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If X and Y are Tychonoff spaces then the continuous function / mapping
X onto Y is said to be compact (perfect, or proper) if it is closed and point
inverses are compact. If h is a continuous function mapping X onto Y then
by a compactification of h we mean a pair (X*, h*) where X* is Tychonoff
and contains I as a dense subspace, and where h*: X*->Y is a compact
extension of h. The idea of a mapping compactification first appeared in (7).
In (1) it was shown that any compactification of X determines a compactifica-
tion of h, and that any compactification of h can be determined in this way.
This idea was then developed in (2) and (3).

Throughout this paper all topological spaces are assumed to be Tychonoff.
We consider throughout a fixed continuous function/mapping X onto Y.

A compactification of X is a compact Hausdorff space containing as a dense
subspace a homeomorphic image of X. We assume X to be a subspace of
each of its compactifications. If a is a partition of fiX, the Stone-Cech com-
pactification of X, then a is said to be an upper semicontinuous (u.s.c.)
decomposition ofySZif

(a) the members (blocks) of a are compact subsets of fiX and

(b) whenever V is open in fiX and contains the block A of a, there exists
an open set W in fix such that A £ W ^ y and W contains any block of a
that it meets. (Notice that since jiX is normal the partition a of fiX is u.s.c.
if and only if the associated canonical quotient mapping is closed.) Refinement
of partitions imposes a natural partial order upon the set of u.s.c. decompositions
of PX: a :g b if and only if given Ae a, there exists B e b such that A £ B.
The u'.s.c. decompositions of fix with this partial order form a complete lattice

(4). For our purposes we need only note that

f\{ai: iel} = {f]{At: iel}: A,ea,,iel}.

A natural partial order also exists on the set of compactifications of X. We
say aX ̂  bX if and only if there exists a continuous function h mapping bX
onto aX such that h \ X is the identity. The compactifications aX, bX are
said to be equivalent if aX g bX and bX g aX and we consider equivalent
compactifications to be the same compactification. Similarly, if (X*, /*)
and (X',f) are compactifications of/, we say (X*,f*) ^ (X',f) if and only
if there is a continuous function h mapping X' onto X* such that h \ X is the
identity and such tha t / ' =f*.h. Again we say that (X*,f*) and (X',f)
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are equivalent if (Z*,/*) ^ (*",/') and (X',f) ^ (X*,/*), and by considering
equivalent compactifications to be the same compactincation we have a partial
order defined on the compactifications of/. In (6) it was shown that there is a
natural bijection between the set of compactifications of X and the set of u.s.c.
decompositions of pX which contain the points of X as blocks. If a is a u.s.c.
decomposition of PX with this property then we denote by aA"the corresponding
compactification of X and by qa the corresponding mapping from fiX onto
aX. (In fact qa is the canonical quotient mapping associated with the partition
a.) In (5) it was shown that aX g bX if and only if b ^ a.

We denote by / : PX^P Y the continuous extension of / : X^ Y £ PY,
and by u we mean the u.s.c. decomposition {f~i(y): yePY} of PX. If a
is a u.s.c. decomposition of pX containing the points of X as blocks, and if
a ^ u, then denote by pa the restriction of qa to f~1(Y). We then define/,
and/,* by

It is a routine matter to show that fa and f* are continuous functions onto
PY and Y respectively. Notice that f-\Y) = qa(f~\Y)) = pa(J-\Y)) and
f* is the restriction of/o to this set. Notice also that/o, being a continuous
function defined on a compact space, is compact.

Theorem 1. If aX is a compactification of X then (/,VU(*0>/I*AU) is a com-
pactification of f and each compactification of f can be described in this way.

Proof, a A u is a u.s.c. decomposition of PX containing the points of X
as blocks and aAu^u. Then/0*AU, being the restriction of/aAU tof~/u(Y) is a
compact mapping, and moreover/a*AII is an extension of/, since for each xe X
Pa^u(x) = x.

Suppose now that (X',f) is a compactification of/. Then PX' is a com-
pactification of X which we denote by bX. If/': PX = bX^P Y denotes the
continuous extension of/', then since / ' .qb is equal to / on X, / ' .qb = / on
PX and so b ^ u. Then/ , is denned and, again since the extension o f / t o
bX is unique,/, = / ' on bX, and so if we can show that/," l(Y) = X' then the
proof is complete. Suppose then that xe pX'\f'~i(y). Then since f'~1(y)
is compact x has a compact neighbourhood iV disjoint from/' - 1( j) . Then
NnX' is closed and non-empty and so f'{Nr\X') is closed, non-empty, and
does not contain y. Then since / ' is continuous

/'(cl (NnX')) s cl (J'(NnX')) =/'(JVnX')
and so/'(x) # j>. Hence X' = / ' - 1 ( F ) =f'-\Y) =ff\Y) and this completes
the proof.

Notice that if {X*,f*) is a compactification of Zthen the content of Theorem
1 is to allow us to consider X* to be a subspace of any compactification aX
producing/*.
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Theorem 2. If(X*,f*) and (A",/') are compactifications off then

(X*,f*) 5S (A",/')

if and only ifPX* = bX g aX = PX'.

Proof. We saw in the proof of Theorem 1 that (X*, /*) and (A", / ' )
respectively are determined by bX and aX.

If bX ^ aX then /z defined by h = p6. /?71 is a function onto X* and since
/?„ is continuous and pb is closed, h is continuous. But then

/ ' " / • A T 1 =/*•!>»• AT1 =/*•*•
Conversely, if (Z*, /*) ^ (A", / ' ) then there is a continuous function /i

mapping X' onto A"* and such that h \ X is the identity. If we extend h to
the continuous function h~: fiX' = aX^bX = PX* then /j maps onto PX*
and so 6 A" ^ aA'.

If /? is a partition on the set S and if A £ S then by p \ S we mean the
part i t ioning: Pep).

Corollary 3. If the compactifications (A'*,/*) and (A",/') off are produced
by the compactifications aX and bX respectively, then (X*, /*) ^ (X', / ' ) / /
and only if

Proof. (X*,f*) is produced by the compactifications a A UX and cX = /?A"*
and thus aAu\f~1(Y) = c l / " 1 ^ ) . Similarly, A A H I / " 1 ^ ) = d\J~1{Y)
where <Of = PX'. Then (A-*,/*) ^ (A",/') if and only if cX g dX and this
is so if and only if d ^ c. However, since cX = PX*, c is the minimal u.s.c.
decomposition of PX such that c \f~1(Y) = GAM \f~1(Y) and similarly c? is
minimal such that d\f~1(Y) = bAulf'^Y). Thus d g c if and only if

Corollary 4. 7%e compactifications aX, bX determine equivalent compactifica-
tions off if and only ifinf~1(Y) the partitions

{q^Wnf-'iy): teaX,yeY}

and {qbl(t)nj~l(y): t e bX, y e 7} are equal.

Corollary 5. The compactifications off with the usual partial order form a
complete upper semilattice. They form a complete lattice if and only if for some
compactification sXofX,sAu\ (J~\Y)\X) = u \(f~\Y)\X).

Proof. If {(Xh f): i el} is a family of compactifications of/ then

{btX = pxt: iel},

being a family of compactifications of X, has a supremum, aX say. Then
for each ie I, a g bt ^ u and so from Corollary 3 we see that (X*,f*) is an
upper bound for {(Xit / ( ) : iel}. Moreover, if (A"',/') is an upper bound
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for {(Xh ft): iel} then for each iel, b,X ^ bX = 0X and so aX g bX.
Then b ^ a and so {X*,f*) ^ (X',f). Thus the compactifications of/form
a complete upper semilattice.

This semilattice will be a complete lattice if and only if it has a smallest
member.

Now, if there is a smallest compactification of/, determined by the com-
pactification sX of X say, where 5 ^ u, then if 5 | /~1(y)\A'# u\f~\Y)\X
there exist points x, y i n / " *( y)\Xbelonging to the same block in u but belong-
ing to different blocks in s. But then the partition m produced from s by
joining the blocks containing x and y is again u.s.c. and is strictly less than s
on f-^Y). It follows from Corollary 3 that (X*,f*)<(X*,f*) contradicting
the fact that (X*,f*) is minimal.

Conversely, if sX is such that s \J~1(Y)\X = u \J~\Y)\X then for any
compactification aX of X, a A U ^ u and so from Corollary 3

In particular if X is locally compact the compactifications of / form a
complete lattice, since in this case the one-point compactification of X satisfies
the requirements of sX in Corollary 5.
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