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Abstract

The Hurewicz theorem, Mayer-Vietoris sequence, and Whitehead's certain exact sequence are
proved for simplicial Lie algebras. These results are applied, using crossed module techniques,
to obtain information on the low dimensional homology of a Lie algebra, and information on
aspherical presentations of Lie algebras.
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0. Introduction

Many results in the homology of groups are best proved using techniques
from the homotopy theory of topological spaces. Analogous results in the
homology of Lie algebras rely on different proofs because of an apparent lack
of a suitable homotopy theory. However, it is well known that (connected
CW-) topological spaces are equivalent (up to homotopy) to simplicial groups.
In the light of this equivalence, and in the light of the close analogy between
general algebraic properties of groups and Lie algebras, this article investigates
the homotopy theory of simplicial Lie algebras with a view to homological
applications.

In Section 1 we recall from [6, 16 and 8] some general results on simplicial
objects and homotopical algebra. In particular, for a simplicial object in an
algebraic category such as the category of Lie algebras, we recall suitable def-
initions of homotopy groups and homology groups. Although in subsequent
sections we have chosen to work solely with Lie algebras, much of the theory
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394 Graham J. Ellis [2]

carries over to other algebraic settings such as commutative algebras, Jordan
algebras, and associative algebras. Indeed, all of the theory carries over to
the category of groups, in the main yielding new proofs of known results.

In Section 2 we analyse the low dimensional parts of the Moore complex
of a simplicial Lie algebra. We recall from [14] that a Moore complex of
length one is equivalent to a crossed module. We then capture the structure
of a Moore complex of length 2 in the definition of a 2-crossed module, this
is the Lie algebraic version of a group theoretic notion denned in [5].

In Section 3 we consider free crossed modules and free 2-crossed mod-
ules. A group theoretic version of Theorem 7 of this section was proved
topologically in [1]; subsequently, as the main application of the paper [2],
an algebraic proof was given. Our proof of Theorem 7 converts to a new
algebraic proof in the group case.

In Section 4 we prove Lie algebraic versions of some classical results in-
cluding the Hurewicz Theorem, Whitehead's Certain Exact Sequence, and
the Mayer-Vietoris sequence.

In Section 5 we give a description of coproducts of crossed modules, copy-
ing group theoretic ideas from [4].

In Section 6 and 7 we apply our results to the Eilenberg-MacLane homology
of Lie algebras and to the study of aspherical presentations of Lie algebras.

1. Simplicial Algebras, Homotopy and Homology

Let ^ be an algebraic category such as the category of Lie algebras, groups,
commutative algebras, associative algebras or Jordan algebras. We shall refer
to the objects of W as algebras, and to the maps as homomorphisms. The
kernel of a homomorphism will be referred to as an ideal. We let 0 denote
the null object in ^ . There is a forgetful functor U: f -> S^et from %? to
the category of sets, which has a left adjoint F: S?et -+ ^ . We shall say that
an algebra is free if it is of the form G — F{X) for some set X.

A simplicial algebra i s a s e q u e n c e o f a l g e b r a s G = {Go, G{, ... , Gn, ...}
together with homomorphisms

for each 0 < i < n. These homomorphisms are required to satisfy the
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[3] Homotopical aspects of Lie algebras 395

simplicial identities

d-d • = d • d- for / <! / ,

{ Sj_ldi fori<j,

identity for i = j , j + 1,

Sjd^ for i> 7 + 1,
siSj = sj+lsi fori<j.

A simplicial map f: G -> G' is a family of homomorphisms fn'- Gn ^ G'n
commuting with the d{ and ^ . We let sW denote the category of simplicial
algebras.

The Moore complex of a simplicial algebra G is the complex

where

dn = ^(restricted to Mn).

The simplicial identities imply that dn{Mn) is an ideal in ker(dn_,). The ho-
motopy groups of a simplicial algebra G are denned as the homology groups
of the Moore complex M(G):

= ker(0l|: Mn - A / , . , ) / ^ , : Mn+l -> JWJ, n > 0.

A simplicial map / : G —> G' is called a weak equivalence if it induces
isomorphisms nn(G) = 7tn(G') for n > 0. A simplicial map f:G—>G'
is called a fibration if fn'- Gn —* G'n is surjective for n > 0 . A simplicial
map / : G -> G' is called a cofibration if it can be factored as f = pi with
p : Z —> G' both a fibration and weak equivalence, and /: G —> Z a ./ree map
in the following sense: there are subsets Xn c Zn satisfying

(i) the Xn are stable under all degeneracy operators (that is, if x e Xn

then j .*eAT ? + 1 ) ,
(ii) Zn is isomorphic to the coproduct Gn V FXn where i 7 ^ is the free

algebra on Xn , the isomorphism being in + gn: GnVFXn -» Zw with gw the
unique homomorphism extending the identity on Xn . With these notions of
weak equivalence, fibration and cofibration the category of simplicial algebras
is a closed model category in the sense of Quillen [16, Theorem II.4.4]. A
simplicial algebra G is said to be cofibrant or free if Gn is a free object in ^
for all n > 0, and if the free bases are stable under all degeneracy operators
(that is, if x 6 Gn is a basis element then so is stx). (In the terminology
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of [16] all simplicial algebras are fibrant.) We let sff0 denote the category
of free simplicial algebras. We let Ho{s%') denote the category of simplicial
algebras localised with respect to weak equivalences. (In other words, there
is a functor y: s'O? —• Ho(s^) having the following universal property: y
sends weak equivalences to isomorphisms; any other functor s'W -> 3 which
maps weak equivalences to isomorphisms factors through y.)

If / , g: G —• G' are two simplicial maps, a homotopy of / onto g is a
family of homomorphisms

hi-Gn^G'n+l, 0<i<n

for each n > 0 which satisfies the following identities:

dQh0 = f

dn+iK = g

= dJ+lhj

Homotopy is an equivalence relation on maps between free simplicial al-
gebras. Let n(sWc) be the category whose objects are the free simplicial
algebras, and whose arrows are the homotopy equivalence classes of simpli-
cial maps. Theorem I.I of [16] states that the inclusion functor sWc •-• sff
induces an equivalence of categories n(sWc) ~ Ho(sW).

Suppose given an endofunctor E:W^W, and a simplicial algebra G.
By axiom (M2) of a model category (see [16]) we can choose a free simplicial
algebra F such that there is a weak equivalence F -^ G. On applying E di-
mensionwise to F we obtain a simplicial algebra EF = {EF0,... , EFn ,...}
whose homotopy groups we denote by

DE
n{G) = nn{EH), n > 0 .

These homotopy groups do not depend on the choice of F . To see this sup-
pose that F and F/ are two free simplicial algebras, both weakly homotopic
to G. Then the images of F and F' in Ho(sff) are isomorphic. From the
equivalence n(sWc) ~ Ho{s^) it follows that the images of F and F7 in
n(sWc) are isomorphic. Since the endofunctor E preserves homotopies, we
see that EF is homotopy equivalent to 2sF', and hence that the homotopy
groups of EF are isomorphic to those of EF1.

Let ff*b be the category of abelian group objects in W. Thus if W is the
category of groups then ^ a b is the category of abelian groups. If W is any
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[5] Homotopical aspects of Lie algebras 397

of the categories of Lie algebras, commutative algebras, associative algebras
or Jordan algebras over a fixed ground ring A, then ^ a b is the category of
A-modules. There is a functor (-)a b : §* —> ^ a b which is left adjoint to the
inclusion ^ a b -» % .

We define the homology groups of a simplicial algebra G to be

Hn(G) = DE
n(G) with E = ( - ) a b , for n > 0.

By a k-truncated simplicial algebra we mean a collection of algebras {Go,
. . . , Gk) and homomorphisms d{: Gn —> Gn_, for 0 < / < n, 0 < n < k
and st: Gn -+ G:

/1+1 for 0 < / < n, 0 < n < k which satisfy the simplicial
identities. Clearly by forgetting higher dimensions, any simplicial algebra
G yields a A>truncated simplicial algebra tr G. The functor \xk admits a
right adjoint coskfc , called the k-coskeleton functor, and a left adjoint skfc

called the k-skeleton functor. We recall from [8] a brief description of these
functors.

Suppose tr*(G) — {GQ, ... , Gk) is a /c-truncated simplicial algebra. A
family of homomorphisms

is the simplicial kernel of the family of boundary homomorphisms (d0, ... ,
dk) if it has the following universal property: given any family (d0, ... ,
dk+i) of fc+2 homomorphisms dt: Y -* Gk satisfying the identities dtdj —
dj-\d{ (0 < i < j < k + 1) with the last part of the truncated simpli-
cial algebra, there exists a unique homomorphism / : Y —• Xk+l such that
Stf = dt. Given the simplicial kernel Xk+l the family of homomorphisms
K+i.>» ••• '"! ;• '%•) defined by

a v = I id i = j,i = j+l

satisfies the simplicial identities with the last part of the truncated simplicial
algebra; hence there exists a unique s,: Gk —> Xk+l such that ^5 = a. .
We thus have a (k + l)-truncated simplicial algebra {Go, ... , Gk, Xk+l}.

By iterating this construction we get a simplicial algebra coskfc(tr*(G)) =
{Go, ... , Gk, Xk+l, Xk+2, ...} called the coskeleton of the truncated sim-
plicial algebra. If G, G' are any simplicial algebras, then any truncated
simplicial map / : tr*G —> trfcG' extends uniquely to a simplicial map
/ : G -» cosk*(tr*(G')).
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The fc-skeleton functor can be constructed by a dual process involving
simplicial cokernels

*0

(That is, universal systems of k + 1 arrows which satisfy s(Sj = Sj+lst for

2. The Moore complex

From this point on we restrict attention to the algebraic category of Lie
algebras. Let A be a commutative ring with identity. We shall use the term
Lie algebra to mean a Lie algebra over A; we shall use [ , ] to denote the
Lie bracket.

We say that the Moore complex —> Mn -+•••-+ M{ —> Mo of a simplicial
Lie algebra is of length k if Mn — 0 for all n > k + 1 (so a Moore complex
of length k is also of length r for r > k). The following lemma is a
straightforward modification of Theorem 1.3 in [5].

LEMMA 1. Let G be a simplicial Lie algebra. The Moore complex of its
k-coskeleton coskfc(tr*G) is of length k + 1, and is identical to the Moore
complex of G in dimensions < k. Moreover, in dimensions k - 1 to k + 2
the Moore complex of coskk (tr G) is an exact sequence

0 -> M(cosk.k{tTkG))k+l -^±U Mk - ^ Affc_,

•where Mk is the kth term of the Moore complex of G.

PROOF. The {k + l)-dimensional part of cosk*(tr*G) can be identified
with the subalgebra of the (k + 2)-fold direct sum Gk

+2 consisting of those
elements (x0, ..., xk+l) such that djXk = dk_ixj for j < k; the face maps

are given by dj(x0, . . . , xk+l) = Xj Thus A/Xcosk^tr^G))^ consists of
elements (0, . . . , 0, xk+l) such that djXk+l = 0 for all j . In other words

M(coskfe(tr* G))fc+1 is the kernel of dk: Mk —> Mk_{, and hence we have the
exact sequence of the lemma.

The injectivity of dk+l and the isomorphism

cosk""1(tr""1(cosk*(tr* G)) ~ cosk*(tr* G)

for n > k + 2 shows that the Moore complex of cosk*(tr* G) is of length
k + l.
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[7] Homotopical aspects of Lie algebras 399

Let M and P be two Lie algebras. By an action of P on M we mean a
A-bilinear map P x M ^ M, (p, m) i->p m satisfying

[p, n 1 p ,p , p ,p ,

w'v 'm = ( m) - ( m),
p[m, m] — [pm, m] + [m, pm]

for all m, m e M, p, p' e P.
We recall from [14] that a crossed module (in the context of Lie algebras)

is a Lie homomorphism d: M —> P together with an action of P on ¥
such that

(ii) ( 9 m W = [ m , m ' ] , '
for all m, m e M, p e P. A map of crossed modules {d: M —> P) -•
(9' : Af' -* P') is a pair of homomorphisms fQ: P -* P', fx: M -» M' such

that /od = a ' / , and ^ ( ' / n ) = ( /oP)/i(m) for all meM, peP.
The following theorem is well known, but we include its proof as subse-

quently we shall need to generalise it. (The proof is a slight variant of the
one found in the literature.)

THEOREM 2. The category of crossed modules is equivalent to the category
ofsimplicial Lie algebras with Moore complex of length 1.

PROOF. Let G be a simplicial Lie algebra with Moore complex of length 1.
Put P = G0, M = ker(d0: G, -> Go), and d = dx (restricted to M). Then
p G P acts on m e M by pm = [s^p, m], and dfm) = [dlsop, dxm] =

[p, dm]. Since the Moore complex > 0 - » M -̂ -> P —> 0 is of length 1

we have

(dm) ' r J ' i

m = [s$dxm, m ]

= [sQdlm - m, m] + [m, m]

= d2[(s0m - 5, m), 5, m] + [m, m]

= [m, m]

for m, m e M because [{sQm - s{m), 5,/n'] lies in ker(d0) n ker(rfj) = 0.
Thus d: M -> P is a crossed module.

Conversely, suppose we start with a crossed module d: M —> P . Us-
ing the action of P on Af we can form the semi-direct product M Q P =
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{(m,p): m e M, p e P}, in which scalar multiplication is X(m,p) =
(Xm, Xp), addition is (m, p) + (m ,p) - (m + m , p + p), and multipli-
cation is [(m, p), (m , p')] — ([m, m] - p m + pm , [m, m']) for X e X,
m, m G M, p, p e P. There are homomorphisms

dQ:MeP->P, (m,p)^p,

d^MeP-tP, (m,p)^(dm)+p,

so:P^MeP, p~(0,p).

Let Go = P, Gx — M e P. We have a 1-truncated simplicial Lie algebra
{Go, (7,} whose 1-coskeleton we denote by G1. The Lie algebra MQP acts
on M via the action of P on M and the homomorphism dx. We can thus
form the semi-direct product M e (M e P) and construct homomorphisms

do:Me(MeP)^MeP, (m,m , p) * (m , p),

dx\Me(MeP)^MeP, (m,m ,p)^(m + m ,p),

d2: Me(MeP)-* MeP, (m,m ,p)^(m,dm

s0: Me P —> M Q(Me P), (m, p) (-> (0, m , p),

Conditions (i) and (ii) of a crossed module ensure that these are homomor-
phisms (condition (ii) is needed for d2). Let G2 = M e (M e P). We then
have a 2-truncated simplicial Lie algebra {Go, G{, G2} whose 2-coskeleton
we denote by G2 . There is a unique simplicial map G2 —» G1 which in di-
mensions 0 and 1 is the identity. We let G2 denote the image of G2 in G1.
It is readily checked that the Moore comple of G2 is trivial in dimension 2;
it follows from Lemma 1 that G2 is a simplicial Lie algebra whose Moore
complex is of length 1.

The above constructions yield the required equivalence.
We capture the structure of a Moore complex of length 2 in the following

definition. A 2-crossed module is a pair of Lie homomorphisms

together with an action of P on M, an action of P on L, and a A-bilinear
function { , }: MxM -> L such that axioms (1 )-(8) hold for all / , /' e L,
m, m , m" € M, p e P:
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[9] Homotopical aspects of Lie algebras 401

(1)3* = 0;

(2)<J(P/)=P(<5/) and d(pm) = [p, m];

(3)6{m,m}=i9m)m'-[m,m'];

(6)"{m, m'} = {"m, m'} + {m, pm'};

(7) {[m ,m],m}= {m , m } + {m, [m , m ]} - {m, m }

-{m , [m, m"]};
/ o \ r r ' "n 9m'f "-, dm", /•, r / dm n , ; / . ,

(8) \m, [m , m ]} = {m, m } - {w, m } - {m , w - [m, m ]}
+ {m , m - [m, m ]} .

A map of 2-crossed modules (L ^ M £ P) -» (L' £ M' ^ P') is a
triple of homomorphisms f0: P -* P', ff: M -* M', f2: L -» L' such that
./QC? = 9'/i» /i<$ = <5'^ and such that fx and ŷ  are ^-equivariant (that is,
fx{

pm) = ^ ' ^ ( m ) , / / / ) = (/oP)/2(/) for all / e L, m e ^ , p e P).

THEOREM 3. The category of 2-crossed modules is equivalent to the category
of simplicial Lie algebras with Moore complex of length 2.

PROOF. Let G be a simplicial Lie algebra with Moore complex of length 2.
We construct a 2-crossed module as follows: P = Go, M = ker(rf0: G, —>
Go), and L = ker(d0: G2 -> G,) n kei(dl: G2 -> G,). Then p e P acts on
m e M by pm = [SQP , m], and on / e L by [.$0.%/;, / ] . For m, m e M
set {m, m'} = [som-sxm, 5,/n']. Let d — dx (restricted to M) and 8 = d2

(restricted to L). It is routine to check that the axioms of a 2-crossed module
hold.

A fi

Conversely suppose we start with a 2-crossed module L —> M —• P. Set
Go = P. Using the action of P on M we can form the semi-direct product
Gj = M QP. There are homomorphisms

do:MGP-^P, {m,p)y-*p,
dl:MeP-*P, (m,p)i-+(dm)+p,
so:P-*MeP, p>->(0,p).

There is an action of m e M on / € L given by
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Using this action we can form the semi-direct product LQ M. There is an
action of (m, p) e MQP on (/, m) e L e M given by

(m,p)rI /, ,p, dm
'(lm) = (l + l

r i-, p i

{m,m},m

Using this action we form the semi-direct product G2 = (LQM) G (MQP).
(The A-bilinearity of { , } together with axioms (6), (7) and (8) ensure that
these last two actions are indeed Lie actions.) There are homomorphisms

d0: (LeM)Q(MeP)-^(MeP), (l,m ,m,p)*(m,p),

dx: (LQM)Q(MeP) ^ (MQP), (l,m ,m,p)^(m +m,p),

d2: (LeM)e(MeP) - (MeP), (l,m ,m,p)y->(m ,dm+p),

s0: (MeP) -» ( L e M ) e (MeP), (m,p)~(0,0,m,p),

sx: (M e P) - » ( L e M) e (M e P), (m,p)~{0,m,0,p).

There is an action of (/, m) e L G M on /' e L given by

from which we can construct the semi-direct product LQ(LQM) . There is
an action of (m, p) e M e P on ( / , / ' , m) e LQ(LQ M) given by

(m,p),t ./ /\ ,p, dm t p ,i dm,i p i r ',*
( / , / , m ) = C l + I, I + I , m + [ m , m ] ) .

There is also an action of (/", m) e Le M on (/, /', m) e L e (Le M)
given by

(l"'m)(l, I', m) = (m.l + [l",l] + {m,dl'} + { S i " , S l ' } , m.l'

These last two actions combine to give an action of (L e M) e (M e P)
on L e (L e M), from which we construct the semi-direct product G3 =
(Le(Le M)) e ((L e M) e (M e P)). There are homomorphisms

do:(le(LeM)) e ((L eM)e(Me P)) - ((L eM)e(Me P))

(I, I, m, I ,m,m ,p)^(l , m , m ,p),

dx-.(Le(LeM))e((LeM)e(MeP)) - » ( ( L e M ) e ( M e p ) )

(1,1 ,m, I ,m,m ,p) (->(/+/ ,m + m,m ,p),

d2:(Le(LeM)) e ((LeM) e (MeP)) -• ((LeM) e (Me/»))
II it lH I 'I \ II l ' ' ' N

(1,1 ,m, I ,m,m , p) ^ (I + I , m, m + m , p),
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[11] Homotopical aspects of Lie algebras 403

d3:(Le(LeM)) e ((LeM)e(MeP)) -»((LeM)e(MeP))
, , ,1 ,11 I II , / 1 c »' f ill I <-v " \

(l,l,m,l , m , m , /?) H-> (I, 81 + m,ol +m,dm + p),

s0: (LeM)e(MeP) - » ( L e ( i e A f ) ) e ( ( L e ¥ ) e ( M e / » ) )

(/, m, m , p) >-* (0, 0, 0, 0, / , m, m , p),

sx: (LeM) e(MeP) ^ (Le (LeM)) e ( (LeM)e(MeP))

(l,m,m',p)~(0,0,l,m,0,0,m,p),

s2: (LeM)e(MeP)® (Le(LeM))e((LeM)e(MeP))

(I, m, m , p) H-> (0, / , 0, m, 0, 0, m , p).

Axioms (l)-(5) ensure that these are indeed homomorphisms. Let G2 be the
2-coskeleton of the 2-truncated simplicial Lie algebra {Go, Gl, G2} ; let G
be the 3-coskeleton of the 3-truncated simplicial Lie algebra {Go, GVG2, G3}.
There is a unique simplicial map G3 —> G2 which in dimensions 0, 1 and
2 is the identity. We let G3 denote the image of G3 in G2 . It is readily
checked that the Moore complex of G is trivial in dimension 3; it follows
from Lemma 1 that G3 is a simplicial Lie algebra whose Moore complex is
of length 2.

The above constructions yield the required equivalence.

We now associate to the each simplicial Lie algebra G a simplicial inclu-
sion UkG ^ G and quotient G-»FfcG such that the following Proposition
4 holds. The inclusion and quotient are described carefully in the proof of
Proposition 4, but in essence can be described in terms of Moore complexes
as follows. Suppose that (Mn ,dn) is the Moore complex of G. Then U G
will have Moore complex

and VkG will have Moore complex

_> 0 - 0 - im(dk+l) - Mk - Mk_x - • • • .

PROPOSITION 4. For any simplicial Lie algebra G and integer k>0 there
is a functorial short exact sequence of simplicial Lie algebras

0 _> ukG - U G - t VkG -> 0
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such that:
(i) the Moore complex of UkG is trivial in dimensions 0, I, ... , k, and

identical with the Moore complex of G in dimensions > k + 2
(ii) the map i inc

nn(G) for n>k+l;

(iii) the Moore con,
dimensions < k is identical with the Moore complex of G.

(ii) the map i induces isomorphisms on homotopy groups nn{UkG) =

(iii) the Moore complex of V G is trivial in dimensions > k + 2, and in

PROOF. First construct the fe-coskeleton coskfc(tr*G) of G. By Lemma
1 the Moore complex of cosk*(trfc G) is

Here dk+l is an inclusion, K is the kernel of dk , and in dimensions < k
this complex coincides with the Moore complex of G. Since K is an ideal in
Gk , we can quotient tr G by K to obtain a fc-truncated simplicial Lie alge-
bra tr*G/K = {G0, ... , Gk_l, Gk/K} . We now construct the fc-coskeleton

coskfc(tr*G/A"). There is a unique simplicial map G -> coskk(trk G/K)
which in dimensions less than k is the identity, and in dimension k is
the quotient Gk-»Gk/K; we let U G denote the kernel of this map, and
VkG denote the image of G in cosk*(trfc G/K). We thus have a short exact
sequence of simplicial Lie algebras

0 -> UkG - . G - VkG - 0

which induces a long exact sequence of homotopy groups

••• ^ nn(U
kG) -» *H(G) - nn(V

kG) -> ww_,(t/*G)

The assertions of the proposition are easily checked.

PROPOSITION 5. Let G be a simplicial Lie algebra such that nnG = 0 for
n = 0, ..., k. Then there exists a weak homotopy equivalence F ~ G with
F a free simplicial Lie algebra such that Fn = 0 for n = 0, ... , k.

PROOF. It follows from Proposition 4(i) and the simplicial identities that
the simplicial Lie algebra UkG is trivial in dimensions < k. From axiom
(M2) of a model category (see [16]) there is a weak equivalence F ~ UkG
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[13] Homotopical aspects of Lie algebras 405

with F a free simplicial Lie algebra. We can construct F so that it meets
the requirements of the propositions.

3. Free crossed and 2-crossed modules

Suppose we are given a function £: X —> P from a (possibly empty) set X
to a Lie algebra P. Then the free crossed module on £ is a crossed module
d: C(£) -> P satisfying:

i) A!" is a subset of C(£) and <!; is the restriction of d ;
ii) given any crossed module d': M —> P and function </>: X —> M such

that d'<j>{x) = d(x) for all x £ X, the function </> extends uniquely to a
map of crossed modules <j>: C(<j;) —> M over the identity on P.

The free crossed module exists for any £ (we recall its construction below
from [10]) and is clearly uniquely determined up to isomorphism by £ .

If P is a free Lie algebra, we say that the crossed module d: C(£) —> P
is totally free.

It will be helpful to have the notion of a precrossed module, this is just a Lie
homomorphism d: M -> P with an action of P on M satisfying n(pm) =
[p, dm] for m £ M, p e P. On replacing "crossed" by "precrossed" in the
above definition of a (totally) free crossed module we obtain the appropriate
definition of a (totally) free precrossed module.

We construct the free crossed module on £: X -> P as follows. Let A .̂
be the free A-module on X, and let d: Ax —• P be the unique module
homomorphism satisfying d(x) — £(x). Let P6 be the universal enveloping
algebra of P, and form the tensor product of A-modules Q = Pe <g> A^.
There is a canonical action of P on Q which, if we think of Q as an abelian
Lie algebra, is an action of Lie algebras. There is a unique P-equivariant
homomorphism d: Q —> P such that d(l ® v) — dv for all v e Ax. Let
sf be the free Lie algebra on the A-module Q, and d: stf —> P the unique
Lie homomorphism extending d: Q —> P. The action of P on Q extends
uniquely to an action of P on sf , and the Lie homomorphism d: J / —> P
is a precrossed module: it is the free precrossed module on £. Let ^f be
the ideal of s/ generated by the Peiffer elements

9ab-[a,b]

for a, b £ s/ . Put C(£) = srf IJ . The induced homomorphism d: C{£) ->
P inherits the structure of the free crossed module on £.

Suppose now we are given a precrossed module d: M —> P and a function
#: Y -> kerd from a (possibly empty) set Y to the kernel of d . The free
2-crossed module on d is a 2-crossed module C(d) —> Af -̂ -> P satisfying:
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i) Y is a subset of C(#) and I? is the restriction of S ;

ii) given any 2-crossed module L —• M —• P and function (j>: Y —> L
such that d'<f>(y) = <J(y) for all y e F , the function </> extends uniquely to
a map of 2-crossed modules <f>: C(#) —> L over the identity on M and P.

The free 2-crossed module is uniquely determined up to isomorphism by
# . If d: M -» P is a totally free precrossed module, we say that the 2-crossed
module C(#) ^ M-^ P is totally free.

We shall give an explicit description of the construction of a free 2-crossed
module in one special case only, namely when d: M —> P is an arbitrary
precrossed module, Y = ® is the empty set, and #: 0 —» Af the unique
"function" from 0 to M. For this we need to define the non-abelian tensor
product M <g>p M; we take this to be the Lie algebra generated by the symbols
x ® y with x , y e Af, subject to the following relations for all X e A,
x , x , y, y' e Af and p e P:

(9) A(JC ® y) = (Ax <8> y) = (x ® ky),

(10) (x + x

(11) x ® (y + y ' ) = x ® y + x ® y ,

(12) [x, x] ® y = a x (x ' ® y) + x ® [x , y] - dx (x <8> y) - x' ® [x, y] ,

(13) x®[y,y'] = 9y(x®y')-9y'(x®y)

-y ® ( 9V - [*,/]) + / ® (% - [x, y]),

(14) [x <8> y, x'<g> y'] = [x, y] ® [x', y'],

(15) [x,x']®y + y®[x,x'] = 8);(x®x'),

where by definition

"(x ®y) = (px ® y) + (x ® px).

(As a consequence of identities (9), (10), (11) and (14) we can view M®pM
as a quotient of the standard A-module tensor product M ®KM in which
M is considered as a A-module.)

PROPOSITION 6. (i) There is an action of P on M ®pM defined by
P{x®y) = (px ®y) + (x®"y)

for p eP, x, y e M.
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(ii) There is a P-equivariant homomorphism d: M ®PM -> M defined by

d{x®y) = 9xy - [x, y]

(iii) The pair of homomorphisms

M ®p M —> M —> P

together with the action given in (i), the action of P on M, and the function
{ , } : M x M —> M ®p M, (x, y) >-* x ® y is the free 2-crossed module on
the "function" 0 -> M.

PROOF, (i) Let F be the free Lie algebra generated by the symbols x ® y
with x, y e M, and let / be the ideal of F generated by the relations
(9)—(15). There is clearly a unique action of P on F defined on generators
by

p(x ®y) = (px ® y) + (x ®p y).

It is routine to check that / is invariant under this action. Hence P acts on
M ®pM as required.

(ii) It is also routine to check that the homomorphism 5: F -> M defined
on generators by <J(JC ® y) = dxy - [x, y] sends / to the 0, and is P-
equivariant. Hence the required homomorphism d:M®pM—>M exists.

(iii) This is clear.

In [10] a tensor product M ® M was defined for an arbitrary Lie al-
gebra M. It is generated by symbols x ® y for x, y € M subject to
the above relations (9), (10), (11) and (14) and the following relations for
x,x ,y,y &M:

(16) [x,x']®y = x®[x ,y]-x'®[x,y],

(17) x®\y, / ] = [/, x]®y-\y,x]®y'.

It is routine exercise to show that M ® M is precisely the tensor product
M ®pM denned above with P — 0.

We now recall from [17] a generalisation of a construction of Whitehead.
The universal quadratic functor Y is defined for any A-module n to be the
A-module T(n) generated by the symbols y{x) for x € n, subject to the
relations

(18) X2y(x)

(19) y{x + y + z) + y(x) + y(y) + y(z) = y(x + y) + y(x + z) + y(y + z),

(20) y(kx +y)+ Xy(x) + ky{y) = Xy{x + y) + y(Xx) + y(y),

for all A e A, x, y, z e n.
The following result is a Lie algebraic version of Theorem (IV) 1.8 in [1].
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THEOREM 7. Suppose that the ground ring A is afield. Let d: M —> P be
a totally free precrossed module. Then there is an isomorphism

r(jt,) = ker(Af ®pM -» M)

where ni = ker(M/d(M ®p M) -» P).

PROOF. The precrossed module gives rise to a 1-truncated free simplicial
Lie algebra M^_P whose 1-skeleton we denote by F . The beginning of the
Moore complex of F is M3 -> M2 —• M -> P. Universal properties imply
that M®pM s M2/im(M3). Hence n2(F) ^ ker{M®pM -» M). Theorems
10 and 11 of the next section yield the exact sequence

The theorem follows.

4. Lie algebraic analogues of classical theorems

The following result is a Lie algebraic version of the Hurewicz Theorem.
It could have been deduced from Sublemma 8.3 in [6], but instead we give
an alternative and simpler proof using Theorem 3.

THEOREM 8. For any simplicial Lie algebra G there is an isomorphism

If ntG = 0 for 0 < i < k, then there is an isomorphism

and a surjection

nk+\G - Hk+\G

PROOF. The first isomorphism is clear. Suppose ntG — 0 for 0 < / < k.
By Proposition 5 we can choose a free simplicial Lie algebra F which is
weakly homotopic to G and which is trivial in dimensions < k . The Moore
complex of F is of the form

Now
Mk+3 -» Mk+2 -* Mk+l

is the beginning of the Moore complex of the simplicial Lie algebra Deck¥
obtained from F by forgetting: the first k + 1 dimensions of F; the first
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k + 2 boundary maps; and the first k + 1 degeneracy maps (cf. [8]). We
thus have the bracket { , }: Mk+l x Mk+1 -> Mk+2. In dimension k +
2 the Moore complex of [F, F] contains {Mk+l, Mk+l} and hence, using
essentially identity (3) with dm = 0, we see that nk+1 [F, F] = 0. The short
exact sequence of simplicial Lie algebras

gives rise to the long exact sequence of homotopy groups

- nk+2[F, F] - nk+2¥ - * f c + 2F* - 0 - TT,+1F - T ^ . F * - 0

from which the isomorphism and surjection of the theorem follows.

It would be nice to have a proof of the following Lie algebraic version of
the Whitehead Theorem which, unlike the proof described in [6], does not
rely on the connectivity Sublemma 8.3 of [6]. We outline the proof described
in [6]. In stating the result we say that a simplicial Lie algebra is connected
to mean that the Oth homotopy group n0 is trivial.

THEOREM 9. Suppose that the ground ring A is a field. Let / : E -+ G
be a map of connected simplicial Lie algebraic which induces isomorphisms
Hn(E) = Hn(G) on homology for n > 0. Then f is a weak homotopy
equivalence.

OUTLINE PROOF. We need some notation. For any Lie algebra G we let
y{G = G and define inductively yfi = [y^G, G]. For any simplicial Lie
algebra G we let ytG be the simplicial Lie algebra obtained by applying yt

dimensionwise. We let ~Hn{G) denote the nth Eilenberg-MacLane homology
of a Lie algebra G with coefficients in A. (The definition of Hn(G) is
recalled in Section 6; in that section we revert to standard notation and write
Hn(G) in place of Hn{G).)

To prove the theorem we can assume that E and G are free. We are given
that the induced map f2: Eab —• G** is a weak equivalence of simplicial
vector spaces; any such weak equivalence is actually a homotopy equivalent
since the category of simplicial vector spaces is a model category [16]. We
shall show by induction that the induced simplicial map f: E/ynE —• G/ynG
is a homotopy equivalence for all n . As the inductive hypothesis, suppose
that / " " ' is a homotopy equivalence. Applying TJ2(-) dimensionwise to
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and G/ynG, we get the following diagram of simplicial vector spaces:

I- 1
The two indicated isomorphisms follow from Hopfs formula for H2(-)
[13]. The indicated homotopy equivalence follows from the fact that H2

is a functor and thus preserves homotopy equivalences. We thus have a
homotopy equivalence yn_lE/ynE ~ yn_lGlynG. The long exact homotopy
sequences arising from the diagram

1- I 1"
yield a commutative diagram

I-
in which the rows are exact; the indicated isomorphisms arise from the homo-
topy equivalences. We can conclude that there are isomorphisms re|(E/ynE)
= n^G/yjG) for all i > 0 . However, any weak homotopy equivalence be-
tween two simplicial free nilpotent Lie algebras of class n is a homotopy
equivalence, since simplicial nilpotent Lie algebras form a model category
[16]. It follows by induction that / " : E/ynE —> G/yn is a homotopy equiv-
alence for all n. Sublemma 8.3 in [6], which we do not prove, tells us that
n

q(yn^') = nq(ytS*) = 0 for # < log2w. What is important here is that as
n tends to infinity, so does the connectivity of ynE and ynG. Thus for any
given m we can choose an n such that the quotients E - ^ ^ E , G -> ynG
induce isomorphisms on homotopy groups nq for q < m. It follows that
/ : E -+ G is a weak homotopy equivalence.

The next theorem is analogous to the topological fact that the homology
of a fc-dimensional space, and also the homology of its universal cover, is
trivial in dimensions greater than k. In the hypothesis of the theorem the
condition that A be a field is not essential, but is included to simplify the
proof.
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The universal cover G of a simplicial Lie algebra G is obtained as follows.
Let B(7t) be the simplicial Lie algebra which in each dimension is equal to
n - TTO(G) , and in which all boundary and degeneracy maps are the identity.
Then G is the kernel of the canonical surjection G-»B(TT) . It follows that
njfi) = nn(G) for n > 1 and no(G) = 0.

THEOREM 10. Let A be a field. The homology Hn(skk (trk G)) of the k-
skeleton of a free simplicial Lie algebra F is trivial for n > k + 1. The
homology Hn(G) of the universal cover G of skfc(trfcF) is also trivial for

PROOF. Note that skfc(trfc F) is a free simplicial Lie algebra. According to
the Dold-Kan Theorem [7] the Moore complex functor induces an equiva-
lence between the category of simplicial A-modules and the category chain
complexes of A-modules. Under this equivalence the simplicial A-module
(sk*(tr F))ab corresponds to a chain complex which is trivial in dimensions

Ic k.

higher than k. Hence the homology of sk (tr F) is trivial in dimension
higher than k.

If A is a field then any subalgebra of a free Lie algebra is free [18]. Hence
G is a free simplicial Lie algebra. Under the Dold-Kan equivalence Gab cor-
responds to a chain complex of 7t0(F)-modules which is trivial in dimensions
higher than k.

The next theorem is a Lie algebraic version of Whitehead's Certain Exact
Sequence [19].

THEOREM 11. Suppose that the ground ring A is a field. Let G be a
simplicial Lie algebra with no(G) — 0. Then there is an exact sequence

7r3(G) -> 7/3(G) - r(*,(G)) - K2(G) - H2(G) - 0.

PROOF. From the proof of Theorem 8 we have an exact sequence

TT3(F) - flj(F) - *2([F, F]) - 7T2(F) - H2(F) -+ 0

where F is a free simplicial Lie algebra that is weakly homotopic to G and
trivial in dimension 0. Thus we have only to prove that 7r2([F, F]) is iso-
morphic to F(7r1 (F)). Suppose that the beginning of the Moore complex of F
is -> M3 -+ M2 -»• M -> 0. Let L = M2/ im(M3). Then L -> M -> 0 is a 2-
crossed module. It is readily checked that the 2-crossed module obtained in a
similar fashion from the Moore complex of [F, F] is [L, L] —> [M, M] —• 0.
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We have a commutative diagram

[20]

[M, M] —!__» [M, M]

in which the columns are exact, and ni — Mab. Here M®M — M®pM with
P = 0 . The exactness of the left-hand column follows from [10, Theorem
18]. The surjectivity of a is due to identity (4), and implies the surjectivity
of a . Let 71,/L denote M/SL = 7Tj(F). Then, by identity (4), a induces
a map a": r(7t1/L)-»7t2([F, F]). Since L -> M -> 0 is a free 2-crossed
module we can construct a map of 2-crossed modules

Since nl/L is a vector space, it follows again from [10, Theorem 18] that
r(7t1/L) = ker(7t,/L <8> njL -> nJL). The restriction of 0 to [L,L]
induces a homomorphism /?'': 7T2([F, F]) —• r(nJL). The homomorphisms
a" and /?' are mutually inverse. Hence 7T2([F, F]) is isomorphic to r(7t,(F)).

The following theorem is a Lie algebraic version of the Mayer-Vietoris
homology sequence. The statement of the theorem involves the notion of a
free simplicial map, which was recalled in Section 1.
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THEOREM 12. Let

be a pushout of simplicial Lie algebras in which i and i are free maps, and
G a free simplicial Lie algebra. Then there is a long exact sequence

- HH(G) - Hn(G') © Hn(G") - Hn(K) - H

PROOF. Since G is free and / ' , /" are free maps it follows that K is free.
In each dimension n we have a pushout of free Lie algebras

4 I
°n * Kn

The Mayer-Vietoris sequence in the homology of Lie algebras [13], and the
fact that the second homology of a free Lie algebra is trivial, imply a short
exact sequence {Gn)

ab >-» {G'J*3 © {&!,)*-»{Kn)*. We thus have a short

exact sequence of simplicial modules Gab >-» G/ab © G//ab-*Kab the long exact
homotopy sequence of which is the required sequence.

The following theorem is a Lie algebraic version of the exact sequence
given in [3, Chapter VII, exercise 6] (see also [11, Theorem 10]). The sim-
plicial Lie algebra B(n) used in the theorem is described above.

THEOREM 13. For any simplicial Lie algebra G there is an exact homology
sequence

TJ //i\ TJ cnl-,,\\ / _ igi\\ IT (g~*\ TJ /D/_\\ f\

tl^yVy) —* tl^yoyn)) —• \H,[\*)) —> rlA\j) —> tlAoyU)) —* U

where n — nQ(G) and ( ^ ( G ) ^ is obtained from n{(G) by killing the action
of n.

PROOF. There is a canonical map G —* B(n). Since we are essentially
only interested in the weak homotopy type of simplicial Lie algebras we can
assume (thanks to the axioms of a model category) that both G and B(TT)
are free simplicial Lie algebras, and that G —> B(n) is a free map. Also we
can assume that G and B(n) are identical in dimensions 0 and 1. Since
G -» B(n) is a free map it follows that the induced simplicial map Gab >->
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(7i)ab is injective. Let C be the cokernel of Gab -> B(7r)ab. Part of the long

exact homotopy sequence arising from G>-» B(7r)ab-»B is thus

H2(G) - H2(B(n)) -» TT2(C) - tf,(G) -> # , ( B ( K ) ) -^ 7i,(C) = 0.

It remains to identify 7r,(C). Considering the map G >-+ B(n) as a map of
simplicial modules, we can form its cokernel C. The long exact homotopy
sequence arising from G >—> B(7r)-»C implies that TT2(C) = ^ ( G ) . It is thus
readily seen that n2{C =* (

5. Coproducts of crossed modules

There is a canonical functor

X: (simplicial Lie algebras) -»(crossed modules)

which sends a simplicial Lie algebra G with Moore complex • • • -* M2 —>

Ml -^ A/Q to the crossed module #(G) consisting of the induced map
d: Ml/S{M2) -* Mo and standard action (cf. Proposition 4). The crossed
module #(G) is equivalent to the simplicial Lie algebra obtained from G by
factoring out the terms of the Moore complex of dimension > 2. It follows
that the functor x preserves coproducts. In order to utilise this property of
X we need a description of coproducts in the category of crossed modules.

Let dL: L -> P, dM: M -> P, dN: N -> P be crossed modules and
suppose given two maps ( ^ i L - t P ) - * {dM: M -* P) and ( 9 L : L - » P ) - »
(dM: M -> P) both over the identity on P. There is a pushout diagram of
the form

pushout

We shall give an explicit construction for the crossed module d: MoN -> P.
The Lie algebras M, N act on each other via the action of P. Ignoring

for the moment the action of M on N, we can form the semi-direct MQN
and homomorphism jd:MQN—>P, (m, n) >-* dM(m) + dN(n). There
is an action of p e P on (m, n) e M 0 N given by p(m, n) — (pm, pn).
With this action the homomorphism d is a precrossed module. Let / be
the P-invariant ideal of M o N generated by the Peiffer elements

0(m,n) (m , n )
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for m, n e M, n, n e N. It is readily checked that / is generated, as an
abelian group, by the elements

,dn dm •.

( m, n)
for e M, n e N.

There is a homomorphism i: A -> Me N/I, a •-> {a, -a) + I. The
image of A is a P-invariant ideal in MQN/I . It is readily checked that the
precrossed module d induces a crossed module d: M e N/{I + A} —> P.

The following proposition is a routine exercise.

PROPOSITION 14. i) The above crossed module d: M e N/{I + A} —» P is
isomorphic to the pushout crossed module d: M o N —> P.

ii) Suppose that the crossed modules dL: L >-» P, dM: M >-+ P, dN: N >-»
P are a// injective {that is, suppose L, M, N are ideals in P with L c
M n N). Let M' = M/L and N' = N/L. Then there is an isomorphism

6. Applications to the homology of Lie algebras

In this section suppose that the ground ring A is a field. Let G be a Lie
algebra. We denote by B(G) or K((7, 0) the simplicial Lie algebra which in
each dimension is equal to G, and in which each boundary and degeneracy
map is the identity. Thus 7ro(K(G, 0)) S and nn(K(G, 0)) = 0 for n > 1.
The Eilenberg-MacLane homology of G with coefficients in the ground ring
A can be defined (see [16, Section 116]) as

= HH_l(K(G,0)), # ! > l .

If G is an abelian Lie algebra (that is, a A-module) then the trivial ho-
momorphism G —> 0 can be considered as a crossed module. Let K(<5, 1)
denote the simplicial group equivalent to this crossed module under the cor-
respondence of Theorem 2. Thus 7r,(K(<7, 1)) s* G and nn(K(G, 1)) = 0
for n = 0 and n > 2. By analogy with [12] the appropriate homology for G
is possibly the homology of K(G, 1) (with a shift in dimension); we define

\)), n>\.

The results of the preceding sections can be used to obtain information on
Hn{G) and Hn{G, 2). Theorem 15 is new and analogous to group theoretic
results given in [12]. Theorem 16 is an improvement on the exact sequence
obtained in [9]; on taking M — G it reduces to the well-known five term exact
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homology sequence [13]. The proof of Theorem 16 is modeled on techniques
in [4].

THEOREM 15. For an abelian Lie algebra G we have

Hl(G,2) = 0,

H2(G,2)*G,

Hi(G,2) = 0,

PROOF. The first two isomorphisms follow immediately from Theorem 8.
The third and fourth isomorphisms follow immediately from Theorem 11.

THEOREM 16. Let G be a Lie algebra containing two ideals M and N.
(i) / / H2(G/(M + N)) = H3(G/(M + N)) = 0 (for instance if G = M + N)
then there is an exact sequence

H2(G) - H2(G/M) • H2(G/N) - ^ ^ ^

Hi(G/M)(BHl(G/N)

(ii) If on the other hand Mf)N = [M, N] then there is an exact sequence

H2(G) - H2(G/M) e H2(G/N) -> H2(G/(M + N)) -» HX{G)

PROOF. There are canonical maps B(G) -> B(G/M), B(G) -» B(G/N)
which, working up to homotopy type, can be assumed to be free. We can
also assume that B(G) is free. By Theorem 12 the pushout of simplicial Lie
algebras

B(G) v B(G/N)

(*) I pushoutI

B(G/M) > K

yields the exact sequence

H2(G) -* H2(G/M) e H2(G/N) -• /f,(K)

-• HX{G) -• HX{G/M) © HX{G/N)

^ t f o ( K ) ^ O .

It remains to identify //Q(K) and HX(YL).
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Applying the functor x of Section 5 to (*) yields a pushout of crossed
modules

( G - 0 • (S^F)

pushoutI

+ F).

Here F is a free Lie algebra with ideals Q, R, S satisfying F/Q = Q,
F/R Si G/M, F/S e G/N. We have TTO(K) 2 coker(i? o S -> F) and

Wj(K) 2 ker(/?o5 - F ) . Thus TCO(K) 2 G/(M + N) and, by Proposition 14,

TT^K) = Af n N/[M, N]. Theorem 13 enables us to appropriately identify
H0(K) and tf,(K).

7. Aspherical presentations

In this section suppose that the ground ring A is a field. Let Sf be a set
and F the free Lie algebra on 8?. Let J bea set whose elements corre-
spond to (not necessarily distinct) elements of F; for r e J the correspond-
ing element of F is denoted <j[r. Let R denote the ideal in F generated by
the set {£r: r e «^} . Put G = F/R. Thus (M?\Sg) is a presentation of the
Lie algebra G.

From the set mapping ^: 31 -^ F we can construct the free precrossed
module d: P(£) -* F, which is equivalent to a 1-truncated simplicial Lie
algebra P({)eF*F. Let lL(3r\9l) denote the 1-skeleton of P(£)eF*F.
Thus nQK(Mr\&) S G . W e shall say that the presentation {MT\&) is aspher-
ical if 7rnK(^|«S?) = 0 for n > 1.

If {3r\3l) is aspherical then K(<r|«#) is weakly homotopic to K(<7, 0).
It follows from Theorem 10 that the Eilenberg-Maclane homology Hn(G) is
trivial for n > 3 .

We can give a more manageable characterisation of aspherical presenta-
tions. Let G* be the universal enveloping algebra of G. Note that /?** is a
(/-module in which g e G acts on x + [R, R] € i?ab by #(JC + [.R, R]) =
[g, x] + [R, R] with ~g an element of F representing g. Let ©^G* be the
direct sum of copies of Ge, the copies indexed by 31; we think of ©^ Ĝ
as the free (/-module on the set M. There is a unique surjective mod-
ule homomorphism d: ©^ Ge-»Rllb denned on basis elements r 6 M by
d(r)=£r.

THEOREM 17. The presentation {Sf\3l) is aspherical if and only if
d: ®& Ge-»Rab is injective.
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PROOF. Let k(£?\&) be the universal cover of K(MT\^). Thus

n0K(2'\&) = 0

and itnk(%?\gZ) a nK(Sr\^) for n > 1. Theorem 8 implies njL(3P\M) =
HX{JU&'\®)) • Let 5 : C(£) ^ F be the free crossed module on <J: i ? -»
.F; this restricts to a crossed module d: C(£)-»R, which in turn induces
a module homomorphism d: C(f)ab -» i?a b. We have /
ker(d: C(^)ab —> i?26). Universal properties imply an isomorphism C(^)ab =
®^Ge . It foUows that jr,K(<r|^?) a T ^ K ^ I - S P ) a ker(<9: e ^ / ^ / ? a b ) .

If d: ®3lG
e^Rah is not injective then nxm&\&)$Q and so y?\8) is

not aspherical. If however 9: e^,G^-»i?ab is injective then n^L{Sf\M) = 0;
it follows from Theorems 8 and 10 that nJL{2?\3l) s 7 t n K(^ |^) = 0 for
« > 1, and thus that {Sf\M) is aspherical.

Theorem 17 can be used to show that many one-relator presentations
are aspherical. Consider for instance the Lie algebra G with presentation
{x,y,z\[x,\y, z]]). The proof of the injectivity of d: Ge -> R*b, 1 H
[x, \y, z]][R, R] is left as an exercise. (This type of result is analogous to
Lyndon's theorem asserting the asphericity of one-relator groups in which the
relator is not a proper power [15].)

The following result might be of use in constructing aspherical presenta-
tions. It is analogous to the group-theoretic Theorem 3 in [20].

THEOREM 18. A presentation of the form {Sf\^\jS^) is aspherical if the
presentations (Sf\^) and {3T\S") are both aspherical and RnS = [R, S].
(Here R and S are the ideals in the free Lie algebra on 3? generated by the
elements corresponding to the sets £1 and £7.)

PROOF. The canonical diagram of simplicial Lie algebras

K(JT|0)

is a pushout. It follows from Proposition 14 that nxK(Sf\^ nS*) s R n
S/[R, S]. Arguing as in the proof of Theorem 17 we see that if

= o
then nJHarWuS") a nJL{Sf\^ u S") = 0 for n > 1.
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