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SIGMOIDAL COSINE SERIES ON THE INTERVAL
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Abstract

We construct a set of functions, say, i/^' composed of a cosine function and a sigmoidal
transformation yr of order r > 0. The present functions are orthonormal with respect
to a proper weight function on the interval [—1,1]. It is proven that if a function /
is continuous and piecewise smooth on [—1, 1] then its series expansion based on ^ r |

converges uniformly to / so long as the order of the sigmoidal transformation employed is
0 < r < 1. Owing to the variational feature of xfr^ according to the value of r, one can
expect improvement of the traditional Fourier series approximation for a function on a finite
interval. Several numerical examples show the efficiency of the present series expansion in
comparison with the Fourier series expansion.

2000 Mathematics subject classification: primary 41A58; secondary 42A20.
Keywords and phrases: Fourier series, sigmoidal transformation, sigmoidal cosine series.

1. Introduction

The sigmoidal transformation is a one-to-one mapping of the interval [0, 1 ] onto itself
taking the shape of an elongated "S". It is well known that coordinate transformation
techniques using a sigmoidal transformation are very efficient for accurate numerical
evaluation of singular integrals such as weakly singular integrals, Cauchy principal
value integrals and Hadamard finite-part integrals [1-4,8,11-14].

In this paper, as an extended application of the sigmoidal transformation, we con-
struct a trigonometric function denoted by Vir'(-*)> — 1 < JC < 1, which is composed
of a cosine function and a sigmoidal transformation yr(t), 0 < t < 1, of order r > 0.
Owing to the particular behaviour of yr, the function \j/\r^ has the property that its zeros
are clustered toward both endpoints of the interval [—1, 1] for small r < 1 and the
centre for large r > 1. Moreover, it can be seen that for any r > 0 the set (V^'J^o ' s
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orthonormal on [— 1, 1 ] with respect to a weight function wlr] defined in Section 2. In
fact it is an orthonormal basis for the weighted L2 space, ^ . ^ ( [ - l . 1])- When r = 1,
in particular, u>m = 1 and {^"J^Lo ' s identical to a simple basis {cos (for-^y1)}^
for L2([— 1, 1]). This means that according to an arbitrary r we can develop infinitely
many orthonormal bases generalising the traditional Fourier cosine functions.

We are mainly interested in the series expansion, say, S[r](f;x) of a piecewise
smooth function / on [— 1, 1] based on the present orthonormal set {^Irl}^o- C°n~
vergence analysis for the series 5lr|(/;jc) tells us that it converges pointwise to an
average value of left- and right-side limits {/(>_) + f(x+)}/2 for each x e (— 1, 1).
At the endpoints x = ± 1 , S[r](f;x) converges to /(1_) = lim,_<.,_/(*) and
/(—1+) = lim,__i+ f{x), respectively. Moreover if / is continuous as well as
piecewise smooth on [—1, 1] then for any 0 < r < 1 the uniform convergence of
the series Slr](f;x) to f(x) can be proved. Additionally, results of the pointwise
and uniform convergence of the series S[r](f;x) are extended to a function / whose
derivative has weak singularities at the endpoints of the interval. On the other hand,
in order to show the potential of the series S[r](f;x), the Gibbs phenomenon for a
discontinuous function and the periodic extension are also investigated.

Approximation to a function / by the Nth partial sum SJy'(/;;t) of S[r](f',x) is im-
portant in practical applications. For instance we consider several functions for which
the traditional Fourier series approximation is not satisfactory. From the numerical
results we can take notice of the superiority of the present series approximation, at
least, for the function having a pick near a centre or endpoints of the interval [—1, 1]
and for the function whose derivative has weak singularities.

This paper is organised as follows. In Section 2 we define a generalised sigmoidal
transformation and then for any r > 0 construct an orthonormal set of functions \fr{^,
k = 0, 1, 2, . . . , by using the Fourier cosine function and the sigmoidal transforma-
tion. In Section 3 we consider a series expansion based on the functions ^l'1 called a
sigmoidal cosine series (SCS). Using the inherent properties of the sigmoidal trans-
formation, we prove the pointwise and uniform convergence of the SCS which forms
the main theorems of this paper. In Section 4 the Gibbs phenomenon for a discontin-
uous function is investigated and Section 5 includes comments on the periodic even
extension of a function defined on the half-interval [0, 1]. Several numerical examples
are worked through in Section 6 to show the availability of the SCS compared with
the traditional Fourier series.

2. Construction of orthonormal sets

We define the sigmoidal transformation, whose original definition can be found in
the literature [3,4], as follows.
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DEFINITION 2.1. For any r > 0, a real-valued function denoted by yr(y) which has
the following properties is called a sigmoidal transformation of order r:

(51) Yr(y) € C[0, l] n C°°(0, l) with Yi(y) = y.
(52) YAy) + Yr(l-y) = hO<y<\.
(53) Yriy) is strictly increasing on [0, 1] with yr(0) = 0.
(54) On the subinterval [0, 1/2], the first derivative y'r(y) is strictly increasing when

r > 1, and it is strictly decreasing when r < 1.
(55) Near y = 0, yr

U)(y) = O (/"•'), j = 0, 1, 2 , . . . , | /J, where |rj denotes the
greatest integer less than or equal to r.

In fact yr(x) is a one-to-one mapping from [0, 1] onto itself and its inverse y~l

is strictly increasing on [0, 1] and, from (S2), it also satisfies the relation y~\y) +
JV'O ~ y) = 1- Further it follows that for all 0 < y < 1

y/00 = y/d - y), vl'iy) + y'r'iX -y) = o,

and, similarly to (S5), near y = 1

y,O0 = 1 + 0 ( 0 - y ) r )
and

yr
u\y) = 0 ( 0 - y)r'j), j = l, 2 , . . . , | r j .

In addition it is observed that yr(l/2) = 1/2 and yr"(l/2) = 0 . As an example of a
sigmoidal transformation, we introduce a simple sigmoidal transformation [10] such
as

which has the particular properties that y~l = / i / r and yr'(l/2) = r.
We define new functions such as

tlr](x):=cos[knyrttl+x)/2)], A: = 1,2, 3 (2.2)

with XITQ\X) := 1/V2. Then for a weight function defined as

wlr](x):=y;((l+x)/2)>0, - 1 < ; C < 1 , (2.3)

we have, by a change of variables t = yr((l + x)/2),

{^\f{;])w:= f w[rl(x)flr](x)rlf)r\x)dx
J-\

= 2CiCj f
Jo

i

cos(int) cos(jnt) dt = &u,
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where the value of Ck is 1/V2 when k = 0, and 1 when k ^ 0. That is, the set
(V^'OOJito is orthonormal with respect to the inner product (•, -)w. Moreover, noting
that {cos*7rr}£l0 is an orthonormal basis for L2([0, 1]), it is straightforward that
{^l

k
r](x)]^L0 becomes an orthonormal basis for the weighted L2 space, L2.w([— 1, 1])

equipped with a norm \\f\\2,a = (/, f)lJ2.
For a special case of r = 1 it can be found that since y\(x) is an identity map the

function i/fk
ll\x) w i m ">'"(*) = 1 produces

iM*) := < ' ( * ) = cos [far(l + x)/2], (2.4)

for fc = 1, 2, 3 , . . . , with rjro(x) := l / \ /2 . Thus we can note that the present function
\f/l

k
rl(x) is a generalisation of the simple cosine function \jrk(x) accompanying a varied

weight function w{r](x) with respect to r > 0.

THEOREM 2.1. For eacfc integer k > 1 the function ty[
k
r](x) with r > 0 /las f/ze

following properties:

(i) ^ r ] ( - D = 1. W(0) = cos[ifcff/2], Vlrl(O = ("!)*;
(ii) Vf|rl(-^) = (-DVlrl(A:);

(iii) near x = — 1 a/u/;c = 1, respectively,

xjr{
k
r]{x) = 1 + O ((1 + *)2r) , Vlr)(*) = (-1)* + O ((1 - *)2 r ) ; and

(iv) r/ie zeros of\j/^ are

{^J)l> 7 = 1.2,...,*, (2.5)

satisfy - 1 < JC Ĵ < jcj^ < • • • < JC|'J_, < ^ < 1 and

4:) = -*&-;+.. > = 1, 2,.. . , [(* + l)/2j • (2.6)

PROOF. Since yf(0) = 0, yr(l/2) = 1/2 and yr(l) = 1 property (i) is clear. From
(S2) and the definition of f[r] in (2.2),

tf\-x) = cos [far {1 - y, ( ^ ) }] = (-1)* cos

which proves property (ii). Then property (iii) can be derived by observing the local
behaviour of yr given in (S5) and the Taylor series expansion of the cosine function.
Finally, solving the straightforward equation iff[

k\x) — 0, we have solutions of the
form (2.5). Since the inverse y~x of yr is also strictly increasing and it satisfies the
relation y~x(r)) + y~l(l — r)) — 1 on the interval [0, 1], the zeros *{']• are strictly
increasing and (2.6) holds. D
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FIGURE 1. Graphs of f[n(.x),r = 1/2, 1, 2, for each k = 1,2,3,4.

For instance, Figure 1 compares the graphs of V{r'(*)> r = 1/2, 1, 2, for each
k = 1,2, 3,4. Therein the simple sigmoidal transformation yr in (2.1) was used.
It is found that the higher the order r is, the further concentrated on the centre
x = 0 the oscillating part of irl

k
r\x) is. In other words, compared with the graph

of VOtOO = V^'k*). the oscillating part of \fr[r](x) is pushed toward both endpoints
x = ±1 as r becomes lower. Table 1 includes standard deviations,

of the zeros of ilr[r\x), which shows the dispersion of the zeros xl
k
r]j in (2.5) with

respect to various values of r. Note that for all k > 2 the standard deviation of
the zeros of the Chebyshev polynomial Tk(x) = cos[/tcos~' x] is \/-/2 % 0.707107

,11/2]which is between those of \fr\ and r(rk

LEMMA 2.2. For any r > 0 the weight function wir\x) defined in (2.3) has the
following properties:

(i) w[r](-x) = w[r](x) with wlr](0) = yr'(l/2) anddwlr](0)/dx = 0;
(ii) near both endpoints x = ±1 the local behaviour ofw^(x) is

W
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TABLE 1. Values of the standard deviations o^'1 of the zeros of

[6]

with respect to the order r

= 2,10,15,20,

r
8
4
2
1
1/2
1/4
1/8

25).

0.068556
0.136470
0.267949
0.500000
0.800000
0.975610
0.999695

o-jo1

0.101124
0.197435
0.362632
0.574456
0.755518
0.872584
0.939622

a'5
rl

0.104207
0.202671
0.368333
0.576066
0.755512
0.872563
0.936019

°2o'
0.105828
0.205325
0.370899
0.576628
0.755511
0.872563
0.936257

°25
0.106836
0.206929
0.372317
0.576888
0.755511
0.872563
0.936243

PROOF. Since yr'00 = y',0- — y) it follows that

(-*) = Yl = Yl

Differentiating (S2) twice gives Y"(y) + Y"O- — y) = 0 SO that

dw[r] dw[r] If ,,

M (_x) = . j r: . o.

Thus we have dw[r](0)/dx = 0 by substituting x = 0.
For property (ii), referring to (S5) in Definition 2.1, we can see that

. , [ O ( ( l + * ) ' " ' ) for x near - 1 ;
w (x) = \

[//((I +*)/2) = yr'((l — JC)/2) = O((l -* ) ' - ' ) for^ near 1.
This completes the proof. •

3. Sigmoidal cosine series (SCS)

We recall that a function / is called piecewise continuous if it has at most a
finite number of points of discontinuity and, in addition, the one-sided limits exist at
each point of discontinuity. Furthermore we introduce the definition of the piecewise
smooth function as follows.

DEFINITION 3.1. We say that a function / is piecewise smooth on [a, b] if and
only if
(1) / i s piecewise continuous on [a,b]\
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(2) the first derivative / ' is piecewise continuous on [a,b]. More precisely, the
one-sided derivatives of / at each point in [a, b] exist in a sense as follows:

(i) At each x e (a, b] the following limit exists:

am

(ii) At each x € [a, b) the following limit exists:

/ ( * + h) - /(*+)
hm

h

For a piecewise continuous function / on an interval [—1, 1] we consider a series,
called a sigmoidal cosine series (SCS),

S[r](f;x) = f>Vj[r]M = ̂  + f > cos \™vr ( ^ ) l . (3-D
n=o v2 n=1 L V l J l

where — 1 < x < 1 and the coefficient cn is

cn= I wlr](t)xlr[
n

rl(t)f(t)dt. • (3.2)

We denote by S%](f;x) = E^=ocnVfirl(^) the partial sum of the SCS, S[r](f;x).
From now on we will show a pointwise convergence of the present series given

in (3.1). If we set £ = yr((l +*) /2) ,0 < £ < 1, then the coefficients in (3.2) become

[ cos[nns]f {2y-l(s) - l)ds, n>\, (3.3)
Jo

with c0 = V2/0' /(2yr-'(5) - 1) ds. Thus from (3.1) we have

Sift/;*) = 2 / / (2y-'(5) - 1) V
•/° n=0

/ (2K,.-1 (s) - 1) 2 '
«=o

= / / ( 2 y r - 1 ( 5 ) - l ) D w ( 5 ; £ ) ^ , (3.4)
Jo

where El=oa" = ao/2 + £"=oa« and D/v(i; £) is a kernel defined by

N

[ } (3.5)
n=0
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Using an identity

n=0 2

we rewrite DN(s;^) as

sin7r(yv + l/2)(5 — £) sin7r(// + l/2)(s + £)
Dw(.s;£) = —

2 '

:). (3.6)

Following the procedure given in the literature [5] for the convergence analysis of
the standard Fourier series, we can also obtain the convergence of the present SCS
S[^](f;x) with respect to the range of r. First, we need some properties from the
following lemma.

LEMMA 3.1. For each 0 < £ <-l we have:

(i) For any piecewise continuous functions g(s) and h(s) on the intervals [0, £]
and[%, 1], respectively,

lim / g(s)GN(s;$)ds= lim / h(s)GN(s;S)ds = 0.
N-+OO Jo A/-KM Jt

(ii) For any integer N > 1,

In addition, and consequently, f0 DN(s;^)ds = 1.
(iii)

«£) = 1/2 -
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PROOF. From (3.6),

g(s)GN(s;i-)ds

459

-r
sin|(i+?)

sin Us - £) 1

sin f ( 5 -

If we define two functions

and

* , ( * ) :=

k2{s) :=

sin £ ( s -
4

0,

0,

then

/
Jo

g(s)GN(s;$)ds =
Jo Jo

/
ds- k2(s)cos

J
ds.

Since k\{s) and k2(s) are piecewise continuous on [0, 1], the Riemann-Lebesgue
lemma implies lim/v-̂ oo/g g(s)GN(s\%)ds = 0.

Similarly it also follows that lim^oo / h(s)GN(s; ^) ds = 0.
For property (ii), we have from (3.5)

I DN(s;%)ds = 2 I y^ cos[nns]cos[nn%]ds

= 2 < —h Y^cos[7rn£] I cos[nns]ds
I 2 «.i Jo

n=l
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Similarly it follows that

N /"' 1/ DN(s;£)ds = 2 | + Y]cos[^n^] / cos[7ins]ds

Tin
n = \

Finally, for property (iii) we define a function

— sin(2;r/i£).
7T/2

Then from the formula (FIII 559) in [6], we have

E l . . . . / sinx \
- sin(nj:) = tan"1 , 0 < x < 2n,
n \ 1 — cosx/

and A(£) becomes

n

Since
a(S>- (\-cos2nS-)2

and
2 _

 2 2
2 (1 -cos27rt) + sin2Tr£ -2(COS2TT? -

it follows that

1 + ( % ) 2

Therefore A(?) = constant. But A(\/2) - 1/2, and thus we have A(£) = 1/2 for all
0 < ^ < 1. D

Owing to the results above we can directly induce the pointwise convergence of
Sjy'(/;;t) as shown in Theorem 3.2, which is parallel to Dirichlet's theorem [5,9] for
the partial sum of the Fourier series.

THEOREM 3.2. Let f be apiecewise smooth function on the interval [—1, 1]. Then
for any r > 0 and for each — 1 < x < 1, the partial sum of the SCS of f converges as

lim 5j; '(/;x) = ^{/(JC_) + /(*+)}. (3.7)
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In addition, at the endpoints x = ±l,for 0 < r < 1,

lim 5{J'(/; 1) = /(1-), Km S^(f--l) = / ( -1 + ) , (3.8)
N-*oo N->oo

respectively.

PROOF. For a fixed—1 < x < 1 we define a function g\(s) with £ = yr((l+;t)/2),
0 < £ < 1, as

2 s i n f ( , - * ) •

Then

hm g,(s) = hm !: . . „. . • (3.9)
« « £ 2 s n | ( £ )

Noting that for any r > 0 the function y~l is smooth and strictly increasing on (0, 1),
from condition (i) in Definition 3.1 (2) we can see that gi(s) is piecewise continuous
on the interval [0, £]. Therefore, from Lemma 3.1 (i),

lim I
"-Wo

Since GN(s;%) = 2sin | ( s - %)DN(s;f) from (3.6), it follows that

lim IT/^- ' (^-DAvt*;?)^-/(*-) / DN(s;$)ds]=0,

or

lim I f{2y,-\s)-l)DN{s;S)ds = j lim f

Similarly, using a function g2(s) defined as

we can see that Lemma 3.1 (i) and condition (ii) in Definition 3.1 (2) imply

lim / / (2yr "(s) — l) DN(s;%)ds = { lim I DN(s;%)ds \ /(*+).

Therefore, if we set a := limA,_oo/0
? DN(s;%)ds and /3 := limw_oo/f

l DN(s;%)ds,
then from (3.4) we have

lim S[u\f;x)

= lim r/"*/(2yr-
|(*)-l)£*(*;$)<fr+ f f(2yr-

i(s)-l)DN(s^)ds]
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However, from Lemma 3.1 (ii)-(iii), for all —1 < x < 1 (that is, 0 < £ < 1),

On the other hand, since f0 DN(s; £) ds = 1 it is clear that

a + B = lim

that is, /J = 1/2. This results in Equation (3.7).
For the case of the endpoint x = 1 (that is, £ = 1) the condition 0 < r < 1

implies that, in the formula (3.9), lim.y_>?_gi(s) exists because (yr~')'(l) exists and
thus /(1_) — f(2y~1(s) — 1) = O{\ — s) for s near 1. Since gi is now piecewise
continuous on [0, 1] it follows that

lim 5{;](/; 1) = ( lim /{;(/; ) ( / DN(s; l)ds\ /(1_) = /(1_).
J0 J

When JC = — 1 (that is, £ = 0) we have similarly that

lim 5J;1(/;-l) = ( Hm f DN(s;0)ds] /(-l+) = /(-1+). •

THEOREM 3.3. Let f be continuous and piecewise smooth on [—1, 1]. Then for
any 0 < r < 1 the SCS of f, S[r^(f;x), converges uniformly to f(x) on[—l, 1].

PROOF. Define a function

h(s):=f(2y-\s)-l), 0 < * < l . (3.11)

Since (y-') '(j) = O(5l / r- ') near^ = 0 and (y-')'(«) = O(d - ^)1/r"') near^ = 1,
the derivative /i'(s) = 2(y~l)'(s)f'(2y~i(s) — 1) is piecewise continuous on [0, 1]
for any 0 < r < 1, and thus h(s) is continuous and piecewise smooth on [0, 1].

From the formula (3.3) the coefficient of the SCS of / can be rewritten by

= 2 /
Jo

i

cos[nns]h(s) ds

which is the Fourier cosine coefficient of h on the interval [0, 1]. Therefore the series
YlT=i lc«l ls convergent and thus, from (3.1) and the Weierstrass M-test, the series
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converges uniformly on [—1, 1]. Furthermore, from Theorem 3.2, we can see that
Slr](f\x) converges uniformly to {/(*_) + /(x+)}/2 = f(x) on ( - 1 , 1) and to
/(±l)attheendpoints;c = ±1 . D

The following theorem shows a connection between the differentiability property
of a function and the rate of convergence of its SCS according to the order r.

THEOREM 3.4. Let f e C*~'([-l, 1]), k > 1, and let f(k) be piecewise continuous
on [ -1 , 1]. Then for any 0 < r < l/k the SCS coefficients cn off satisfy nkcn -+ 0
as n —>• oo.

PROOF. The jfcth derivative h(k)(s) of the function h(s) defined in (3.11) contains
(yr~')0) and fU) for j = 1,2, ...k. Since near 5 = 0 and s — 1, respectively,

the condition 0 < r < l/k implies that the function hw(s) is piecewise continuous
on [0, 1].

Further, we note that for any 0 < r < l/k,

Thus, by using integration by parts k times, we can see that the coefficients of the SCS
given in (3.3) become for all n > 1

- — 2 / sin[nns]hik\s)ds, k is odd,
\nny Jo

/
cos[nns]h(k)(s) ds, k is even.

(nn)k

Since the integrals in these formulas are the Fourier coefficients of hw which is
piecewise continuous on [0, 1], they vanish as n —> oo by the Riemann-Lebesgue
lemma. Therefore it follows that nkcn —• 0 as n -*• oo. •

The next theorem shows the convergence of the SCS for a function which is not
piecewise smooth on the interval [ -1 , 1], in general, but whose derivative may have
a weak singularity at the endpoints.

THEOREM 3.5. Let f be a piecewise smooth function on any interval [a, b]for alia,
b such that — 1 < a < b < 1 and assume that near x = 1 and x = — 1 the behaviour
of f is, respectively,

A2 + B2(l+Xy\ (3.12)

where t]t,n2 > 0, and At and B, are constants such that B] + B\ £ 0. Then for any
0 < r < t) = min{»ji, r]2} we have:
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(i) The partial sum Sl^\f;x) converges on the interval [—1, 1] in the form of
(3.7) and (3.8).

(ii) If, in addition, f is continuous on[—\, 1] then the series Slr](f;x) converges
uniformly to f(x) on[—\, 1].

In particular if Bt = B2 = 0, the results above hold for all r > 0.

PROOF. Referring to the proof of Theorem 3.2, we only have to consider the cases
of x = ± 1 . First, let x = 1 or £ = 1 therein, then from (3.9)

*-i- *-i- 1-5 2sinf(l -s)

Since near s = 1, from (3.12), /(1_) - f(2y-\s) - 1) = 0((1 - $)""•), we have

| | m / ( l . ) - / ( 2 K , - ' M - l ) = ,.,
* - l - 1 — 5

where & is a constant. Thus, for any 0 < r < t)\, g\(s) is piecewise continuous on
[0, 1] so that

j r'(*) - 0 £*(*;

When x = — 1 or £ = 0, similarly it can be seen that the function g2(s) defined in
(3.10) is piecewise continuous on [0, 1] for 0 < r < rj2. Therefore

lim Slt](f;-l)= lim / / (2y-'(s) - l) DN(s;0)ds = / ( - l + ) = A2,
NKX N*oo J

which completes the proof of property (i).
On the other hand, for the function h(s) defined in (3.11), its derivative

behaves like
f ^ - * ) " ^ 1 ) . "ear 5 = 1,

r - [ ) , near 5 = 0 .

Then for any r < rj = minf/ji, r)2] the function h(s) is piecewise smooth on [0, 1],
and thus Theorem 3.3 implies property (ii).

In a particular case of B\ = B2 = 0 the local behaviour of the functions gi, g2 and
h near both endpoints x = ±1 (f = 1, 0) does not matter in the statements above.
Thus properties (i) and (ii) are true independently of r > 0. •
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4. The Gibbs phenomenon

If a function / has a discontinuity at xQ then any series expansion such as the
Fourier series, SF(f\x), or the present SCS, Slr](f;x), cannot converge uniformly
on any interval containing x0 because the series is composed of continuous functions.
The lack of uniformity of a series expansion reveals itself in a particular way known
as the Gibbs phenomenon [5,7,9]. That is, as one adds on more and more terms, the
partial sums of the series expansion overshoot and undershoot / near the discontinuity
x0 and thus develop spikes that tend to zero in width but not in height.

Taking account of the behaviour of xfr^ in Figure 1, we expect that the SCS 5lr!

based on if/[
k
r] may further reduce the spikes in width by controlling the value of r. For

example, we consider a simple piecewise continuous function,

10, - 1 <x < 0

1, 0 <x < 1,

with a discontinuity x0 = 0. Since this is the case of B\ = B2 = 0 in Theorem 3.5
any r > 0 is available for the pointwise convergence of the SCS S[r](g; x). The partial
sum of S[r](g; x) takes the form

N

sV(g;x) = - ^ + £ {ca_,*£!_,(*) + catfrM(jr)} , (4.2)

in which the coefficients are, for each k > 1,

ca_, = / w[r](x)rpir
k
]_i(x)dx = 2 [ cos[(2* - l)ns]ds = 2

J0 J\/2

and

cjk = f wlr](x)irl
2

r
k\x)dx = 2 [ cos[(2k)ns]ds = 0

JO J\/2

co = —f w"
V2J0

\/2
with

Therefore (4.2) becomes

Referring to the literature [7], we investigate the Gibbs phenomenon of the present
SCS for the function g given in (4.1). If we set

l+t
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then 5^' in (4.3) becomes

1 Asin[(2*-l);rr/2]
SN(g,x) + 2_, (2k_l)7T/2

1 A f [2k -1 I J 1 If sin(Njrr)
= - + > / cos —-—nzldT = - + - — -dr.

2 j^Jo L 2 J 2 2 7O sin(7rr/2)
The last equality was due to the equation

A [2k - 1 "I sin(N;rr)
> cos nx = .
f^ L 2 J 2sin(7rr/2)

By the change of variables NTTT = y, we have

2 2 ./o sm(y/2N) Nn

If we differentiate 5^' (g; x) with respect to *, then

dSVigix) 1 w si
= -wl '(x)

d 2 si
w ( x ) .

dx 2 sin(f7r/2)

Thus Sx\g;x) has extreme values at the critical points, say, xk = 2y~' ((1 + ^)/2) — 1
with rt = Jt/N for integers A: = ±1 , ± 2 , . . . , ±N - 1. That is,

This implies that as r > 1 grows larger, the critical points ** of the SCS become
further clustered toward the centre x = 0 while those of the Fourier series, tk are
uniformly distributed.

Moreover, for r > 1, the width Ax* := xk+t — xk of the spike becomes

5 )

for i t « i V due to the asymptotic behaviour,

' n) ~ 1/2

for small ?7. For instance if the simple sigmoidal transformation given in (2.1) is
employed for yr then, since (yr~')'(l/2) = (y,/r)'(l/2) = 1/r, (4.5) becomes

A** ~ \/{rN). (4.6)
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That is, even if N is not very large, the widths of the spikes near the discontinuity
jco = 0 are decreasing as the order r > 1 grows.

Set t*N =t{ = \/N and x*N = JC, = 2y-l(\/2 + l/(2N)) - 1 at which the Fourier
series S£ (g;x) and the SCS Sjj1 (g; x), respectively, have maxima or the highest spikes.
It is well known that SF

N (g;t*N) ~ 1/2 + (1/TT) Si(7r) = 1.0895 for sufficiently large N
[7,9]. Simultaneously, from (4.4), it also follows that

for sufficiently large N. It should be noted that no matter how large N may be, the
error SF

N(g;t*N) - g(0+) = Sl
N

r](g; x*N) - g(0+) = 0.0895 is inevitable.
On the other hand, in order to search for the height of the spike of Sl^\g; x) at the

point x = t^,, let N be large enough. Then

Vr\ —I I ~ —h v I - I — and sin I -=— 1 ~ -=— .
Yr\2 2N) 2 Yr\2j2N \2NJ 2N

Therefore we have from (4.4)

•w,_..., 1 , 1 f»"ww»-" siny
sin(y/2N) Nn J

Y'(in)n sinv 1 1
—*- dy = - + - Si(y'(l/2)7r), (4.8)

V 2 7T

which approaches the value g(0+) = 1 for large r because the sine integral Si(x)
converges to 7r/2 as x -> oo. Particularly if yr is substituted by the simple sigmoidal
transformation given in (2.1) then (4.8) becomes S%\g;t*N) ~ 1/2 + (1/JT) Si(r7r).

Suppose now N is not very large and let r be large enough. Then yr{\ + ^7) ~ 1
and we have

cos

Thus from (4.3) it follows that

We note that
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-0.5 0 0.5

(a) Fourier series S£o

1

0.5

0

-0.5 0 0.5 I

121

0

-1 -0.5 0 0.5

(d) SCS Sjj1

FIGURE 2. The Gibbs phenomenon of the partial sums of the Fourier series S£ and the SCS SJJ1,
r = 1, 2, 4, for a piecewise continuous function g(x) with N = 20.

where ^ is the digammafunction defined by \jr{z) = F'(z)/r(z). Therefore we have

for r large enough.
The Gibbs phenomenon of the partial sums of the Fourier series, S?

N, and the SCS,
S^1, combined with yr given in (2.1) is illustrated in Figure 2 for N = 20. It can
be seen that as r goes higher, with JV fixed, the widths of the spikes of 5^' become
shorter.

5. Periodic extension of a function on [0,1]

Suppose we are interested in a function / on the half-interval [0, 1] rather than
[— 1, 1] and we take the even extension /even of / such that

/evm(-JC) = / W . 0 < * < l .

Then since both u>|r| and V^1 are e v e n a°d ^In+i ' s °dd a s shown in Theorem 2.1 (ii),
the coefficients of the SCS of /cven on [—1, 1] become

c2n = 2 f w[r](t)fml2n
]«)dt, c2n+l = 0,

Jo
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for all n > 0. Thus the series expansion of /even becomes

(5.1)
n=0

If, in addition, yr is a 2-periodic even function on the real line R then so is ^ since

V#(* + 2) = cos [2/i7ryr(l + (1 + x)/2)] = cos [2«7ryr(l - (1 + x)/2)]

= cos [2nn{\ - yr((l + x)/2)}] = t/^OO

for all x € 1. In the result, for a function / satisfying the assumptions of Theorem 3.3
on the interval [0,1] the series S[rl(/even;^) in (5.1) converges uniformly to f(x) on
[0, 1], and thus it is a 2-periodic even extension of / to the whole real line K.

On the other hand, if we take the odd extension /^d of / such that

) , O < J C < 1 ,

then the coefficients of the SCS of /^d on [—1, 1] become

cm = 0, c2n+1 =2 [ w[r](t)f(t)i,l2
r
n

]
+l(t)dt,

Jo

for all n > 0. Thus the series expansion of /odd becomes

n=0

However, even if yr is 2-periodic, V4n+i is not 2-periodic but 4-periodic on R. There-
fore 5|rl(/odd; x) becomes a 4-periodic odd extension of / to the real line K.

In fact, referring to the properties (S1MS5) of the sigmoidal transformation yr, we
can extend it to a 2-periodic even function on 0& such as

It is also seen that for any even integer m > 2 a special kind of sigmoidal transforma-
tion,

becomes a 2-periodic even function on K in itself [14].
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TABLE 2. Numerical results of £>/, for the SCS and the Fourier series.

N
8
16
24
32
40

80

7.4
6.5
3.1
1.1
3.2

2.9

X

X

X

X

X

X

m
10"'
io-2

io-3

io-4

io-6

io-10

<

1.5
5.6
7.1
2.4
1.0

6.8

5CS

jM/21

x 10-'
x 10"4

x 10"5

x 10"5

x 10"5

x 10~7

3.6
2.0
1.1
6.9
4.9

1.7

ol

X

X

X

X

X

X

11

io-1

io-1

10"'
io-2

io-2

io-2

Fourier series

3.7
1.3
6.5
4.1
2.9

1.0

s\
X

X

X

X

X

X

F
V

io-1

10"'
io-2

io-2

io-2

io-2

6. Numerical examples

In this section we consider several functions defined on a finite interval [—1, 1] to
which the approximation by the partial sums of the Fourier series is not good over the
whole interval. For comparison of the numerical results, we define an error such that

1/2

iNf:=\J{f(x)-SN(f;x))2dx\ ,

where SN(f;x) denotes the Nth partial sum of a series expansion S(f\ x) in general.
In the following examples SP

N denotes a partial sum of the Fourier series 5F where

N

{an cos(nnx) + bn sin(nnx)\, — 1 < JC < 1,
n=i

andan = /_, cos(nnt)f(t)dt, bn = /_!, sm(nnt)f(t)dt.

EXAMPLE 6.1. (A smooth function having a pick near an endpoint.) Consider

•««•*[;£*]•
Since fx (x) takes the form of a high pick near an endpoint x = 1, the Fourier series

converges very slowly. Numerical results of the errors ENft for the Fourier series Sjy
and the present SCS 5 ^ , r = 1/4, 1/2, 1, are given in Table 2 for various N. It is seen
that the errors of Sjj1 with r = 1/2 and 1/4 are much better than those of the Fourier
series S£ for all N > 16. It is also seen that sJJ/41 exceeds 5^/2i for large N > 40.

Figure 3 shows differences between f{ and Sf
N in (a) and those between fx and 5^'

with r = 1/4 and 1/2 in (b). One can observe that the approximation by SJy1 with
r = 1 /4 or r = 1 /2 dramatically improves the Fourier series approximation.
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1.0

0

-1.0

0.6

0

-0.6

0.2

0

-0.2

-1 -0.5

-1 -0.5

\/\/W"

N =

0

N =

0

N =

g

16

24

0.5 1

0.5

-1 -0.5 0 0.5 1
(a)

Sigmoidal cosine series on the interval

1.0

0

-1.0

0.6

0

-0.6

0.2

0

-0.2

471

-1 -0.5

-1 -0.5

0

N = 16

0

A1 = 24

5̂
0.5 1

0.5 1

-1 -0.5 0 0.5 1
(b)

FIGURE 3. Graphs of the differences / , - S¥
N (in (a)) and / , - 5^' (in (b)). In (b) the thin line and the

thick one indicate SjJ/4' and S"/21, respectively.

Superiority of the SCS in convergence seems to result from the particular feature
of the base function x//^ in the vicinity of the endpoints which can be inferred from
Table 1 and Figure 1 in Section 2.

EXAMPLE 6.2. (A non-piecewise smooth function.) Consider f2(x) = exy/l — x2.
The function f2(x) is not piecewise smooth on [—1, 1] because its derivative is un-
bounded at the endpoints x = ±1 . Thus its Fourier series cannot guarantee point-
wise convergence on [—1, 1]. However Theorem 3.5 implies that the SCS S^1 with
0 < r < ? j = l/2 converges uniformly to f2(x), and thus in the following numerical
fulfillment we have taken r = 1/4 and r = 1/2.

Table 3 includes the errors ENf2 and values of (DNf2)(x) at the endpoints x = ±1
defined by (DNf)(x) = \f(x) - SN(f;x)\. That is, DNf2(-l) and DNf2(l) denote
the deviations at both endpoints which seem to be noticeable pointwise errors. Like
the case of fx, we can see that the errors ENf2 of SJJ1 with r = 1/2 and 1/4 are much
better than those of the Fourier series S£ for all Af > 8. Similarly to the results of
EN/2, the deviations DNf2(—l) and DNf2(l) of S{j' highly improve those of S£.

Figure 4 shows the graphs of the differences f2 — S# in (a) and those of f2 — Sjj1

with r = 1/4 and 1/2 in (b). We can see that though the number of the series is not
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TABLE 3. Numerical results of ENf2, (DNf2)(-l) and (DNf2)(l) for the SCS and the Fourier series.

SCS Fourier series

Errors

ENfi

(D/v/2)(-0

(DNf2)(l)

N

8
16
24
32
40

8
16
24
32
40

8
16
24
32
40

2.3
2.3
3.7
8.7
3.7

6.2
1.5
4.9
1.2
6.6

1.9
1.8
2.9
1.3
6.7

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

10-4

10"6

10-7

10-7

10-3

10-4

10~6

lO"6

10-7

IO-2

10-4

10-5

10-5

10"6

1.4
4.1
1.9
1.1
7.5

9.7
7.0
5.2
4.1
3.3

1.3
6.7
4.5
3.4
2.7

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

m
IO-2

10-3

10-3

10-3

10-4

10-3

10-3

10-3

10-3

10-3

io-1

lO-2

lO-2

lO-2

lO-2

9.6
5.1
3.5
2.6
2.1

4.4
3.3
2.7
2.4
2.2

4.4
3.3
2.7
2.4
2.2

5
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

F
N

10"2

lO-2

IO"2

10~2

lO-2

io-1

io-1

io-1

io-1

io-1

io-1

io-1

10"1

10-1

10-1

-1 -0.5 0 0.5 -1 -0.5 0.5 1

-1 -0.5 0 0.5 1

0.2

0

-0.2
-1 -0.5

N= 12

0.5

0.2

0

-0.2

N = 16

-I -0.5 0 0.5
(b)

FIGURE 4. Graphs of the differences f2 - S£ (in (a)) and f2 - S%] (in (b)). In (b) the thin line and the
thick one indicate SjJ/4' and SjJ/21, respectively.
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0.60

0

-0.60

0.30

n

-0.30

0.15

n

-0.15

1 -0.5

1 -0.5

1 -0.5

h

0

11
A A'W

0

I

0
(a)

/V = 8

^ \ _ ^

0.5

W = 16

0.5

N = 24

0.5

0.6

0

-0.6

1 1

0.30

n

-0.30
1

0.15

-0.15
1

-0.5

1 -0.5

1 -0.5

0

0

0
(b)

W = 8

r

0.5 1

Af = 16

0.5 1

N = 2 4

0.5 1

FIGURE 5. Graphs of the differences /3 - S?
N (in (a)) and / 3 - Sjj1 (in (b)). In (b) the thin line and the

thick one indicate SjJ' and sJJ', respectively.

0 I 0 1

FIGURE 6. Periodic even extension of fa(x), 0 < * < 1, by the Fourier series S£ (in (a)) and the SCS
Sj^' (in (b)). The thick line indicates fi(x).
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TABLE 4. Numerical results of ENf3, (DNf3)(0) and (DNf3)(l) for the SCS and the Fourier series.

Errors N
8
16

ENh 24
32
40

8
16

(DNf3)(0) 24
32
40

8
16

(D*/3)(l) 24
32
40

3.2
6.7
4.2
3.5
3.1

5.8
4.7
4.6
9.8
5.2

2.8
8.6
6.1
5.3
4.8

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

SCS
4)

10"2

io-3

io-3

io-3

io-3

io-2

io-3

10"4

io-5

io-5

io-2

io-3

io-3

io-3

io-3

7.6
2.1
6.1
1.8
6.1

2.4
6.9
2.0
5.6
1.6

4.0
1.2
4.1
1.8
1.1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

21
/
10"2

io-2

io-3

io-3

io-4

10"'
io-2

io-2

io-3

io-3

io-2

io-2

io-3

io-3

io-3

Fourier series

5 P

1.4
7.4
3.9
2.1
1.1

4.9
2.6
1.4
7.5
4.0

3.9
2.1
1.1
5.9
3.2

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

:S [ 1 ]

io-1

io-2

io-2

io-2

io-2

io-1

io-1

io-1

lO"2

io-2

io-2

io-2

io-2

io-3

io-3

large (iV < 16), approximation by the SCS SJ/ with r = 1/4 or r = 1/2 is very
satisfactory compared to the Fourier series approximation. Further improvement can
also be obtained by taking a smaller value of r < 1/4 so long as N is modestly large.

EXAMPLE 6.3. (A rapidly decreasing even function.) Consider

_ 1

• " ( * ) = 1 + 40Ox2 '

Referring to the proof of Theorem 3.3, we can note that since the derivative /3'(JC)

is very small near x ± 1, the SCS 5^' with somewhat large r > 1 is also uniformly
convergent on the interval [—1 + e, 1 — e] for sufficiently small e > 0. In fact, by the
numerical fulfillment, we have found that approximation by the SCS 5^' with r > 1
rather than 0 < r < 1 gives a better result.

Table 4 includes the errors ENh and the values of a function {DNfi)(x) at x = 0
and x = 1. Therein r = 2 and r = 4 are employed in Sff, and it can be noted
that since / 3 is an even function, SN = 5 m . One can see that 5^' results in better
approximation, in particular, at the central point x = 0 compared with S£. Figure 5
shows the graphs of / 3 — S$, with r = 2 and 4, in comparison with those of /3 — S£
forW = 8, 16 and 24.

On the other hand, assuming that fj(x) is defined on the half-interval [0, 1], the
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periodic even extension by the SCS Sg4' and S[41 using the periodic sigmoidal trans-
formation YA m (5.2) is shown in Figure 6.
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