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Fluid-inertia torque remarkably affects the orientation of non-spherical particles in
Newtonian flows whereas this torque induced by convective fluid inertia in particle-laden
pseudo-plastic flows is still unknown. In the present study we numerically investigate the
fluid-inertia torque on a neutrally buoyant spheroid in the Carreau-type pseudo-plastic
fluid flows at finite Reynolds numbers with the immersed boundary method. The results
show that compared with the fluid-inertia torque in Newtonian flows, the magnitude of the
fluid-inertia torque on spheroids is remarkably attenuated by the shear-thinning rheology
in pseudo-plastic fluid flows. The deviation of fluid-inertia torque between pseudo-plastic
and Newtonian flows is more significant with decreasing Reynolds numbers, indicating the
importance of the effect of shear-thinning rheology at small Reynolds numbers. Moreover,
the spheroid rotation rate is reduced in pseudo-plastic fluids, and the equilibrium
orientation of oblate spheroids changes non-monotonically with the shear-thinning effect
in the linear shear flow of pseudo-plastic fluids. The present findings imply the importance
of the effect of shear-thinning rheology on the torques of spheroids, which could be
potentially applied for the control of particle orientations in pseudo-plastic fluids in the
future.

Key words: particle/fluid flow, rheology

1. Introduction

Particle-laden flows of a pseudo-plastic fluid, which is a canonical type of non-Newtonian
fluid, are widely encountered in industrial and medical applications. For example,
concerning the material processing techniques, discontinuous glass or carbon fibres
together with the thermoplastics are mostly used to produce a composite material
(so-called fibre-reinforced thermoplastics, FRT), and the shell-core microstructure (Tseng
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2022) of the flow-induced fibre orientation notably affects the mechanical and thermal
properties of such a composite material (Altan 1990; Nabergoj, Urevc & Halilovič
2022). In papermaking processes the alignment and assembly of cellulose nanofibrils
(CNF) can greatly improve the overall strength of paper products (Lundell, Söderberg
& Alfredsson 2011; Håkansson et al. 2014; Boufi et al. 2017). From a rheology point of
view, CNF suspensions generally behave like pseudo-plastic fluids with shear-thinning
characteristics (Boufi et al. 2017). Moreover, in biological areas the bio-fluids, such
as blood or respiratory mucus, often display complex rheological properties including
viscoelasticity and shear-thinning viscosity (Merrill 1969). The rheological properties
of blood are found to be associated with the microstructure of red blood cells (Fedosov
et al. 2011). Understanding the dynamics of spheroids in pseudo-plastic fluids may lead
to advances in predicting blood viscosity, which has long been used as an indicator in
the treatment of disease (Fedosov et al. 2011). Therefore, understanding the rotation and
orientation of particles in pseudo-plastic fluids is crucial.

The flow-induced orientation of aspherical particles has been extensively studied in
Newtonian fluid flows. Jeffery (1922) first derived the viscous torques of a spheroid due
to the local vorticity and strain rate of Newtonian flow within the Stokesian regime. From
the Jeffery torque model, the spheroids retain the initial orientation in a uniform flow
(zero vorticity and strain rate) with neglecting the fluid inertial effect in the Stokesian
flow assumption. However, in practical situations, the particle-laden flow systems (e.g. ice
crystals settling in turbulent clouds (Gustavsson et al. 2021), elasto-inertial migration
of bio-particles (Lim et al. 2014), the motile micro-organisms swimming in turbulence
Qiu et al. 2022) are usually beyond the Stokesian regime and fluid inertial effect has
to be considered. In a flow system with weak fluid inertia (

√
Res � Re � 1,

√
Res is

the shear Reynolds number, Re is the particle Reynolds number) (Gustavsson et al.
2019), experimental, theoretical and numerical simulation results have evidenced that
the particle orientation is significantly affected by the convective fluid inertia. For
instance, in a quiescent Newtonian flow, the slip velocity-induced fluid-inertia torque
makes the spheroids tend to settle with the orientation maximizing the drag force. There
are several analytic expressions proposed to model such convective fluid-inertia torque
for spheroids with small eccentricity (Cox 1965) and slender bodies (Khayat & Cox
1989). Recently, Dabade, Marath & Subramanian (2015) used the generalized reciprocal
theorem to establish an analytical expression for the fluid-inertia torque. However, the
above theoretical models of fluid-inertia torque are restricted to small-Re situations. In
the case with a finite Reynolds number, the small-Re theory generally overestimates the
dimensionless fluid-inertia torque (Jiang et al. 2021). As for the flow system at a finite
Re, numerical simulations are needed to fully resolve the convective fluid inertial effect on
spheroid orientation. Sanjeevi, Kuipers & Padding (2018), Zastawny et al. (2012), Ouchene
et al. (2016) and Fröhlich, Meinke & Schröder (2020) analysed the torques of a spheroid in
uniform flows with direct numerical simulations (DNS) and proposed several approximate
torque parametrizations as a function of particle shape, orientation and Re.

The above theoretical and numerical studies reveal that the fluid-inertia torque on
spheroids has been systematically investigated in Newtonian flows. However, unlike
its Newtonian counterpart, the fluid-inertia torque in non-Newtonian fluid flows is
not well understood. Different from Newtonian fluids, particle dynamics can be
significantly modulated by the peculiar rheology of non-Newtonian fluids. For a prolate
spheroid in viscoelastic shear flow without fluid-inertia torque, the particle exhibits
multi-orientation modes, including the log-rolling mode, inclined rolling mode in the
flow–vorticity plane, bi-stable orientation mode and the flow-alignment mode, with
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Figure 1. A prolate spheroid immersed in a uniform pseudo-plastic flow: (a) contour of normalized apparent
viscosity 1 − μa/μ0, (b) contour of local shear rate, (c) contour of local particle Reynolds number Rea.

increasing fluid elasticity(D’Avino et al. 2014). More interestingly, when the fluid inertial
effect is comparable to the effect of fluid elasticity, a new rotation mode, i.e. the
asymmetric-kayaking mode, is observed (Li, Xu & Zhao 2023). In a yield-stress fluid,
such as Bingham fluid and elastoviscoplastic fluid, the particle can be trapped in the
unyielded region within a certain fluid plasticity (Bingham number Bi ∼ 2) (Chaparian
et al. 2020). Fluid plasticity is also found to affect the orientation of non-spherical particles
in viscoplastic fluids. For example, during the settling of spheroids in a Bingham fluid,
particles are surrounded by the yielded envelope and behave in a diagonal motion with
an inclined steady orientation (Romanus, Lugarini & Franco 2022). The above peculiar
particle dynamics indicate that the force and torque model of particles in non-Newtonian
fluids should account for the effect of fluid rheology. However, a primary obstacle to
developing a theoretical model of fluid-inertia torque in non-Newtonian fluids is the high
nonlinearity of the constitutive equations. For example, the viscosity in the constitutive
model of pseudo-plastic fluids is highly dependent upon the flow shear rate: the larger
the flow shear rate is, the lower the apparent viscosity is (the so-called shear-thinning
effect).

For a spheroid immersed in the pseudo-plastic fluid, the shear-thinning effect can
dramatically reduce the apparent viscosity near the particle (figure 1a,b). Consequently,
the spatial gradient of viscosity induced by the fluid rheology can modulate the local flow
characteristics near the particle and greatly affect the local fluid inertia (characterized by
the local particle Reynolds number, Rea), as shown in figure 1(c). More quantitatively, with
the rheological parameters used in figure 1, the zero-shear-rate viscosity-based particle
Reynolds number is 6 at far field, but Rea can reach up to 30 due to the shear-thinning
rheology. In such a variable-viscosity flow system, a straightforward question is whether
and how the viscosity-dependent flow field and induced non-uniform fluid inertial effect
can contribute to the deviation of fluid-inertia torque acting on the particle from that in the
Newtonian flow system.

To understand the effect of shear-thinning rheology on particle dynamics, researchers
devoted much effort to determining the particle behaviours in pseudo-plastic fluids with
different approaches. For the particle in weakly shear-thinning fluids, the asymptotic
analysis has been utilized to obtain the asymptotic solution of the non-Newtonian flow
surrounding particles (Datt et al. 2015; Elfring 2017; Abtahi & Elfring 2019; van Gogh
et al. 2022). Based on the reciprocal theorem and perturbation expansion, Abtahi & Elfring
(2019) proposed an analytical torque model for an inertialess prolate particle immersed in a
Stokesian shear flow of a Carreau-type fluid. Their model demonstrates that the particle in
weak shear-thinning fluids retains the degeneracy of Jeffery orbits in Newtonian fluids, and
the particle rotation rate is slightly attenuated by shear-thinning rheology. However, limited
by the small expanding variables required in the perturbation series, the above theoretical
methods can not be used to handle realistic fluids with significantly nonlinear rheological
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features, including strong shear-thinning rheology. Therefore, as an alternative, numerical
simulations are applied to analyse the effect of strong non-Newtonian characteristics on
the hydrodynamic torque. Domurath et al. (2019) reported that the shear-thinning effect
can slightly reduce the rotation rate of the prolate spheroid in the simple shear flow of
Carreau fluids. In such flow, since the zero-slip velocity is between the particle centre
and local fluid, the particle rotation is mainly determined by the fluid shear effect. For
the flow system with the slip velocity, the related studies have mainly focused on the
modulation of particle drag force by shear-thinning rheology. Lashgari et al. (2012) and
Bailoor, Seo & Mittal (2019) indicated that the shear-thinning effect can decrease the
drag coefficients significantly for Re = 10 ∼ 40. More compliantly, if the spheroids can
freely rotate, the fluid-inertia torque is expected to play an important role in the particle
rotation. Unfortunately, the fluid-inertia torque modulated by the shear-thinning effect
has not yet been systematically reported in earlier studies, which motivates the present
research.

Moreover, from the aforementioned applied perspectives, it is also of practical
importance to uncover the orientation mechanism of spheroids in pseudo-plastic fluids.
The peculiar rheological behaviour shown in figure 1(c) implies that, although the
zero-shear-rate viscosity-based Re, which is usually utilized to characterize the convective
fluid inertia in particle-laden flow systems of pseudo-plastic fluids (Lashgari et al. 2012;
Alghalibi et al. 2020), is small, the shear-thinning rheology can still induce sufficiently
large local fluid inertial effect in the vicinity of the particle. However, the above strong
local fluid inertial effect does not yet receive sufficient attention. For example, in the
studies on predicting fibre orientation in pseudo-plastic fluids during the injection molding
process, the flow-induced orientation of fibre-like particles is only determined by Jeffery
torques (Bertevas et al. 2018, 2019; Mezi et al. 2019; Ngo, Nguyen & Oh 2021; Tseng 2022)
without considering the local fluid inertial effect. Whether such local fluid-inertia torque
induced by the shear-thinning rheology can modify the fibre orientation in pseudo-plastic
fluids is still unclear.

In this work we performed particle resolved direct numerical simulation to accurately
determine the fluid-inertia torque acting on spheroids in pseudo-plastic fluids. In
particular, we advance the understanding of the effect of shear-thinning rheology on the
spheroid orientational and rotational dynamics. These important findings can help us
understand the physics of particle dynamics in shear-thinning fluids, more generally, the
flows with non-uniform viscosity. More importantly, these results may play a priori role
in developing point-particle models in shear-thinning fluid flows.

In summary, concerning the fluid-inertia torque on a spheroid in pseudo-plastic
fluid flows, there are several key questions that remain to be answered: does such a
non-Newtonian flow with the non-uniform viscosity affect the hydrodynamic torque on
spheroids, and if so, how? Furthermore, how does the modulated fluid-inertia torque affect
the particle orientation in pseudo-plastic fluids? The present study seeks to address these
questions by fully resolving the fluid-inertia torque on the spheroids and their orientation in
the pseudo-plastic fluids with different shear-thinning rheology. The work is organized as
follows. In § 2 we introduce the mathematical models and numerical methods of resolving
the particle in the pseudo-plastic fluids. Then the modulations of fluid-inertia torque by
shear-thinning rheology are discussed in § 3. More specifically, a uniform flow past a
spheroid is considered to qualify the fluid-inertia torque in pseudo-plastic fluids in § 3.1,
and a spheroid in a simple shear flow is utilized to study the coupling effect of fluid-inertia
torque and fluid shear torque on particle orientation in pseudo-plastic fluids in § 3.2.
Finally, conclusions are drawn in § 4.
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2. Methodology

2.1. Governing equations

2.1.1. Shear-thinning fluid flow
In the present study the interaction between the non-Newtonian flow and particle is fully
resolved within the framework of the immersed boundary (IB) method. For the fluid phase,
the governing equations for incompressible and isothermal pseudo-plastic fluid flows are
written as

∇ · u = 0, (2.1)

ρf

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · τ v + f IB, (2.2)

where u is the fluid velocity, ρf is the fluid density, p is the pressure, τ v is the viscous
stress and f IB is the forcing term due to the fluid–particle interaction. The viscous stress
is determined by the constitutive equation of a generalized Newtonian fluid as

τ v = 2μaS, (2.3)

S = 1
2

(∇u + (∇u)T) , (2.4)

in which μa is the apparent viscosity of the generalized Newtonian fluid. Here S is
the strain-rate tensor. The apparent viscosity μa is determined by fluid types. Herein,
the Carreau model is utilized to characterize the rheology of pseudo-plastic fluids. The
rheology model of the Carreau-type fluid is

μa = μ0

{
μ∞
μ0

+
(

1 − μ∞
μ0

)[
1 + (Λγ̇ )2

](n−1)/2
}

, γ̇ = √
2SijSij, (2.5)

where μ0 and μ∞ are the zero-shear and infinite-shear viscosities, respectively, Λ is the
relaxation time of a non-Newtonian fluid and γ̇ is the shear rate. Here, n is the flow
index, which characterizes the rheology of the fluid, i.e. n < 1 for a shear-thinning or
pseudo-plastic fluid, n = 1 for a Newtonian fluid and n > 1 for a shear-thickening or
dilatant fluid. Herein, we mainly focus on the pseudo-plastic (n < 1) and Newtonian (n =
1) fluids. The above model parameters are generally fitted by rheological experiments.

2.1.2. Particle rotation
The particle rotational motion is governed by the following Euler equation:

d(Ipωp)

dt
=
∮

Γp

r × (τ · n) ds. (2.6)

Here, Ip is the particle moment of inertia, ωp represents the particle angular velocity, Γp
is the particle surface, r is the position vector on the particle surface from the particle’s
centre, n denotes the unit normal vector pointing outwards on the particle surface and τ
represents the hydrodynamic stress tensor acting on the particle surface, τ = −pI + τ v .
The integration of τ accounts for the fluid–particle interaction.

The shear-thinning fluid–particle interaction is modelled within the immersed boundary
method framework. The momentum forcing term f IB in (2.2) is used to satisfy the no-slip
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condition on the particle surface, which is spread from the fluid–particle interaction
forcing term F IB (Huang, Chang & Sung 2011),

f IB =
∮

Γp

F IBδ(x − X ) ds, (2.7)

where δ is the Dirac delta function and X denotes the positions of material Lagrangian
points distributed on the particle surface. In the penalty immersed boundary method the
fluid–particle interaction forcing term F IB, acting on the particle surface from the fluid, is
given as

F IB = −κ [(X IB − X ) + 	t (U IB − ULP)] , (2.8)

where κ is a large penalty constant in the immersed boundary method with κ = 104 in
the present simulations, X IB and U IB represent the positions and velocity of the massless
counterpart of the material Lagrangian points, respectively, ULP denotes the velocity of
the material Lagrangian points and 	t is the time step.

The corresponding dimensionless parameters in a particle-laden shear-thinning flow are
summarized as the particle Reynolds number

Re = UD/ν0, (2.9)

the shear Reynolds number

Res = GD2/ν0 (2.10)

and the local particle Reynolds number

Rea = UD/νa, (2.11)

where U is the slip velocity, D is the characteristic length of the particle, i.e. the major
diameter of the spheroid and ν0 is the zero-shear-rate kinematic viscosity of the fluid.
In the present simulation the free-stream velocity U and particle major diameter D are
U = 1.0 and D = 1.0, respectively. The fluid inertia is represented by the variation of the
zero-shear-rate kinematic viscosity ν0. Here, νa is the apparent kinematic viscosity of the
fluid and G denotes the shear rate of the flow.

The Carreau number represents the characteristic of the microstructure in a Carreau-type
fluid. Figure 2 shows the rheology of a Carreau fluid with different Cu and β. From
figure 2(a), the shear-thinning rheology is significantly enhanced by increasing Cu,

Cu = ΛU/D. (2.12)

The viscosity ratio is the ratio between infinite-shear and zero-shear-rate viscosities, and
defined as

β = μ∞/μ0. (2.13)

Equation (2.13) indicates that the smaller β is, the stronger the shear-thinning rheology is.
The particle aspect ratio is

AR = a/b, (2.14)

where a and b are the polar and equatorial radius of the spheroid, respectively.
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Figure 2. Rheology of Carreau fluid. (a) Effect of Cu on apparent viscosity. (b) Effect of β on apparent
viscosity. n = 0.2. The shear rate is non-dimensionalized by the characteristic shear rate of the flow problem.
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Figure 3. Shape function F(AR) of spheroids.

2.1.3. Fluid-inertia torque
The fluid-inertia torque is first proposed to model the effect of weak fluid inertia on the
particle orientation in Newtonian flows at small Re (Re � 1). Based on the small-Re
theory, the fluid-inertia torque on a particle is formulated as (Dabade et al. 2015)

T |Re�1 = −1
2 ReF (AR) μU(D/2)2Û · p(Û ∧ p), (2.15)

where μ is the viscosity of the Newtonian fluid, Û = U/‖U‖ is a unit vector along the
ambient flow, p is the orientation vector along the spheroid symmetry axis and F(AR) is
the shape function (shown in figure 3), which indicates the broadside-on mode is the steady
state for spheroids in Newtonian flows. Note that the shape function is only for Newtonian
fluids. Scaled by the 1/8ReμUD2, the dimensionless form of fluid-inertia torque reads

T∗∣∣
Re�1 = −F (AR) sin α cos α. (2.16)

Here, α denotes the angle between p and Û . From (2.16), the fluid-inertia torque has an
angular dependence given by sin(2α), which has been evidenced by theoretical models
(Subramanian & Koch 2005; Dabade et al. 2015) and numerical results (Zastawny et al.
2012; Ouchene et al. 2016; Sanjeevi et al. 2018; Fröhlich et al. 2020).
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In weakly shear-thinning fluids, the relationship between the torque on spheroids and
rheological parameters of Carreau fluids can be modelled via the perturbation expansion
theorem. In a small-Cu flow of Carreau fluids, when Cu2 ˜̇γ 2

0 � 1, considering the
leading-order term of the flow field, the torque T on the particle is obtained by integrating
the stress on the particle surface as (Datt et al. 2015; Abtahi & Elfring 2019; van Gogh
et al. 2022)

T =
∮

Γp

r ×
[
−pI · n +

(
1 + 1

2
(1 − β) (n − 1) Cu2 ˜̇γ 2

0

)
( ˜̇γ 0 · n)

]
ds + O(Cu4),

(2.17)

where ˜̇γ 0 is the leading-order term of the dimensionless shear-rate tensor ˜̇γ , i.e. ˜̇γ = ˜̇γ 0 +
O(1). Here ˜̇γ = γ̇ /γ̇ c, and the characteristic shear rate γ̇ c is determined by γ̇c = U/D.

From (2.17), considering the fact that the particle rotation rate is reduced in
shear-thinning fluids (Abtahi & Elfring 2019), the dependence of the torque on Cu, n and
β can be simplified to

|T | ∝ 1 + 1
2 (1 − β) (n − 1) Cu2. (2.18)

In weakly shear-thinning fluids, (n − 1) < 0 and (1 − β) > 0; thus, (2.18) reveals that
the torque, which the particle experiences in weakly shear-thinning fluids, is positively
associated with n and the viscosity ratio β, whereas it is negatively associated with Cu.

In pseudo-plastic fluids with highly shear-thinning rheology, the hydrodynamic torque
T acting on a spheroid needs to be computed numerically as

T =
∮

Γp

r × (τ · n) ds = −
∫

Ωp

r × f IB dv + ρf
d
dt

(∫
Ωp

r × u dv

)
, (2.19)

where Ωp is the particle region bounded with surface Γp.

2.2. Numerical methods and validation
In this section the numerical method is first presented and then validated by several
benchmarking flow examples, including the cylinder flow of pseudo-plastic fluids
and uniform flows of Newtonian fluid and Carreau fluid past a fixed spheroid. The
governing equations of Carreau-fluid flow are discretized on the staggered grid using a
finite-difference method. For temporal discretization of the momentum and constitutive
equations, all terms are integrated in time by the second-order Crank–Nicolson (CN)
scheme. For spatial discretization of the governing equations, all terms are approximated
by a second-order central difference scheme. With the approximate factorization of
the coefficient matrix, discretized governing equations are solved within a projection
framework without iteration. The detailed numerical method can be found in Kim, Baek
& Sung (2002), Pan, Kim & Choi (2019), Li et al. (2022) and Li et al. (2023). Note that
the viscosity field is updated explicitly in the simulation. To suppress the non-physical
oscillation induced by the CN scheme, the time step 	t is restricted by the grid Fourier
number FoΔ = μa	t/(ρ min (	x, 	y, 	z)2) ≤ 1.

For the particle solver, the particle rotation (2.6) is solved in the particle frame with the
fourth-order Runge–Kutta scheme. The particle orientation is represented by quaternions
(Goldstein 1980), which are updated based on the particle angular velocity.

To evaluate the effects of spatial grid resolution on the numerical results, we simulated
a prolate particle (AR = 3) rotating in a shear flow of shear-thinning fluids (Re = 6.0,
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Figure 4. Effect of grid resolution on the particle orientation in shear-thinning fluids.

Cu = 0.5, n = 0.6) on three meshes with different spatial resolutions, the results are
shown in figure 4. Note that a small domain size of L × H × W = 4D × 2D × 2D is
chosen in this test case to save the computational cost. The evolution of the y coordinate of
the particle symmetry axis calculated on two finer meshes (Δ = 1/64D and Δ = 1/128D)
agree well with each other. This suggests that the present grid resolution (Δ = 1/64D) is
sufficient to ensure the accuracy in resolving the particle orientation.

For the verification of the numerical methods, the present non-Newtonian flow solver is
firstly validated by the cylinder flow of the pseudo-plastic fluid. The simulation parameters
are consistent with Lashgari et al. (2012). Figure 5 shows that the present numerical
method has a good performance for capturing the effects of shear-thinning rheology on
the stability of the cylinder wake flow (figure 5a) and the drag force (figure 5b) in the
pseudo-plastic fluid. It further evidences that the decreased local viscosity (figure 5c) can
destabilize the flow dramatically near the cylinder (a monotonic decrease of the critical
Reynolds number with decreasing n, as shown in figure 5a).

The present study focuses on particles in shear-thinning fluids with finite fluid inertia.
Thus, we checked the capability of the present numerical method to capture the interaction
of particle and shear-thinning fluids. In this test case a fixed sphere is immersed in the
Carreau fluids (Cu = 1.0, β = 0, n = 0.5) at different Re = 5 ∼ 100. The comparison
results of CD are shown in figure 6. Overall, the calculated CD agrees well with that
reported by Daunais, Barbeau & Blais (2023). The comparison evidences that the present
numerical method can capture the interaction of particle and shear-thinning fluids. Note
that the small deviation between the calculated result and reference data at Re = 5 is due
to the smaller computation domain used in the present work to save computational cost.

Finally, before analysing the shear-thinning effect on the fluid-inertia torque, we first
focus on the Newtonian case (n = 1.0). Figure 7 shows the fluid-inertia torque on
spheroids in Newtonian flow at different Re. Firstly, the results indicate that the present
simulation framework is capable of determining the hydrodynamic torque on spheroids
in the flows at different Re. Similarly with Jiang et al. (2021), figure 7(a) shows that
the fluid-inertia torque on the prolate spheroid does not change its symmetry angular
dependence predicted by the small-Re theoretical model even in the flow with obvious
fluid inertia (Re = 60), while this symmetry for the oblate particle is slightly broken at
Re = 60 (figure 7b).
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Figure 6. Comparison of calculated CD with the reference results (Daunais et al. 2023) in Carreau fluids.

3. Results and discussion

3.1. Fluid-inertia torque in pseudo-plastic fluids
To analyse the effect of shear-thinning rheology on fluid-inertia torque, we numerically
compute the hydrodynamic torque on the spheroids immersed in a uniform flow of a
pseudo-plastic fluid. In the simulation the particle is located at the centre of a box with
the size of L × H × W = 30a × 30a × 10a. The shear-thinning rheology is characterized
by Cu = 1.0 and β = 0.0.

Figure 8 shows the comparison of fluid-inertia torque on spheroids in pseudo-plastic
(n < 1) and Newtonian (n = 1) fluids. Firstly, for the prolate spheroid with AR = 3 in
figure 8(a,b), it is found that, in both Newtonian and pseudo-plastic fluids, the peak of
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Figure 7. Fluid-inertia torque of prolate (a) and oblate (b) spheroids in Newtonian flow (n = 1.0). The filled
symbols (square, triangle, circle) denote the present results at Re = 60, Re = 6, Re = 0.6, respectively. Solid
lines corresponding to present results are fitted by the cubic spline interpolation. The vertical dashed lines
represent the incline angle corresponding to the peak of the fluid-inertia torque on spheroids.

the fluid-inertia torque on spheroids approximately occurs at the particle inclination angle
α = π/4. This indicates that the shear-thinning rheology of pseudo-plastic fluids does
not significantly alter the qualitative inclination angle dependence of fluid-inertia torque.
Regardless of Re considered in the present flow system, the function form, i.e. T∗ ∼
sin(2α), derived in Newtonian fluids, remains qualitatively correct for the prolate spheroid
in pseudo-plastic fluids.

Different from the prolate spheroid, the strong fluid inertial effect (Re = 60) brings
the asymmetry into the inclination angle dependence of fluid-inertia torque for the oblate
spheroid with AR = 1/3 in both Newtonian and pseudo-plastic fluids. Figure 8(c) shows
that the symmetry of fluid inertial torque begins to be slightly broken in low-Re flow.
Within the larger-Re flow system (figure 8d), the particle inclination angle corresponding
to the peak of fluid inertial torque in the pseudo-plastic fluid is pronouncedly larger than
that in the Newtonian fluid at the same far field Re. Such a phenomenon reveals that the
shear-thinning rheology enhances the asymmetric characteristic of the fluid-inertia torque
on the oblate spheroid. In Newtonian flow at moderate Re, Jiang et al. (2021) indicated
that the flow detachment behind the oblate spheroid contributes to the symmetry breaking
of fluid-inertia torque. From this point of view, in pseudo-plastic fluids the attenuated
apparent viscosity induced by the shear-thinning rheology (see figure 9) leads to an
increase of the effective Re of the local flow near the spheroid, which results in a more
obvious asymmetry of fluid-inertia torque in the pseudo-plastic fluid.

On the other hand, from a quantitative perspective, the magnitude of dimensionless
fluid-inertia torque on spheroids is impaired by the shear-thinning rheology as shown
in figure 8. This phenomenon is consistent with the theoretical prediction in (2.18). In
Newtonian flows, earlier studies have indicated that the dimensionless fluid-inertia torque
decreases with Re (Jiang et al. 2021). Figure 9 shows that the effective Re is increased by
the shear-thinning effect. Thus, the dimensionless fluid-inertia torque in the pseudo-plastic
fluid is smaller than that in a Newtonian flow. More importantly, figure 8 shows that
the deviation of fluid-inertia torque between Newtonian and pseudo-plastic fluids is more
significant in low-Re flow. This implies that the prefactor in the fluid-inertia torque model
of spheroids needs to be modified in the pseudo-plastic fluid flow at small Re. However,
the above effect of shear-thinning rheology on the fluid-inertia torque is usually neglected
in the simulations of the practical particle-laden two-phase flow of pseudo-plastic fluids,
such as FRT, which may lead to an inaccurate prediction of particle orientation.
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Figure 8. Fluid-inertia torque of prolate (a,b) and oblate (c,d) spheroids in Newtonian flow (Cu = 0.0, n =
1.0) and pseudo-plastic fluid flow (Cu = 1.0, n = 0.2). The vertical dashed lines represent the inclined angle
corresponding to the peak of the fluid-inertia torque on spheroids. Solid lines are fitted by the cubic spline
interpolation based on simulation results (red circle and black triangle). The open black circle in (d) denotes
the numerical simulation results, which fits well with the fitting curve. This indicates that the present fitting
curve can accurately reveal the relationship between torque and the particle inclined angle.
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Figure 9. Apparent viscosity contour: (a) Re = 6; (b) Re = 60. Here Cu = 0.5, n = 0.2, α = 30◦.

3.2. Effect of fluid-inertia torque on particle orientation and rotation
To further elaborate on the effect of the modulated fluid-inertia torque on the particle
orientation in pseudo-plastic fluids, we further simulate the rotation of neutrally buoyant
spheroids immersed in a linear shear flow of pseudo-plastic fluids. Compared with the
uniform flow field presented in § 3.1, the particle behaviour is more compliant under the
coupled effect of fluid inertia and fluid shear. The flow configuration investigated in this
section is sketched in figure 10. Note that the orientation angle of an oblate spheroid in
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Figure 10. Schematic of prolate (a) and oblate (b) spheroids in a linear shear flow of the pseudo-plastic fluid.
Here θy is the orientation angle between the spheroid symmetry axis and the y axis.

the present flow configuration larger than π/2 corresponds to cos(θy0) < 0. In this study
the lower plane is fixed while the upper plane moves with a velocity of (GH, 0, 0). The
particle centre is fixed at y = 1/2H but it can freely rotate in all directions. Different from
the previous studies on particle rotation in the Newtonian shear flow without particle slip
velocity, in the present flow system (figure 10) the finite particle slip velocity is present
and induces a fluid-inertia torque on the particle.

In the flow configuration with particle translation, the fluid-inertia torque is affected
by fluid inertia via the particle slip velocity. However, when keeping the same Re and
ReG in the flow system with and without particle translation, the mechanism governing
the particle orientation will be consistent. Therefore, to conveniently tune the particle
Reynolds number and elaborate on the fluid inertial effect on the particle rotational
dynamics, the particle translation is neglected in this study. In the present simulation the
domain size of L × H × W = 15 × 4 × 4 is chosen. The aspect ratios of the spheroids
are set as AR = 3 for the prolate spheroid and AR = 1/3 for the oblate spheroid. The
initial orientation of spheroids is set as θy0 = 0. The shear rate of the flow is G = 0.5. The
rheological parameters of the pseudo-plastic fluid are Cu = GΛ = 0 ∼ 1.0, β = 0 ∼ 0.5
and n = 0.2 ∼ 1.0. The particle Reynolds number based on the slip velocity at the particle
centre is determined by Re = (1/2GH)D/ν0. The shear Reynolds number is defined as
Res = GD2/ν0.

The steady orientation of spheroids in pseudo-plastic fluids is presented in figure 11.
Firstly, for the orientation of the prolate spheroid in figure 11(a), similar to the Newtonian
flow case (n = 1.0), with increasing far field Re, the orientation angle of the prolate
spheroid gradually reduces in the pseudo-plastic fluids (n = 0.2 ∼ 0.8). With the larger
effect of fluid-inertia torque, the orientation angle of the prolate spheroid in the
pseudo-plastic fluid is less than that in the Newtonian fluid. With a further increase in
the shear-thinning rheology (n = 0.4 decreases to 0.2), the symmetry axis of the prolate
spheroid approximately turns to be perpendicular to the streamwise. This means the
fluid-inertia torque becomes fully dominant with a strong shear-thinning effect. Moreover,
from figure 11(a) it is found that the stronger the shear-thinning effect, the weaker the
dependence of the particle orientation on Re.

Figure 11(b) shows the response of particle orientation angle on the varying flow
behaviour index n. By comparing the results with different Re, it can be concluded that
the effect of shear-thinning rheology is more significant on the particle orientation in
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Figure 11. Steady orientation of spheroids in pseudo-plastic fluids (β = 0.0, Cu = 0.5). (a) Effect of Re on
the orientation of prolate spheroid (AR = 3). (b) Effect of the flow behaviour index n on the orientation of the
prolate spheroid (AR = 3). (c) Effect of Re on the orientation of the oblate spheroid (AR = 1/3). (d) Effect of
flow behaviour index n on the orientation of the oblate spheroid (AR = 1/3).

the smaller-Re flow. This observation is consistent with the shear-thinning effect on the
fluid-inertia torque shown in figure 8(a). In figure 11(b) the results clearly evidence that,
by adjusting the shear-thinning rheology, the spheroid in the small-Re (Re = 6) flow of
pseudo-plastic fluids can also realize the orientation state occurring in high-Re (Re = 60)
flow of Newtonian fluids. This implies that the shear-thinning effect should be considered
in the hydrodynamic torque model of spheroids in pseudo-plastic fluids, especially for
small-Re flows.

Figure 11(c,d) shows the dependence of the oblate particle orientation on Re and the
intensity of shear-thinning rheology (n). In the flow with a weaker shear-thinning effect
(n = 0.8 and Newtonian fluid n = 1.0), similar to the prolate spheroids, the oblate particle
orientation changes monotonically with increasing Re due to fluid-inertia torque. However,
in the flow with highly shear-thinning rheology (n = 0.2 and 0.4), the oblate particle
orientation varies non-monotonically with Re. These findings imply that the oblate particle
orientation is determined by the competition between the fluid inertial effect and fluid
shear effect in pseudo-plastic fluids. Moreover, figure 11(d) also shows that the critical
index n, which governs the dominant effect in the flow system, decreases with attenuating
Re. Thus, the range of n, in which the fluid inertial effect is dominant, becomes wider.
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The above results presented in figure 11 imply that the orientation of the spheroid can be
controlled by adjusting the shear-thinning rheology in pseudo-plastic fluids.

To evidence this phenomenon, figure 11(d) shows the orientation behaviour of an
oblate particle in shear-thinning fluids with different n. From figure 11(d), similar to the
prolate spheroid, the effect of shear-thinning rheology on the orientation of the oblate
spheroid is more obvious in smaller-Re flow. More interestingly, the steady orientation
of the oblate spheroid changes non-monotonically with the shear-thinning rheology. This
non-monotonic variation is caused by the competition between the fluid inertial and fluid
shear effects, as illustrated below in detail.

From a theoretical perspective, when Re � 1, the relative importance of the fluid inertial
effects on the dynamics of the flat (AR � 1) disk orientation in Newtonian flow can be
estimated by (Sheikh et al. 2020)

|T I|
|T S| ∼ |u − v|2

ν |Ω − ω| , (3.1)

in which the differences |u − v| and |Ω − ω| are the translational and rotational slip
velocities, respectively, and where ν denotes the fluid viscosity. For a steady-orientated
particle in the present linear shear flow of pseudo-plastic fluids, |u − v| and |Ω − ω| can
be approximated by |u − v| ∼ U = 1/2GH and |Ω − ω| ∼ 1/2Geff , where Geff is the
effective shear rate. The viscosity ν is replaced by the apparent viscosity νa. Note that the
above estimation of the relative importance between T I and T s can also be obtained by
the torque correlations for particles in the finite-Re flows (Fröhlich et al. 2020). Then, the
ratio of the fluid-inertia torque to fluid shear torque is approximated as

|T I|
|T S| ∼ |u − v|2

νa |Ω − ω| ∼ U2

1/2νaGeff
. (3.2)

Equation (3.2) indicates that the relative importance of the fluid inertial effect is affected
by two parameters: apparent viscosity νa and effective shear rate Geff . The effect of
shear-thinning rheology on the local flow field near the spheroid includes two aspects:
(1) increasing the fluid shear rate on the spheroid surface, and (2) decreasing the fluid
viscosity. The steady orientation of the particle is determined by the competition between
the above two mechanisms. For example, for the oblate particle in the shear flow at
Re = 60 in figure 11(d), with decreasing the flow behaviour index n from n = 1.0 to
n = 0.6, the apparent viscosity is attenuated, as shown in figure 12. The fluid inertial
effect is dominant in the flow system. Consequently, the orientation angle of the oblate
particle decreases with attenuating n. However, when n is further decreased to n ≤ 0.6, the
flow boundary layer on the spheroid becomes thinner (Daunais et al. 2023). This causes a
larger fluid shear rate on the spheroid surface, as shown in figure 13. The dominant effect
in the flow system is shifted to the fluid shear effect. Therefore, the orientation angle of
the oblate particle increases with decreasing n within the range of strong shear-thinning
rheology (n ≤ 0.6).

Figure 14 shows the Cu-Re phase diagram to distinguish the monotonic and
non-monotonic variation of oblate particle orientation with n. It is found that the
parameter region where the oblate particle orientation changes non-monotonically with
flow behaviour n locates in the parameter space of larger Cu and Re.

For the effect of particle aspect ratio, figure 15 shows the plots of n versus the particle
orientation with different AR. Overall, for different particles, the effect of shear-thinning
rheology (n) on the particle orientation is similar. In the flow at Re = 6, particle orientation
cos(θy) increases monotonically with attenuating n for both prolate and oblate particles.
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Figure 12. Apparent viscosity on the oblate spheroid, AR = 1/3, Re = 60: (a) n = 0.2, (b) n = 0.4,
(c) n = 0.6.
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Figure 13. Fluid shear rate on the oblate spheroid, AR = 1/3, Re = 60: (a) n = 0.2, (b) n = 0.4, (c) n = 0.6.
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Figure 14. The Cu–Re phase diagram of the response of the oblate particle orientation to n.

However, the effect of aspect ratio on particle orientation is associated with shear-thinning
rheology. For prolate spheroids (AR = 2, 3, 4) in the flow with strong shear-thinning
rheology (n < 0.6), particle orientation changes monotonically with increasing AR, while
non-monotonically in weak shear-thinning rheology (n > 0.6). For oblate spheroids
(AR = 1/2, 1/3, 1/4), the particle aspect ratio has a negligible influence on particle
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Figure 15. Effect of aspect ratio on particle orientation in shear-thinning fluids, Re = 6: (a) prolate spheroid,
(b) oblate spheroid.
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Figure 16. Rotation rate of the prolate spheroid (AR = 3) in pseudo-plastic fluids: (a) Re = 6, (b) Re = 12,
(c) Re = 24.

orientation when shear-thinning rheology is significant, i.e. n = 0.2. In contrast, when
n > 0.3, the effect of the aspect ratio on the orientation of oblate spheroids becomes
obvious, and the particle orientation changes monotonically with AR.

To further understand the effect of the shear-thinning rheology on particle rotation,
figures 16 and 17 show the prolate spheroid (AR = 3) rotation in pseudo-plastic fluids.
Figure 16(a) indicates that the angular velocity of the prolate spheroid is reduced by
the shear-thinning rheology. Such a reduction of the rotation rate of prolate spheroids in
pseudo-plastic fluids is also reported in earlier studies on the simple shear flow without
slip velocity (Domurath et al. 2019). In the small-Re flow condition (figures 16a and
17a), the shear-thinning effect greatly accelerates the particle to reach the equilibrium
orientation from the initial orientation. However, when Re is moderate (Re = 12 and 24),
the shear-thinning effect destabilizes the local flow near the spheroid. Thus, the spheroid
approaches its equilibrium orientation in a damped oscillating way (figures 16b and 17b).
In this scenario the amplitude of the particle angular velocity is augmented with the
shear-thinning rheology. The results in figures 16 and 17 reveal that, besides the orientation
of the spheroid, the shear-thinning rheology can also be used to modulate the rotation
characteristic of spheroids in pseudo-plastic fluids.

The apparent viscosity of pseudo-plastic fluids is significantly affected by two
rheological parameters β and Cu (figure 2). To estimate the effects of the above two
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Figure 17. Orientation evolution of the prolate spheroid (AR = 3) in pseudo-plastic fluids: (a) Re = 6,
(b) Re = 12, (c) Re = 24.
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Figure 18. Effect of rheological parameters on prolate spheroids, AR = 3, Re = 6: (a) viscosity ratio, β;
(b) Carreau number, Cu.

important rheological parameters on the particle orientation, the sensitivities of particle
orientation to β and Cu are also conducted as shown in figure 18. Figure 18 shows that
the particle orientation changes monotonically with β and Cu. Moreover, the smaller β

and Cu, the more significant the effects of the rheological parameters are. Within the
parameter range of small β and Cu considered in figure 18(a,b), compared with β, the
particle orientation is found to be more sensitive to the factor Cu (or the relaxation time Λ).
This observation reveals that it is more important to guarantee the measurement accuracy
of Λ in the rheological experiment of the particle suspension of pseudo-plastic fluids.
Moreover, figure 18(b) indicates that there exists a critical Carreau number Cucr, beyond
which the orientation of the prolate spheroid is independent of Cu and the fluid inertial
torque becomes fully dominant in the flow system.

Finally, figure 19 shows the dependence of the orientation of the prolate particle
(AR = 3) on Cu. By comparing the particle orientation in the flow with different n, we find
that there are two critical Carreau numbers in the present flow system. The first critical
Carreau number Cucr1 = 0.01 represents the starting point, beyond which the effect of
shear-thinning rheology on the particle orientation becomes important. More interestingly,
the second critical Carreau number Cucr1 ∼ O(106) implies that, when Cu > O(106),
the particle orientation is again independent of n. From figure 19 it can be concluded
that the dependence of particle orientation on the parameter Cu can be divided into
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Figure 19. Effect of Carreau number on the orientation of the prolate spheroid, AR = 3.

three regimes: (i) the first Newtonian regime (Cu < 0.01), (ii) the shear-thinning regime
(0.01 < Cu < O(106)) and (iii) the second Newtonian regime (Cu > O(106)).

4. Conclusions

In this work we numerically investigated the fluid-inertia torque on a neutrally buoyant
spheroid immersed in pseudo-plastic fluid flows. The shear-thinning rheology is described
by the Carreau model. The interplay between particle and pseudo-plastic fluid is fully
resolved by the immersed boundary method. Firstly, the influence of shear-thinning
rheology on the fluid-inertia torque is analysed in the uniform flow. Then, the modulations
of the spheroid orientation and rotation by the shear-thinning effect are also studied within
the linear shear flow with particle slip velocity. The main conclusions are as follows.

(i) In the flow at moderate Re ∼ O(10), the shear-thinning rheology enhances the
asymmetry of the fluid-inertia torque on the oblate spheroid. Compared with
the Newtonian fluid, the magnitude of the dimensionless fluid-inertia torque on
spheroids is attenuated by the shear-thinning rheology. The deviation of fluid-inertia
torque between Newtonian and pseudo-plastic fluids is more significant in a small-Re
flow. This observation indicates that the theoretical model of fluid-inertia torque of
spheroids needs to be modified in pseudo-plastic fluid flow at small Re.

(ii) Within the range of parameters considered in the present study, the effect of
shear-thinning rheology on the orientations of prolate and oblate spheroids are
different: the orientation angle of the prolate spheroid decreases monotonically
with the flow behaviour index n. In contrast, due to the competition between the
fluid inertial and fluid shear effects, the orientation of the oblate spheroid changes
non-monotonically with the flow behaviour index n. Additionally, the comparisons
of the responses of the particle orientation to n in different Re flows indicate that
the effect of shear-thinning rheology is more significant on the particle orientation
in smaller-Re flows.

(iii) The angular velocity of the prolate spheroid is reduced by the shear-thinning
rheology. Once the local fluid inertia induced by the shear-thinning rheology is
beyond a threshold value, the shear-thinning effect destabilizes the local flow in the
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vicinity of the spheroid and, thus, the spheroid approaches its equilibrium orientation
with damped oscillations.

(iv) The orientation of the prolate spheroid changes monotonically with two rheological
parameters, i.e. viscosity ratio β and Carreau number Cu. Within the parameter
range of small β and Cu, the orientation of the prolate spheroid is more sensitive
to the parameter Cu.

In summary, the main contributions of the present work are: (1) a first attempt to
numerically elaborate on the fluid-inertia torque on spheroids in pseudo-plastic fluids,
and (2) to illustrate the effect of shear-thinning rheology on the spheroid orientational
and rotational dynamics induced by the modulated fluid-inertia torque in pseudo-plastic
fluids. The results of the present study shed new insights into the fluid-inertia torque in
pseudo-plastic fluids. Furthermore, from the applied perspective, the present results could
also be potentially useful for designing the rheology-based controlling strategy for guiding
particles to realize specific orientations in complex fluids in the future.
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