Left and right zero divisors in group algebras

D. Handelman and J. Lawrence

We prove that most group algebras of free products have left zero divisors that are not right zero divisors.

In [4, p. 35] the question whether every left zero divisor in a group algebra is also a right zero divisor is asked. The question was originally asked by S. Montgomery. The following theorem shows that there is a large class of group algebras having left zero divisors that are not right zero divisors.

THEOREM 1. Let FG be a group algebra with zero divisors and let H be any group of order greater than two. Then the free product group algebra F[G * H] has left zero divisors that are not right zero divisors.

DEFINITIONS. A ring R is (right) strongly prime if for every nonzero $r \in R$ there exists a finite set S (called a right insulator) such that the right annihilator of rS is zero. R is SP(n) if for each nonzero element, we can choose an insulator with n elements. R is bounded strongly prime if it is SP(n) for some natural number n.

THEOREM 2. Let G * H be a nontrivial free product of groups (both G and H have order greater than one), where the order of H is greater than two. Then the group algebra F[G * H] is bounded strongly prime and is not a Goldie ring.

Proof. We prove that the group algebra is bounded strongly prime in [2, Proposition 3.3]. In order to show that the group algebra is not a right Goldie ring, it is sufficient to show the existence of a regular

Received 27 July 1976.

element x (a right and left nonzero divisor) such that the right ideal generated by x is not right essential [3, Lemma 7.2.3]. Choose $a \in G - \{1\}$ and $b, c \in H - \{1\}$. Then ab + ba is regular and $(ab+ba)F[G * H] \cap (ac+ca)F[G * H] = (0)$. Thus ab + ba is the desired regular element.

THEOREM 3 [1, Theorem 2.3]. A bounded strongly prime ring is either a Goldie ring or is SP(1).

Proof of Theorem 1. As $F[G \star H]$ is bounded strongly prime and not Goldie, it must be SP(1). Let a be any nonzero element with nonzero left annihilator and let $\{b\}$ be a right insulator for a. Then ab is a left but not right zero divisor.

As a corollary we note that if Montgomery's question has an affirmative answer for all torsion free group algebras, then all group algebras of torsion free groups must be domains.

References

- K. Goodearl and D. Handelman, "Simple self-injective rings", Comm.
 Algebra 3 (1975), 797-834.
- [2] David Handelman and John Lawrence, "Strongly prime rings", Trans. Amer. Math. Soc. 211 (1975), 209-223.
- [3] I.N. Herstein, Noncommutative rings (Carus Mathematical Monographs,
 15. Mathematical Association of America, [Buffalo], 1968).
- [4] I.N. Herstein, Notes from a ring theory conference (Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, 9. American Mathematical Society, Providence, Rhode Island, 1971).

Department of Mathematics,	Department of Mathematics,
University of Utah,	University of Waterloo,
Salt Lake City,	Waterloo,
Utah,	Ontario,
USA;	Canada.

454