A MAXIMALITY CRITERION FOR NILPOTENT COMMUTATIVE MATRIX ALGEBRAS

BY D. HANDELMAN AND P. SELICK

Let A be a commutative algebra contained in $M_n(F)$, F a field. Then A is nilpotent if there exists v such that $A^v = (0)$, and is said to have nilpotency class k (denoted Cl(A)=k) if $A^k=(0)$, but $A^{k-1}\neq(0)$. A well known result asserts that matrix algebras are nilpotent if and only if every element is nilpotent. Let $N = \{A \mid A \text{ is a nilpotent commutative subalgebra of } M_n(F)\}$.

If $A \in \mathbb{N}$, and A is not properly contained in any other algebra in \mathbb{N} , then A is maximal in \mathbb{N} . Let $\mathbb{M} = \{A \mid A \text{ is maximal in } \mathbb{N}\}$. For $a, b \in M_n(F)$, if $a^v = b^v = 0$ and ab = ba, then $(ab)^v = (a+b)^{2v} = 0$. Therefore $A \in \mathbb{M}$ if and only if a'a = aa', for all $a \in A$ and $(a')^k = 0$ for some k imply $a' \in A$.

Let $A_k = \{A \mid A \text{ is maximal among those algebras of class } k \text{ in } N\}$. Clearly $M \subset \bigcup_k A_k$. We prove the converse.

THEOREM. If $M \in \mathbf{A}_k$ for some k, then $M \in \mathbf{M}$, or M = (0).

Proof. Let M be a nontrivial algebra in A_k . Then M is contained in some $N \in \mathbf{M}$. (See [1, p. 35].) For a nontrivial algebra $C \in \mathbf{N}$, with Cl(C) = s > 1, define

$$H_C = \{ x \in C \mid xC = (0) \}.$$

 $H_C \neq (0)$ since $C^{s-1} \subseteq H_C$.

LEMMA. $H_M = H_N$

Proof. (i) $H_N \subseteq H_M$

Since $x \in H_N$ implies xM = (0), it suffices to show $H_N \subseteq M$. Let S be the algebra generated by M and H_N . Then $M \subseteq S$, and Cl(M) = Cl(S); thus, since $M \in A_k$, we have M = S. Therefore $H_N \subseteq M$.

(ii) $H_M \subseteq H_N$

Since N is nilpotent, there exists $x \in F^n - \{0\}$, such that ax=0 for all $a \in N$ (See [1]); and there exists $y \in F^n - \{0\}$, linearly independent of x such that $y \notin NF^n$. Complete x, y to a basis y, e_2, \ldots, e_{n-1} , x for F^n and rewrite the matrices of N in terms of this basis. Then all the matrices of N are of the form:

Define z to be the matrix with a 1 in the (n, 1) position, and 0 elsewhere. It is clear from (1) that zN=Nz=(0), $z^2=0$, and so $z \in N$, since $N \in \mathbf{M}$. Hence $z \in H_N$. Suppose there exists $b' \in H_M - H_N$; i.e. there exists $a' \in N - M$, such that a'b' = $b'a' \neq 0$ but b'M=Mb'=(0). Choose $W \in F^n - \{0\}$ such that $a'b'W \neq 0$. Define c to be the $n \times n$ matrix whose first column is b'W, and whose remaining columns are 0. Since zb'=0, zb'W=0; hence zc=0. Thus the (1, 1) entry of c is 0, and therefore $c^2=0$. Since bb'=0, bc=0 for all $b \in M$. From (1), cN=(0); so cM=(0)=Mc. But the class of the algebra generated by c and M is clearly equal to Cl(M); hence $c \in M$, since $M \in \mathbf{A}_k$. However $ca'=0 \neq a'c$ by construction, so $c \notin N$. This is a contradiction since $c \in M$ and $M \subseteq N$. Therefore, no such b' exists, i.e. $H_M \subseteq H_N$. This completes the proof of the lemma.

Continuing the proof of the theorem:

If $M^{k-p}N^p = (0)$, then $M^{k-(p+1)}N^p \subseteq H_M = H_N$ and so $M^{k-(p+1)}N^{p+1} = (0)$. Applying this k times to $M^k = (0)$, (p=0) we reach the conclusion $N^k = (0)$. That is, Cl(M) = Cl(N). But since $M \subseteq N$, and $M \in \mathbf{A}_k$, this implies M = N. So M is maximal, as desired.

REMARK. If F is an integral domain (instead of a field), the result is also true. We may reduce the problem to that of a field by considering the quotient field; the induced commutative nilpotent algebra is maximal of its class.

Reference

1. D. A. Suprenenko, and R. I. Tyshkevich, *Commutative matrices*, Academic Press, New York, 1968.

McGill University, Montreal, Quebec

University of Toronto, Toronto, Ontario