A MAXIMALITY CRITERION FOR NILPOTENT COMMUTATIVE MATRIX ALGEBRAS

BY
D. HANDELMAN AND P. SELICK

Let A be a commutative algebra contained in $M_{n}(F), F$ a field. Then A is nilpotent if there exists v such that $A^{v}=(0)$, and is said to have nilpotency class k (denoted $C l(A)=k$) if $A^{k}=(0)$, but $A^{k-1} \neq(0)$. A well known result asserts that matrix algebras are nilpotent if and only if every element is nilpotent. Let $\mathbf{N}=$ $\left\{A \mid A\right.$ is a nilpotent commutative subalgebra of $\left.M_{n}(F)\right\}$.

If $A \in \mathbf{N}$, and A is not properly contained in any other algebra in \mathbf{N}, then A is maximal in \mathbf{N}. Let $\mathbf{M}=\{A \mid A$ is maximal in $\mathbf{N}\}$. For $a, b \in M_{n}(F)$, if $a^{v}=b^{v}=0$ and $a b=b a$, then $(a b)^{v}=(a+b)^{2 v}=0$. Therefore $A \in \mathbf{M}$ if and only if $a^{\prime} a=a a^{\prime}$, for all $a \in A$ and $\left(a^{\prime}\right)^{k}=0$ for some k imply $a^{\prime} \in A$.

Let $\mathbf{A}_{k}=\{A \mid A$ is maximal among those algebras of class k in $\mathbf{N}\}$. Clearly $\mathbf{M} \subset \bigcup_{k} \mathbf{A}_{k}$. We prove the converse.

Theorem. If $M \in \mathbf{A}_{k}$ for some k, then $M \in \mathbf{M}$, or $M=(0)$.
Proof. Let M be a nontrivial algebra in \mathbf{A}_{k}. Then M is contained in some $N \in \mathbf{M}$. (See [1, p. 35].) For a nontrivial algebra $C \in \mathbf{N}$, with $C l(C)=s>1$, define

$$
H_{C}=\{x \in C \mid x C=(0)\} .
$$

$H_{C} \neq(0)$ since $C^{s-1} \subseteq H_{C}$.
Lemma. $H_{M}=H_{N}$

Proof. (i) $H_{N} \subseteq H_{M}$
Since $x \in H_{N}$ implies $x M=(0)$, it suffices to show $H_{N} \subseteq M$. Let S be the algebra generated by M and H_{N}. Then $M \subseteq S$, and $C l(M)=C l(S)$; thus, since $M \in \mathbf{A}_{k}$, we have $M=S$. Therefore $H_{N} \subseteq M$.
(ii) $H_{M} \subseteq H_{N}$

Since N is nilpotent, there exists $x \in F^{n}-\{0\}$, such that $a x=0$ for all $a \in N$ (See [1]); and there exists $y \in F^{n}-\{0\}$, linearly independent of x such that $y \notin N F^{n}$. Complete x, y to a basis $y, e_{2}, \ldots, e_{n-1}, x$ for F^{n} and rewrite the matrices of N in terms of this basis.

Then all the matrices of N are of the form:

$$
\left[\begin{array}{ccccccc}
0 & 0 & 0 & \cdots & 0 & 0 & 0 \tag{1}\\
& & & & & & 0 \\
& & & & & & 0 \\
& & * & & & & \cdot \\
& & & & & & \cdot \\
& & & & & & 0 \\
& & & & & & 0 \\
& & & & & & 0
\end{array}\right]_{n \times n}
$$

Define z to be the matrix with a 1 in the $(n, 1)$ position, and 0 elsewhere. It is clear from (1) that $z N=N z=(0), z^{2}=0$, and so $z \in N$, since $N \in \mathbf{M}$. Hence $z \in H_{N}$. Suppose there exists $b^{\prime} \in H_{M}-H_{N}$; i.e. there exists $a^{\prime} \in N-M$, such that $a^{\prime} b^{\prime}=$ $b^{\prime} a^{\prime} \neq 0$ but $b^{\prime} M=M b^{\prime}=(0)$. Choose $W \in F^{n}-\{0\}$ such that $a^{\prime} b^{\prime} W \neq 0$. Define c to be the $n \times n$ matrix whose first column is $b^{\prime} W$, and whose remaining columns are 0 . Since $z b^{\prime}=0, z b^{\prime} W=0$; hence $z c=0$. Thus the $(1,1)$ entry of c is 0 , and therefore $c^{2}=0$. Since $b b^{\prime}=0, b c=0$ for all $b \in M$. From (1), $c N=(0)$; so $c M=(0)=M c$. But the class of the algebra generated by c and M is clearly equal to $C l(M)$; hence $c \in M$, since $M \in \mathbf{A}_{k}$. However $c a^{\prime}=0 \neq a^{\prime} c$ by construction, so $c \notin N$. This is a contradiction since $c \in M$ and $M \subseteq N$. Therefore, no such b^{\prime} exists, i.e. $H_{M} \subseteq H_{N}$. This completes the proof of the lemma.

Continuing the proof of the theorem:
If $M^{k-p} N^{p}=(0)$, then $M^{k-(p+1)} N^{p} \subseteq H_{M}=H_{N}$ and so $M^{k-(p+1)} N^{p+1}=(0)$. Applying this k times to $M^{k}=(0),(p=0)$ we reach the conclusion $N^{k}=(0)$. That is, $C l(M)=C l(N)$. But since $M \subseteq N$, and $M \in \mathbf{A}_{k}$, this implies $M=N$. So M is maximal, as desired.

Remark. If F is an integral domain (instead of a field), the result is also true. We may reduce the problem to that of a field by considering the quotient field; the induced commutative nilpotent algebra is maximal of its class.

Reference

1. D. A. Suprenenko, and R. I. Tyshkevich, Commutative matrices, Academic Press, New York, 1968.

McGill University, Montreal, Quebec

University of Toronto, Toronto, Ontario

