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A MAXIMALITY CRITERION FOR
NILPOTENT COMMUTATIVE MATRIX
ALGEBRAS

BY
D. HANDELMAN AND P. SELICK

Let 4 be a commutative algebra contained in M, (F), F a field. Then A4 is nil-
potent if there exists v such that 4°=(0), and is said to have nilpotency class &
(denoted Cl(A4)=k) if A*=(0), but 4*15£(0). A well known result asserts that
matrix algebras are nilpotent if and only if every element is nilpotent. Let N=
{4 | 4 is a nilpotent commutative subalgebra of M, (F)}.

If A eN, and 4 is not properly contained in any other algebra in N, then 4 is
maximal in N. Let M={4 | A is maximal in N}. For a, b € M ,(F), if a®>=b"=0 and
ab=ba, then (ab)’=(a+b)**=0. Therefore 4 € M if and only if a’a=ad’, for all
a € A and (a’)*=0 for some k imply a’ € 4.

Let A,={4 | A is maximal among those algebras of class k in N}. Clearly
M < U, Ax. We prove the converse.

THEOREM. If M € A, for some k, then M € M, or M= (0).

Proof. Let M be a nontrivial algebra in A;. Then M is contained in some N € M.
(See [1, p. 35].) For a nontrivial algebra C € N, with CI/(C)=s>1, define

Hg = {xeC|xC = (0)}
Hy#(0) since C*~ < Ho.

LeMMA. Hy=Hy

Proof. (i) Hy S Hy

Since x € Hy implies xM=(0), it suffices to show Hy = M. Let S be the algebra
generated by M and Hy. Then M < S, and CI(M)=CI(S); thus, since M € A,, we
have M=S. Therefore Hy < M.

(ii) Hy € Hy

Since N is nilpotent, there exists x € F"—{0}, such that ax=0 for all ae N
(See [1]); and there exists y € F*—{0}, linearly independent of x such that y ¢ NF",
Complete x, y to a basis y, e,, . .., ,4, X for F* and rewrite the matrices of N
in terms of this basis.

125

https://doi.org/10.4153/CMB-1974-024-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1974-024-5

126 D. HANDELMAN AND P. SELICK

Then all the matrices of N are of the form:

0 00 --- 00 O]
0
0

0
0

— 0_ nxn

Define z to be the matrix with a 1 in the (n, 1) position, and 0 elsewhere. It is
clear from (1) that zN=Nz=(0), z2=0, and so z € N, since N € M. Hence z € H,.
Suppose there exists b’ € Hy,— Hy; i.e. there exists @’ € N—M, such that a'd’'=
b'a’#0 but b’ M= Mb'=(0). Choose W € F"—{0} such that a’b’ W3£0. Define ¢ to
be the n X n matrix whose first column is ' W, and whose remaining columns are 0.
Since zb'=0, zb' W=0; hence zc=0. Thus the (1, 1) entry of ¢ is 0, and therefore
c2=0. Since bb'=0, bc=0 for all b € M. From (1), cN=(0); so cM=(0)= Mc. But
the class of the algebra generated by ¢ and M is clearly equalto C/(M); hence c € M,
since M € A,. However ca’=03a’c by construction, so ¢ ¢ N. This is a contra-
diction since ¢ € M and M < N. Therefore, no such b’ exists, i.e. Hy; < Hy. This
completes the proof of the lemma.

Continuing the proof of the theorem:

If M*?N?=(0), then M*»*UN? c H, =H, and so M*(»tLN?1=(0).
Applying this k times to M*=(0), (p=0) we reach the conclusion N*=(0). That is,
CI(M)=CI(N). But since M = N, and M € A,, this implies M=N. So M is maxi-
mal, as desired.

ReMARK. If Fis an integral domain (instead of a field), the result is also true. We
may reduce the problem to that of a field by considering the quotient field; the
induced commutative nilpotent algebra is maximal of its class.
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