %. Clearly every topologically simple H*-algebra has zero annihilator. The
following theorem collects Smith's structure theorems for Hilbert modules [17, Theorem
2.10 and 3.1].

THEOREM 2.3 Let W be a faithful Hilbert %-module.
(i) If {%j}jSi is the family of all minimal closed ideals of %, then there exists a suitable

family W}, e / , where, for each i in I, Wj is a faithful Hilbert module over the topologically
simple H*-algebra %, such that W equals the mixed product of the family W}, s / .

(ii) / / % is actually topologically simple, then there is a complex Hilbert space H such
that % = 3tfy(H) and W is the l2-sum of a suitable family of copies of H regarded as a
Hilbert W<f{H)-module.

Proof. As in the case of Hilbert spaces, using Lemma 1.3, Remark 2 and Parseval's
identity, if we take an orthonormal basis {UA}AEA

 m W and we write eA: = [uK | MA], then the
mapping w —> {[w | uA]} is a Hilbert module isomorphism from W onto the /2-sum of the
family of Hilbert ^"-modules {<?eA}AeA. In this way it is enough to assume that W equals
the /2-sum of a suitable family of Hilbert ^-modules of the form {(£eA}AEA, where the eA's
are selfadjoint minimal idempotents in %.

(i) Clearly, using [3, Theorem 34.13], for each A in A, there is a unique / in / such that
eA belongs to % and since W is a faithful module, for each ; in / there exists a A in A such
that ex lies in %. Therefore, defining A,: = {A e A:eA e %}, for i in /, the family {A,:i e /}
is a partition of A. Now, if Wt denotes the /2-sum of the family of faithful Hilbert
(£,-modules {<§eA}A6A., it is not difficult to see that, up to the natural identification

%=®%h W equals x Wt.
IE/ ' e /

(ii) By Ambrose's theorem [2, Theorem 4.3] % = %ty{H), for a suitable complex
Hilbert space H, so that for A in A we have eA =xA<8>*A for a suitable norm-one element
xK in H. Now the mapping x—>x®xA is a Hilbert module isomorphism from H (regarded
as a Hilbert module over ^fS^//)) onto %eK. •

3. The Hilbert-Schmidt class. The aim of this section is to develop a basic theory of
Hilbert-Schmidt operators on Hilbert modules that extends the classical one ([16], [11])
for Hilbert spaces.

If W is a Hilbert ^-module we recall that a linear operator F:W^>W, with the
property F(e ° w) = e ° F(w) for all w in W and e in % is called an %-linear operator on W.
The set of all bounded ^-linear operators will be denoted by BL^W). It is known [13,
Theorem 4 and Corollary] that for each F in BL%(W), its adjoint operator F* lies in
BL^W) and satisfies
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LEMMA 3.1. Let {«A}AeA and { ^ ^ M be two orthonormal bases in a Hilbert %-module
W. Then, for F in BL%(W), the families

are simultaneously summable or not. Whenever they are summable, their sum is the same,
independent o/{uA}AeA and {vfJ}lieM.

Proof. Using Parseval's equality and the commutativity of the trace we obtain

)||2 = 2 to([F(uA) | F(ux)]) = 2 t r (2 [F(uA) | v^
A A ^ ft

= 22tr([F(MA)|vJ[F(«A)|t;J*) = 2
A /x A.AI

= 2 2 tr([MA | F-(«V)][«A | F*(vJ]*) = 2

It follows that each of the sums written above is equal to the others (possibly equal to
+ °o). Furthermore choosing both orthonormal bases equal to {fM}^sM we have
2| |F(iv) | | 2 = 2 l i^WH 2 - Therefore 2 ||F(wA)||2 = 2 \\F(vJ\\2. Hence the common
M fi. A / i

value of the sums is independent of the choice of {MA}AEA and {vM}MeM. •

DEFINITION 3.2. Those operators F in BL^W) for which the common sum of the
above families is finite will be called Hilbert-Schmidt operators, and, for such an F, u{F)
will denote the only nonnegative real number with square equal to the above common
sum. The class of all F's as above will be denoted by

THEOREM 3.3. Let W be a Hilbert ^-module.
(i) %9>%(W) is a selfadjoint ideal of BL^W) and, for F in XSP^W) and G in

BL%(W), we have

a(F) = a(F*), \\F\\<a(F), a(FG)<cr{F) \\G\\, and cr(GF)< ||G|| a(F).

(ii) For every F,G in fflSf-^W) and for any orthonormal basis {«A}AeA in W, the
family {(F(MA) | C(MA))}AEA is summable in C with sum independent of the chosen
orthonormal basis, and (F\G):= 2 (/r(«A) I G(ux)) defines an inner product in

A E A

whose associated norm is cr(.). With this inner product and under the involution *,
becomes an H*-algebra with zero annihilator.

Proof From Lemma 3.1, the equality a(F) = a(F*) is clear. If {MA}AeA is an
orthonormal basis in W, then, by Fourier expansion and Remark 2, we have

2 [W|UA]°F(UA) ^ 2 IIKI«A]II \\F(UA)\\
AeA AeA
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so that ||F||<cr(F). Now that the above inequality has been proved, the remaining
assertions in the proposition follow as in the classical case of Hilbert spaces [16]. (Note
that !%¥%(]¥), as any selfadjoint subalgebra of a C*-algebra has zero annihilator). •

For every w,, w2 in W, we denote by W]Dw2 the operator on W given by
(vvj DW2)(H>): = [W I w2] o W\ for all w in W.

THEOREM 3.4. Let W be a Hilbert ^-module.
(i) w1Dw2 lies in %^(W), for all wu w2 in W.
(ii) (wj Ow21 W3D1V4) = tr([w4 | w2][w>] | w3]), for all W], w2, w3, wA in W.

(iii) The linear span of {w^Dw2:wu w2 E W} is a dense ideal of

Proof Using Remark 2, (i) is readily verified. By Parseval's equality and the
commutativity of the trace form, we have

(w, • w21 w3\J w4) = 2 (w, Dw2(uA) I w 3 D W4(MA)) = X tr([[uA | tv2] <> w, | [uA | w4] ° w3])
A s A

A e A

tr([uA I w2][wx I w3][uA I w4]*) = 2 tr([w41 uK][w2 \ uA]*[w, | w3])

= tr( X [w4 I uA][w21 uA]*[W] I w3]) = tr([w4 | w2][w, | w3]).
VAeA /

Thus the statement (ii) is verified. Since F(W]Dw>2) = F(w})Dw2 and (w1Dw2)F =
w1DF*(w2) for all Fin SKS^W) and »v,, w2 in W, it follows that Un{w1aw2:wu w2 e W}
is an ideal in WSf^W). If {MA}AEA is an orthonormal basis in W, if F is in 3€Sf^W), and if
for each finite subset J of A we write

then Fy lies in Lin{w,nw2:wu w2 e W}. Moreover, by Proposition 1.5, Fy(«A) = F(j/A) if A
is in J and clearly Fy(uA) = 0 otherwise. Therefore (<r(F-Fj)f= 2 | | ( F - /V)("A)II2 =

2 ||^(«A)H2, which concludes the proof. • AeA

AeA
Ae./

Despite what the reader might think, the closed submodule generated by an element
in a Hilbert ^-module W may have infinite hilbertian dimension over %. Even the
operators of the form w,Dw2, for wu w2 in W, may have "infinite range over <£" as shown
by the following example. In any case, by Fourier expansions, both dimensions must be at
most countable.

EXAMPLE. Let H be the separable infinite dimensional complex Hilbert space and
{xm:m E N} an orthonormal basis in H; let W denote the Hilbert ffly(H)-modu\e /2-sum
of a countably infinite family of copies of H regarded as a Hilbert module over dl€Sf{H),
and consider the element w ={n~1xn}n£N in W. Then, for every {yn}neN in W, we have
(wOw)({yn}nE^) = {n~2yn}neu, so that quasi-null sequences are in the range of wOw. As
a consequence, the closure of the range of wDiv equals W. Since the range of wDw is
contained in the submodule of W generated by w, it follows that the closed submodule
generated by w also equals W.
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