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Dynamics of small heavy particles in
homogeneous turbulence: a Lagrangian
experimental study
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We investigate the behaviour of microscopic heavy particles settling in homogeneous
air turbulence. The regimes are relevant to the airborne transport of dust and droplets:
the Taylor-microscale Reynolds number is Reλ = 289–462, the Kolmogorov-scale Stokes
number is St = 1.2–13 and the Kolmogorov acceleration is comparable to the gravitational
acceleration (i.e. the Froude number Fr = O(1)). We use high-speed laser imaging to track
the particles and simultaneously characterize the air velocity field, resolving all relevant
spatio-temporal scales. The role of the flow sampled by the particles is spotlighted. In
the present range of parameters, the particle settling velocity is enhanced proportionally
to the velocity scale of the turbulence. Both gravity and inertia reduce the velocity
fluctuations of the particles compared to the fluid; while they have competing effect on the
particle acceleration, through the crossing trajectories and inertial filtering mechanisms,
respectively. The preferential sampling of high-strain/low-vorticity regions is measurable,
but its impact on the global statistics is moderate. The inertial particles have large relative
velocity at small separations, which increases their pair dispersion; however, gravity
offsets this effect by causing them to experience fluid velocities that decorrelate faster
in time compared to tracers. Based on the observations, we derive an analytical model
to predict the particle velocity and acceleration variances for arbitrary St, Fr and Reλ.
This agrees well with the present observations and previous simulations and captures the
respective effects of inertia and gravity, both of which play crucial roles in the transport.
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1. Introduction

1.1. Objective
The objective of the present study is to explore the effects of inertia and gravity on the
motion of heavy particles in homogeneous turbulence. Given its relevance to countless
aspects of natural, industrial and medical settings, the topic has been studied in depth and
a large body of literature is summarized by excellent reviews (Balachandar & Eaton 2010;
Gustavsson & Mehlig 2016). Reaching a predictive understanding of the transport of small
airborne particles is even more crucial in the current pandemic (Mittal, Ni & Seo 2020).
Still, solid evidence concerning important aspects of the particle transport (e.g. fall speed,
velocity fluctuations, acceleration and dispersion) has remained elusive. The reasons
include the difficulty of carrying out detailed measurements resolving all important
spatio-temporal scales, the stringent hypotheses of theoretical and numerical models
and the scarcity of one-to-one comparisons between computations and experiments. In
particular, it is noteworthy that the majority of numerical studies have focused on the
zero-gravity case. If this allows us to isolate the effect of inertia, it also impedes the direct
validation in the laboratory. Indeed, several behaviours of heavy particles in turbulence
were theorized and simulated for decades, e.g. the oversampling of regions of high strain
and downward velocity fluctuations (Maxey 1987; Squires & Eaton 1991b; Wang & Maxey
1993); nevertheless, they were only recently demonstrated and quantified by experiments
(Petersen, Baker & Coletti 2019).

Here, we consider the case of turbulent air laden with solid particles much smaller
than the Kolmogorov scale η. We focus on the range of Stokes number (based on the
Kolmogorov time scale) St ≈ 1–13, while the acceleration scale of the turbulence is of the
same order as the gravitational acceleration. These conditions are especially relevant to
the transport of dust and droplets in the atmosphere. We perform time-resolved imaging
of both the fluid and the particle motion, resolving virtually all scales at play. The
measurements of particle velocity, acceleration and relative motion highlight the influence
of the turbulence and the competing effects of inertia and gravity, demonstrating how in
the present regime both effects are crucial for the fate and transport of the dispersed phase.
The analysis culminates with an analytical model that builds on the classic framework put
forward by Csanady (1963) to estimate the motion of the particles from the properties of
the fluid they sample. The model is shown to agree well with the present observations, as
well as with data in the literature. The rest of the paper is organized as follows: in § 1.2
we summarize the theoretical background and key existing results relevant to the present
study; in § 2 we describe the experimental apparatus, and the measurement and processing
procedure; in § 3 we present and discuss the data; in § 4 we introduce the analytical model
and compare it with the observations, before drawing conclusions in § 5.

1.2. Background
We briefly review some fundamental relations and concepts that will help interpret and
model the behaviour of the dispersed phase. We consider particles much denser than
the fluid and sufficiently small compared to any flow scale. We indicate properties of
the particles, fluid and fluid at the particle location with subscripts ‘p’, ‘f ’ and ‘fp’,
respectively. If the particle Reynolds number Rep (based on the particle diameter dp and
a slip velocity from the fluid us) is sufficiently small, drag and gravity are the only forces
usually retained in the equation of motion (Maxey & Riley 1983)

ap = ufp − up

τp
− gêy. (1.1)

917 A47-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

28
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.280


Dynamics of small heavy particles in homogeneous turbulence

Here up is the particle velocity, ap = dup/dt is the particle acceleration, ufp is the fluid
velocity at the particle location (which we will refer to as the sampled-fluid velocity),
τp is the particle response time and g is the gravitational acceleration along the unit
vector êy. We normalize using the Kolmogorov scales for time, velocity and acceleration:
τη = (ν/ε)1/2, uη = (νε)1/4 and aη = uη/τη = (ε3/ν)1/4, respectively, where ν is the
kinematic viscosity and ε is the dissipation rate. This yields

ap

aη

= St−1
(

ufp

uη

− up

uη

)
− Fr−1êy. (1.2)

The Stokes number St = τp/τη and the Froude number Fr = aη/g can be combined in
the settling parameter Sv = St/Fr = (τpg)/uη. We define the slip velocity as us = up −
ufp, i.e. the particle velocity relative to the surrounding flow. (The opposite sign convention
is also used in the literature, defining the slip velocity as the fluid velocity seen by the
particle.) Denoting averaged quantities with angled brackets and fluctuating ones with a
prime, the Reynolds decomposition reads

ap = 〈ap〉 + ap
′ = τp

−1 (〈ufp〉 + ufp
′ − 〈up〉 − up

′) − gêy. (1.3)

Averaging yields

〈up〉 − 〈ufp〉 = 〈us〉 = −τp〈ap〉 − τpgêy, (1.4)

and

ap
′ = τp

−1 (
ufp

′ − up
′) = −τp

−1us
′. (1.5)

In equilibrium conditions (〈ap〉 = 0) and still fluid (〈ufp〉 = 0) the particles settle at
a terminal velocity 〈up,y〉 = 〈us,y〉 = −τpg. Turbulence can either increase or decrease
the fall speed through different mechanisms (Nielsen 1993; Good, Gerashchenko &
Warhaft 2012). Perhaps the best known among those is preferential sweeping, by which
inertial particles oversample downward sides of turbulent eddies, leading to a net increase
in settling velocity, especially up to St = O(1) (Maxey 1987; Wang & Maxey 1993).
Consistently with this view, Good et al. (2014) probed the parameter space and found
that settling enhancement was maximum for St = O(1) and Sv = O(1). From (1.4), the
modification of the mean vertical velocity of the particles can be expressed as �uy =
〈up,y〉 + τpg = 〈up,y〉 − 〈us,y〉 = 〈ufp,y〉 (negative for settling enhancement). That is, the
settling rate modification is determined by the vertical fluid velocity sampled by the
particles. It is debated which velocity scale governs the phenomenon, with various studies
indicating settling enhancement proportional with the root-mean-square (r.m.s.) of the
fluid velocity fluctuations urms ≡ 〈(u′

f )
2〉1/2: typically �uy ≈ −0.2urms (Aliseda et al.

2002; Yang & Shy 2005; Huck et al. 2018). This enhancement was recently associated
with a version of the sweep-stick mechanism in which particles oversample regions of
small Lagrangian acceleration (Falkinhoff et al. 2020). Recently Momenifar & Bragg
(2020) showed by theoretical arguments and numerical simulations that the enhancement
is in fact governed by a range of velocity scales, whose width increases with St. These
effects lead to a settling enhancement scaling with urms for St = O(1) and Sv = O(1), but
dependent on particle inertia outside this range as observed by Rosa & Pozorski (2017)
and Tom & Bragg (2019). We note that, in the present study, we investigate the range in
which settling enhancement scales with urms, as evidenced in § 3.1.
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Averaging over the square of (1.5) leads to

〈(ap
′)2〉 = τp

−2
(
〈(ufp

′)2〉 + 〈(up
′)2〉 − 2〈ufp

′up
′〉
)

= τp
−2〈(us

′)2〉, (1.6)

which relates the particle velocity and acceleration variance to the sampled-fluid velocity
and slip velocity variance. Of particular relevance to such a relation is the framework
developed by Csanady (1963) (building on earlier work by Tchen 1947; Hinze 1975), who
proposed a link between the Lagrangian spectrum of the particle velocity (Ep) and the one
of the sampled-fluid velocity (Efp) through a response function H2

Ep(ω) = H2(ω)Efp(ω), (1.7)

where ω is the angular frequency in the Lagrangian frame of reference. The velocity and
acceleration variances can be obtained from the spectra as

〈(u′
p)

2〉 = 2
π

∫ ∞

0
Ep(ω) dω, (1.8)

〈(a′
p)

2〉 = 2
π

∫ ∞

0
ω2Ep(ω) dω. (1.9)

The response function can be modelled from (1.1), by taking the Fourier transform of the
particle velocity and sampled-fluid velocity (Csanady 1963)

H2(ω) = 1
1 + (ωτp)2 . (1.10)

Zhang, Legendre & Zamansky (2019) derived a more complete form of the response
function including unsteady forces, which, however, are expected to be small for
microscopic heavy particles. The dependence of the response function on the particle
response time illustrates the particle inability to respond to fluctuations with frequencies
greater than O(τ−1

p ). This behaviour, often termed inertial filtering, was clearly
demonstrated in situations where gravity is absent or negligible (Ayyalasomayajula et al.
2006; Bec et al. 2006). Deutsch & Simonin (1991) made the important distinction
between the spectra of the flow and the spectra of the flow sampled by the particles.
In presence of gravity, already Yudine (1959) realized the importance of the drift
through turbulent eddies, with particles experiencing fast-changing flow conditions: this
crossing-trajectories effect leads to faster decorrelation of the particle motion (Squires
& Eaton 1991a; Elghobashi & Truesdell 1992; Wang & Stock 1993). Consequently,
gravitational drift enhances particle acceleration compared to zero-gravity conditions,
counteracting the effect of inertial filtering (Ireland, Bragg & Collins 2016a,b). For weakly
inertial particles (St < 1), preferential sampling of high-strain, low-vorticity regions may
also contribute to increasing particle acceleration, as the fluid acceleration is higher in the
strain-dominated regions (Bec et al. 2006).

2. Methodology

2.1. Experimental apparatus
Experiments are performed in a chamber where a region of homogeneous anisotropic air
turbulence is formed by two facing jet arrays. The facility was introduced and qualified in
detail in Carter et al. (2016) and Carter & Coletti (2017, 2018); here, we only give a brief
description for completeness. The chamber measures 2.4 × 2 × 1.1 m3 in the x, y and z
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Dynamics of small heavy particles in homogeneous turbulence

μon (s) urms (m s−1) urms,x/urms,y L (m) TE (s) TL (s) η (mm) τη (ms) Reλ

0.1 0.41 1.24 0.10 0.22 0.23 0.31 6.3 289
3.2 0.73 1.86 0.14 0.23 0.23 0.24 3.6 462

Table 1. Flow properties for the cases used in the present study. The r.m.s. velocity urms, integral length scale
L and the Eulerian and Lagrangian integral time scales TE and TL are based on weighted geometric averages
over x and y.

directions (where x is aligned with the jet axis and y is in vertical direction) and has acrylic
walls for optical access. Each jet array consists of 128 quasi-synthetic jets, individually
operated according to a sequence proposed by Variano & Cowen (2008). The region of
homogeneous turbulence (with negligible mean flow and shear) measures approximately
0.5 × 0.7 × 0.4 m3. The Reynolds number can be tuned by adjusting the average firing
time of the jets (μon). In the present study we operate the jets in two modes, and the
main turbulence properties for each are reported in table 1. For both cases, the region
of homogeneity is substantially larger than the integral length scale of the turbulence,
allowing for a natural inter-scale energy cascade without major influence of the boundary
conditions.

The materials and procedure followed to investigate the inertial particle transport are
similar to those in Petersen et al. (2019). The particles are fed into the chamber via a 3 m
vertical chute connected to the top of the chamber, being released at a steady rate using
an AccuRate dry material feeder. We use three sizes of soda-lime glass beads (density
ρp = 2500 kg m−3), with mean diameters dp = 32 ± 7 μm, 52 ± 6 μm and 96 ± 11 μm.
Particle response times are evaluated using the Schiller & Naumann correction (Clift,
Grace & Weber 2005)

τp = ρpd2
p

18μ(1 + 0.15Re0.687
p,0 )

, (2.1)

where μ is the air dynamic viscosity and Rep,0 = dpτpg/ν is the particle Reynolds number
based on the still-air settling velocity τpg. Iterative evaluation of (2.1) yields response times
of τp = 7.4, 17 and 47 ms respectively. The particles are expected to approach terminal
velocity over a distance of the order of τ 2

p g. For the largest particles this is 2 cm, an order
of magnitude smaller than the extent of the homogeneous region traversed before reaching
the measurement field of view. Table 2 reports the main non-dimensional parameters for
the five experimental cases obtained combining the different particle types and turbulence
forcing. We focus on St = O(1) and Sv = O(1), with one case of larger St and Sv. For
the particle volume fraction and mass fraction in this study (of order 10−4 and 10−7,
respectively), the flow properties are not expected to be modified by the loading (Petersen
et al. 2019).

2.2. Measurement approach
Imaging is performed in the x–y symmetry plane at the centre of the region of
homogeneous turbulence. The flow is seeded with 1–2 μm DEHS (di-ethyl-hexyl-sebacat)
droplets which faithfully follow the flow. The flow is illuminated using a Nd:YLF
single-pulse laser (Photonics, 30 mJ pulse−1) synchronized with a VEO640 camera
mounting a 200 mm Nikon lens. An aperture number f # = 4 gives a thickness of the focal
plane of 1.5 mm. The active portion of the camera sensor, and therefore the size of the
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dp (μm) Reλ St Sv Fr dp/η Rep,0

32 289 1.2 1.5 0.8 0.10 0.15
32 462 2.1 1.1 1.9 0.13 0.15
52 289 2.7 3.4 0.8 0.16 0.56
52 462 4.7 2.5 1.9 0.21 0.56
96 462 13.1 6.9 1.9 0.42 3.26

Table 2. Relevant non-dimensional parameters for the experimental cases in the present study.

Reλ faq (Hz) τη faq Taq/TL FOV (x × y) (cm2) Resolution (pix mm−1)

289 1800 11.3 38 11.5 × 9.0 17.8
462 5100 18.4 44 5.8 × 5.4 17.8

Table 3. Acquisition parameters for the two turbulence forcing cases; faq and Taq represent the acquisition
frequency and length of acquisition, respectively.

field of view (FOV), depends on the acquisition frequency. The latter is optimized to give
a time separation between consecutive images of at most 0.1τη, yielding the resolutions
reported in table 3. For both Reλ, the FOV is much smaller than the region of homogeneous
turbulence. For each case we record 10 separate runs, with total duration of the recordings
of around 40 integral time scales.

Data are processed using the procedure detailed in Petersen et al. (2019). Raw images are
separated in particle-only images and tracer-only images, distinguishing DEHS droplets
and glass beads based on brightness and size. Particle image velocimetry (PIV) is
performed on the tracer-only images. We use an initial interrogation window of 64times64
pixels, refined to 32 × 32 pixels with 50 % overlap, for a vector spacing of 0.9 mm (2.9η

and 3.7η for the Reλ = 289 and 462 cases respectively) that resolves the fine scales of
turbulence (Worth, Nickels & Swaminathan 2010). Particle tracking velocimetry (PTV) is
performed on the particle-only images, following the cross-correlation approach. The fluid
velocity is evaluated at the particle locations using weighted linear interpolation of the four
neighbouring velocity vectors. A comparison with cubic and spline interpolation shows
no significant difference, but linear interpolation substantially decreases the computation
time. Particle velocities and accelerations are determined from the particle position using
convolution with the first and second derivatives of a Gaussian kernel, respectively.
The width of the latter is chosen as 0.5τη and 0.4τη for the Reλ = 289 and 462 cases,
respectively, following the procedure established for tracers in Voth et al. (2002) and
Mordant, Lévêque & Pinton (2004) and applied to inertial particles in Gerashchenko et al.
(2008), Nemes et al. (2017) and Ebrahimian, Sanders & Ghaemi (2019b,a).

The number of samples used to calculate particle statistics ranges between 0.8 × 106 and
5.6 × 106 for the different cases. Uncertainty in the statistics is affected by both random
uncertainty, due to the finite sample size, and bias uncertainty, due to systematic errors
in estimating the particle centroid and the local fluid velocity. Baker & Coletti (2021),
who followed a similar time-resolved PIV/PTV approach for particle-laden turbulent
boundary layers, showed that the bias uncertainty was negligible compared to the random
uncertainty. Compared to their study, the present particles are much smaller with respect
to the flow scales, and therefore the error associated with interpolating the fluid velocity
at the particle location is correspondingly smaller. The centroid location uncertainty
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Dynamics of small heavy particles in homogeneous turbulence

〈ufp,y〉 〈up,y〉 〈us,y〉 〈(u′
fp,y)

2〉 〈(u′
p,y)

2〉 〈(u′
s,y)

2〉 〈(du′
fp,y/dt)2〉 〈(a′

p,y)
2〉

1.4 % 0.8 % 0.3 % 1.3 % 1.2 % 0.3 % 0.3 % 0.3 %

Table 4. Random errors of the velocity and acceleration statistics based on the standard deviation of the last
20 % of data for the case with the lowest number of samples.

864

Sv

〈u fp
,y
〉/u

η

–
〈u s,y

〉/u
η

20 864

Sv
20

6

4

2

0
1

2

4

8

13

St

–5

0

5

10(a) (b)

Figure 1. Mean vertical velocity of the sampled flow (a) and mean vertical slip velocity (b). Symbols
represent the mean over the upward- and downward-moving subsets (upward- and downward-pointing triangles,
respectively) as well as the ensemble mean (circles). Dashed lines in (a) represent 〈ufp,y〉/uη = C, with C
defined in the text. The dashed line in (b) represents 〈us,y〉 = −τpg. Blue and red shadings in (a) represent the
low (red) and high (blue) Reλ cases. The colour bar here and in subsequent figures indicates the colouring of
symbols with respect to St (in some figures with respect to Sv).

(investigated for these same particles in Petersen et al. 2019) is an order of magnitude
smaller than the typical particle displacement as in Baker & Coletti (2021), and therefore
its impact is also deemed negligible compared to the random uncertainty. The latter is
estimated based on the standard deviation of the last 20 % of data (Ebrahimian et al.
2019a), and is reported in table 4 for the main quantities.

3. Results

3.1. Velocity
We begin by considering the statistics of the sampled fluid, focusing on the vertical
component ufp,y which is most relevant to the settling process. Figure 1(a) shows the
mean vertical sampled-fluid velocity for all particles, as well as the velocity conditioned
on upward-/downward-moving particles (i.e. particles with positive/negative ufp,y). The
results are approximately independent of Sv and consistent with the scaling 〈ufp,y〉/uη =
C, where the constant C is the mean for the respective sets of particles. Given the
expected dependence of the vertical velocities with St and Sv, here and in the following
figure we shade the area outside of the investigated range to emphasize that the
trends should not be extrapolated. According to previous studies mentioned in § 1, we
expect 〈ufp,y〉 ≈ −0.2urms, which over the present range of Reλ implies 〈ufp,y〉 ≈ −2uη.
Indeed, for the unconditional average over all particles we find C ≈ −2. The results
for the downward-moving and upward-moving subsets are consistent with C ≈ −5 and
C ≈ 7, respectively. Thus, the upward-/downward-moving particles sample fluid regions
with relatively large upward/downward velocity fluctuations, and these are of similar
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864

Sv

〈u p,
y〉/

u η

〈u p,
y〉/

(τ
pg

)

20 864

Sv

20

1

2

4

8

13

St

–5

–10

–2

–4

–6

–8

0

5
(a) (b)

Figure 2. Mean vertical particle velocity, normalized by the Kolmogorov velocity (a) and by the still-air
settling velocity τpg (b). Symbols represent the mean over the upward- and downward-moving subsets (upward-
and downward-pointing triangles, respectively) as well as the ensemble mean (circles). The dashed line in
(a) represents 〈us,y〉/uη = −Sv, with C defined in the text. Dashed lines in (b) represent 〈up,y〉/(τpg) =
CSv−1 − 1.

25201510500 10 20–30 –20 –10

up,y /uη |u′
p,y|/uη

Sv

1

3

10

0.10

0.08

0.06

0.04

0.02

0

0.06

0.04

p
.d

.f
.

0.02

0

(a) (b)

Figure 3. The p.d.f.s of the vertical particle velocity for select cases (a). The p.d.f.s of the absolute value of
the fluctuating part of the vertical particle velocity (b). Here, ‘x’ denotes upward-moving particles while ‘+’
denotes downward-moving particles. The solid grey line indicates a Gaussian distribution.

magnitude for both subsets. Therefore, the net settling enhancement stems from the
downward particles being more numerous, not from their association with stronger
downward events.

Figure 1(b) shows the normalized slip velocity, the dashed line indicating 〈us,y〉/uη =
−Sv, or 〈us,y〉 = −τpg, as theorized by Wang & Maxey (1993). This corresponds well
to the measured data, except for the upward-moving particles of largest Sv, which have
a significantly smaller slip velocity. This is likely related to the assumption 〈ap〉 = 0.
The latter is strictly valid only for the ensemble of all particles, and not necessarily for
specific subsets. In absence of this assumption, (1.4) predicts a smaller slip velocity for
mean downward particle acceleration.

We then consider the particle vertical mean velocity 〈up,y〉. Since in the considered
regimes we have approximately 〈ufp,y〉/uη = C and 〈us,y〉/uη = −Sv, we expect
〈up,y〉/uη = C − Sv. Figure 2(a) supports this scaling for the ensemble of all particles.
Similarly, normalizing by the still-air terminal velocity leads to 〈up,y〉/(τpg) = C/Sv − 1.
This is confirmed in figure 2(b), where the scaling is shown to hold also for upward and
downward-moving particles (with the respective values of the constant). We again stress
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Figure 4. Variance of vertical particle velocity (solid symbols) and sampled-fluid velocity (open symbols) (a).
Variance of vertical slip velocity (circles) and covariance of the vertical slip velocity and sampled-fluid velocity
(squares) (b).

that this cannot be extrapolated ad libitum: in the limit of both vanishing and infinite
particle inertia, we expect 〈up,y〉/(τpg) = −1.

The probability density function (p.d.f.) of the normalized vertical particle velocity,
up,y/uη, is shown in figure 3(a) for three selected cases, the other cases sharing the
same trends. For increasing Sv, the distributions shifts to more negative values, as
expected, and the distributions become positively skewed. This is in contrast with the
findings of Baker et al. (2017), who used point-particle simulations. The disagreement
for the heavier particles is not surprising, as the assumptions behind such simulations
become questionable with increasing Rep. Figure 3(b) reports the p.d.f. of the absolute
value of the particle velocity fluctuations, |u′

p,y|/uη, distinguishing between upward- and
downward-moving particles. We observe no difference between both subsets, and therefore
in the following we do not consider them separately. All Sv cases collapse well on a
Gaussian distribution when normalized by the Kolmogorov velocity. This confirms the
dominant role of the fluid fluctuations in determining the particle velocity fluctuations, for
a wide range of response times and fall speeds.

We then investigate the scaling of the particle velocity fluctuations by considering the
variance of up

′ = ufp
′ + us

′

〈(up
′)2〉 = 〈(ufp

′)2〉 + 〈(us
′)2〉 + 2〈ufp

′us
′〉. (3.1)

Figure 4 displays the vertical components of the four terms in (3.1) for the various
cases, normalized by Kolmogorov scaling. The horizontal components, not shown, behave
similarly. The particle velocity variance 〈(u′

p,y)
2〉 is smaller than but comparable to the

variance of the sampled-fluid velocity 〈(u′
fp,y)

2〉 (figure 4a), as also reported by Ireland
et al. (2016a) in zero-gravity simulations. This confirms that, in the present range of
parameters, the fluctuating energy of the particles is driven by the turbulent kinetic
energy. Figure 4(b) indicates that the normalized slip velocity variance 〈(u′

s,y)
2〉/u2

η varies
linearly with St. This is consistent with the scaling us/uη ∝ St1/2 in Balachandar (2009),
derived for the present range (τη < τp < TL) but in the absence of gravity. The covariance
〈u′

fp,yu′
s,y〉 also varies linearly with St and approximately equals −〈(u′

s,y)
2〉. Therefore, from

(3.1) we have 〈(u′
p,y)

2〉 ≈ 〈(u′
fp,y)

2〉 − 〈(u′
s,y)

2〉. As 〈(u′
s,y)

2〉 grows with St, we retrieve the
influence of inertial filtering: heavier particles exhibit weaker velocity fluctuations with
respect to the sampled-fluid fluctuations.
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Figure 5. Variances of the vertical sampled-fluid velocity (open symbols) and vertical particle velocity (solid
symbols), normalized by the fluid velocity variance.

We conclude this section by comparing the sampled-fluid and particle velocity variances
against the fluid velocity variance, again focusing on the vertical components (figure 5).
This allows us to quantitatively compare the fluctuating energy of the dispersed and
carrier phase. The zero-gravity simulations of Ireland et al. (2016a) indicated that the
particle velocity fluctuations can exceed the fluid fluctuations for St < 1, due to preferential
sampling of energetic flow regions. In the present case, on the other hand, both inertia and
gravity concur to reduce the particle fluctuating energy below the turbulent kinetic energy
of the fluid, in agreement with the algebraic model of Wang & Stock (1993) and the results
of Good et al. (2014) in similar ranges of St and Sv. In particular, figure 5 shows that the
fluctuating energy of the fluid sampled by the particles is somewhat lower than (although
comparable to) the unconditional turbulent kinetic energy. This implies that, as far as this
observable is concerned, the effect of preferential sampling is relatively weak. The latter
is indeed offset by gravitational drift, which reduces the particle ability to follow energetic
fluid structures, hence 〈(u′

fp,y)
2〉 < 〈(u′

f ,y)
2〉. This picture will be confirmed later, when

analysing the fast decorrelation of the sampled-fluid velocity (see § 4.2). Inertial filtering
further reduces 〈(u′

p,y)
2〉 with respect to 〈(u′

fp,y)
2〉, and therefore the former is 10–30 %

lower than 〈(u′
f ,y)

2〉.

3.2. Acceleration
We present results for the vertical components of the particle acceleration, ap,y, the
horizontal components behaving similarly. In addition, we consider the temporal derivative
of the sampled-fluid velocity, dufp,y/dt. The p.d.f.s of the latter are presented in figure 6(a),
showing similar distributions for the cases with the same Reλ. Indeed, for vanishing inertia
dufp,y/dt equals the Eulerian acceleration which, in homogeneous turbulence, is a function
of Reλ only (Hill 2002; Sawford et al. 2003). For a given Reλ, the distributions of dufp,y/dt
become wider with Sv, in agreement with the simulations of Ireland et al. (2016b). This is
a manifestation of the crossing-trajectories effect: for higher settling rate, the particles
experience rapid changes of the sampled-fluid environment. The distributions of ap,y
(figure 6b) are much narrower than the corresponding distributions of dufp,y/dt, due to
inertial filtering. This effect becomes stronger with larger particle inertia, which in the
present case implies an increase of both St and Sv.

The variances of dufp,y/dt and ap,y are quantified in figure 7. As observed above,
the variance of dufp,y/dt is dominated by Reλ and increases with Sv. For tracers in
homogeneous isotropic turbulence, the normalized acceleration variance of the fluid can
be approximated as a0 ≡ 〈a2

f 〉/a2
η = 5/(1 + 100Re−1

λ ) (Sawford et al. 2003), hence for
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Figure 6. The p.d.f.s of the vertical components of the temporal derivative of the sampled-fluid velocity (a)
and the particle acceleration (b).
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Figure 7. Variances of the vertical components of the temporal derivative of the sampled-fluid velocity (a)
and the particle acceleration (b).

Reλ = 289 and 462 we expect a0 = 3.6 and 4.0, respectively. Ireland et al. (2016b)
showed a monotonic increase of 〈(du′

fp,y/dt)2〉/u2
η roughly with Sv3/2, independent of

Reλ. In the present study, the variance of dufp,y/dt is larger than for tracers, but not as
large as in Ireland et al. (2016b) and still dependent on Reλ. The difference with Ireland
et al. (2016b) is reflected in the Froude number: in their study Fr = 0.052, while here
Fr = 0.8 and 1.9, for Reλ = 289 and 462 respectively. For Fr = O(1), gravitational and
Kolmogorov acceleration are of the same order of magnitude, i.e. fluid turbulence and
gravity are expected to have comparable influences. The variance of ap,y (figure 7b)
decreases approximately linearly with Sv in the present range. It is significantly smaller
than the variance of dufp,y/dt and also smaller than a0, due to inertial filtering.

3.3. Preferential sampling
To quantify the extent and influence of preferential sampling, we discriminate between
rotation-dominated and strain-dominated fluid regions using the second invariant of the
velocity gradient tensor (Hunt, Wray & Moin 1988)

Q = ω2/4 − s2/2, (3.2)
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Figure 8. The p.d.f.s of the particle-sampled Q, defined in (3.2). The red line indicates ensemble averaged
(i.e. unconditional) Q (similar for both Reynolds numbers).

where ω2 = 2tr(Ω2) is the enstrophy, s2 = tr(S2) is the squared strain rate and S and Ω
are the symmetric and anti-symmetric part of the velocity gradient tensor, respectively.
Due to the planar nature of the measurements, we can only consider the in-plane
components of the velocity gradient tensor, which are not sufficient to fully describe
the flow topology (Perry & Chong 1994). Still, especially in homogeneous turbulence,
the in-plane part of the tensor provides important physical insight into the properties
of high-enstrophy and high-strain structures (Cardesa et al. 2013) and captures the
fundamental small-scale features (Fiscaletti, Ganapathisubramani & Elsinga 2015; Carter
& Coletti 2018). Figure 8 shows the p.d.f. of Q evaluated at the particle locations, compared
to the unconditioned fluid. For the smaller St considered, the particle-conditioned
distributions display the expected under-sampling of rotation-dominated regions (Q > 0),
which, however, becomes progressively weaker as St increases above unity.

The effect of the small-scale features of the sampled fluid on the particle motion is
depicted in figure 9, which plots the particle acceleration variance conditioned on strain
rate (figure 9a) and enstrophy (figure 9b). In both cases, larger levels of small-scale
turbulence activity correspond to stronger accelerations. Although the correlation with s2

is somewhat stronger than with ω2, the similarity of both plots is consistent with the view
that high-strain and high-enstrophy events are often concurrent (Worth & Nickels 2011;
Yeung, Donzis & Sreenivasan 2012; Carter & Coletti 2018). Due to inertial filtering, the
impact of the sampled-fluid topology decreases steeply with St. This is clearly shown in
figure 9(c), displaying the variance of the particle acceleration conditioned on the sign of
Q: particles in strain-dominated regions do display larger accelerations (Bec et al. 2006),
but the effect becomes unmeasurable for St = 4.7 and larger.

3.4. Structure functions and pair dispersion
In this section we consider two-particle statistics, starting with the second-order Eulerian
velocity structure function S2(r) = 〈(u′(x) − u′(x + r))2〉, where r is the separation
vector. For fluid tracers in homogeneous isotropic turbulence, this scales as r2 in the
dissipative range, plateaus to the fluid velocity variance at large-scale separations, and
follows the scaling predicted by Kolmogorov (1941) in the inertial range

S2‖(r) = C2(εr)2/3 or S2‖/u2
η = C2(r/η)2/3, (3.3)

S2⊥(r) = 4
3 C2(εr)2/3 or S2⊥/u2

η = 4
3 C2(r/η)2/3, (3.4)
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Figure 9. Vertical component of the particle acceleration variance, conditioned to Q. Acceleration variance
conditioned to high-strain events for Q < 0 (a) and to high-enstrophy events for Q > 0 (b), both normalized
by the variance of the ensemble. Acceleration variance averaged over Q < 0 (diamonds) and Q > 0 (circles),
normalized by the variance of the fluid acceleration, calculated as 〈(a′

f ,y)
2〉 = a0aη (c).

where the subscripts ‖ and ⊥ denote velocity components longitudinal and transverse
to the separation vector, respectively, and C2 ≈ 2 (Saddoughi & Veeravalli 1994). For
non-tracer particles, inertia and gravity modify these trends. Simulations and experiments
indicate that, when gravitational effects are negligible or absent, inertia leads to greater
relative velocities between nearby particles, such that the structure function increasingly
deviates from the r2 scaling at small separations (Bec et al. 2010; Ireland et al. 2016a;
Dou et al. 2018). This is attributed to the path-history effect, i.e. the particles retaining
memory of their past interactions with the flow and thus approaching each other with
a significant uncorrelated velocity component (see, among many others, Wilkinson &
Mehlig 2005; Fevrier, Simonin & Squires 2005; Bragg & Collins 2014; Fong, Amili
& Coletti 2019). With the addition of gravity, the simulations of Ireland et al. (2016b)
indicated a strong reduction of relative particle velocity at all separations. They attributed
this to the decorrelation of the sampled-fluid velocity along the particle trajectories (which
we shall confirm later), hindering the path-history effect and in turn decreasing the relative
velocities. To our best knowledge, no previous experimental observation could verify this
latter point.

The longitudinal structure functions are presented in figure 10, the transverse
components (not shown) showing analogous trends. Results are compared to the measured
Eulerian structure function for tracers, which follows both r2 scaling in the dissipative
range and the scaling from (3.3) in the inertial range. Due to the finite laser sheet thickness
(≈6η) we expect an overestimation of the relative velocity over the dissipative range (Dou
et al. 2018), which, however, may not overwhelm the trend. At small separations (r � 20η),
the structure functions of the particles deviate from tracers with increasing St, confirming
previous findings. In the inertial range, S2‖(r) roughly follows the r2/3 scaling, but the
values are significantly lower than for tracers. The gap persists at large scales, consistent
with the fact that the inertial particle fluctuating energy (to which the structure function
asymptotes for large r) is lower compared to the fluid, see figure 5. Although the competing
effects of inertia and gravity cannot be separated here, these results appear to confirm the
observation of Ireland et al. (2016b) that gravity reduces the relative particle velocities at
all scales.
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Figure 10. Longitudinal structure functions using the particle velocity. The red line indicates the (Eulerian)
structure function of tracers. Dashed lines indicate r2 scaling and the prediction by Kolmogorov (1941) for the
inertial range, respectively.

We then turn to particle pair separations as a function of time, r(t). In homogeneous
isotropic turbulence, for tracer pairs with an initial separation r0 in the inertial range, we
expect the mean square separation to follow the ballistic scaling proposed by Batchelor
(1950)

〈(r(t) − r0)
2〉 = 11

3 C2(εr0)
2/3t2, for τη � t � tB, (3.5)

where tB = (r2
0/ε)

1/3 is the characteristic time scale of an eddy of size r0. Recently, a more
general time scale t0 = S2(r0)/ε has been proposed by Bitane, Homann & Bec (2012). For
tB � t � TL (or t0 � t � TL), the dispersion does not depend on r0 and is expected to
follow the Richardson–Obukhov scaling 〈r(t)2〉 = gεt3, where g ≈ 0.5 (Salazar & Collins
2012). For t in the dissipative range, particle inertia enhances pair dispersion at small
times, due to the large relative velocities at small separation (Bec et al. 2010; Gibert, Xu &
Bodenschatz 2010); while for larger t, the inertial filtering and path-history effects reduce
pair dispersion compared to tracers (Bragg, Ireland & Collins 2016). To the best of our
knowledge, the only previous investigations on the effect of gravity on pair dispersion are
the numerical studies by Chang, Malec & Shaw (2015) and Dhariwal & Bragg (2019), who
mostly focused on bi-dispersed particles sets.

The mean square separation for our inertial particles is presented in figure 11. Due
to the nature of the measurements, the results are biased by the constraint that the
trajectories cannot separate more than the laser sheet thickness in z. One way to account
for this is to consider that the right-hand side in (3.5) is the geometric average of the
structure function components at r0, i.e. 〈(r(t) − r0)

2〉 = (S2‖(r0) + 2S2⊥(r0))t2. Setting
to zero the out-of-plane velocity, we can write the mean square separation for tracers
as 7

3 C2(εr0)
2/3t2, which is plotted as a black solid line for reference. The effect of St

(and indirectly of Sv) is represented in figure 11(a), for trajectories with initial separation
3 < r0/η < 4. With increasing particle inertia, the mean square separation grows. Still,
all curves are generally below the expectation for tracers, illustrating the competing effect
of inertia and gravity. The normalized form plotted in figure 11(b) illustrates the effect of
the initial separation for the case St = 13: with increasing initial separations, the impact
of the large relative velocities is weakened, and the curves tend to collapse on each other
(which is also the case for smaller St, not shown). This confirms the strong influence of
the uncorrelated motion of nearby particles, already highlighted by the structure functions.
The plot also emphasizes how the particles follow the Batchelor regime up to t = O(τη),
which corresponds as well to t = O(tB) and t = O(t0). Around t = O(τη) we observe a
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Figure 11. Mean square separation of particle pairs with initial separation r0. Mean square separation of pairs
with 3 < r0/η < 4 for all cases (a). Mean square separation of pairs with 3 < r0/η < 4 to 9 < r0/η < 10
(increasing with darker shades) for the St = 13 case (b). The solid thin lines indicate the scaling in (3.5).

mild slowing down of the ballistic separation, also observed for tracers by Bourgoin (2015),
after which the slope increases. However, given the bias due to the shape of the illuminated
volume, caution should be exerted when interpreting the behaviour for relatively long
times. Here, we just note that, for particles in zero gravity, the transition out of the ballistic
regime is expected to ensue at times O(τp) (Bragg et al. 2016), i.e. much later than what we
observe. The difference appears to be rooted in the effect of gravity and could be associated
with the time scale of eddy crossing by the falling particles, similarly to recent findings for
rising bubbles (Mathai et al. 2018). Further research is warranted on this point.

4. Modelling the velocity and acceleration variances

Here, we leverage and expand on the framework of Csanady (1963) to obtain expressions
for the particle velocity and acceleration variances. To summarize the detailed explanation
that follows, we integrate the Lagrangian particle velocity spectrum, which is obtained
from the sampled-fluid velocity spectrum modulated by a response function. To extend
the frequency range of the spectrum, we Fourier transform the Sawford (1991) expression
of the velocity autocorrelation. As this was originally derived for the unconditional fluid,
we substitute in it the Lagrangian time scales associated with the sampled fluid.

4.1. Lagrangian spectrum of particle velocity
For frequencies in the inertial range π/TL � ω � π/τη, the Lagrangian spectrum for the
fluid flow is expected to scale as E ∝ εω−2 (Tennekes & Lumley 1972; Yeung 2001).
The spectrum can also be derived from the velocity autocorrelation as the two form a
Fourier transform pair. In simple approaches considering only the inertial and large-scale
dynamics, the auto-correlation function is well approximated by R(t) = 〈(u′)2〉exp(−t/TL)

(Hinze 1975; Mordant et al. 2001; Zhang et al. 2019), valid for ω � π/τη (or τη �
t) and corresponding to E = 〈(u′)2〉TL/(1 + (ωTL)2). For small time separations, the
autocorrelation deviates from the exponential, tending to a horizontal asymptote at t = 0
with a curvature proportional to the acceleration variance (Mordant et al. 2004). Sawford
(1991) proposed an alternative formulation valid for all t, using a second time scale T2
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related to the finite acceleration variance

R(t) = 〈(u′)2〉TL exp(−t/TL) − T2 exp(−t/T2)

TL − T2
, (4.1)

Fourier transformation yields

E(ω) = 〈(u′)2〉
TL − T2

[
T2

L
1 + (ωTL)2 − T2

2
1 + (ωT2)2

]
. (4.2)

Note that in this two-time-scale model TL no longer equals the correlation time. We use this
expression to model the Lagrangian spectrum of the sampled-fluid velocity, by substituting
the respective time scales TL,fp and T2,fp. Using the response function (1.10) in combination
with (1.8) and (1.9), we have

〈(up
′)2〉 = 〈(ufp

′)2〉
[

1 − St2

(TL,fp/τη + St)(T2,fp/τη + St)

]
, (4.3)

〈(ap
′)2〉 = τ−2

η 〈(ufp
′)2〉 1

(TL,fp/τη + St)(T2,fp/τη + St)
. (4.4)

4.2. Time scales of the sampled-fluid velocity
Because evaluating equations (4.3) and (4.4) requires estimates for TL,fp and T2,fp, we
consider the issue of how those compare to TL and T2. For tracers, the Lagrangian integral
time scale is related to the Eulerian integral time scale (TE) as (Yeung 2001)

TL/TE ≈ 5/C0, (4.5)

where C0 is the pre-factor in the expression of the Lagrangian velocity structure
function. This depends on the turbulence Reynolds number, and based on a review
of the literature Lien & D’Asaro (2002) suggested C0 = C∞

0 (1 − (0.1Reλ)1/2) with
C∞

0 = 6 ± 0.5 (Ouellette et al. 2006). In addition, the numerical prefactor in (4.5) may
depend on Reynolds number and large-scale properties of the turbulence (see, for example
Sreenivasan 1998; Vassilicos 2015). Considering inertial particles, the Lagrangian integral
time scale of the sampled fluid TL,fp is influenced by both inertia and gravity. For the range
of St in the present study, however, the effect of St as derived empirically by Wang &
Stock (1993) is negligible. (Alternatively, Jung, Yeo & Lee (2008) proposed an empirical
expression of the St effect derived in zero gravity.) Gravity decreases TL,fp due to the
crossing-trajectories effect, for which we adopt the expression proposed by Csanady (1963)
(see also Pozorski & Minier 1998)

TL,fp = TL
1[

1 + α(TL/TE)2Sv2(uη/urms)2
]1/2 , (4.6)

where α = 1 and 4 for the time scales associated with the vertical and horizontal
components, respectively. Alternatively, using 〈(u′

f )
2〉/u2

η = Reλ/
√

15 (Hinze 1975) and
TL/τη = 2(Reλ + 32)/(

√
15C0) (Zaichik, Simonin & Alipchenkov 2003), this can be

expressed as
TL,fp

τη

= 2(Reλ + 32)√
15C0

1[
1 + α(5/C0)2Sv2(

√
15/Reλ)2

]1/2 , (4.7)

which is a function of Reλ and Sv only.
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Figure 12. Empirical values of T2,fp, determined using (4.9). The black line indicates the prediction for
tracers in (4.8).

For tracers, the time scale T2 can be written as (Sawford 1991)

T2/τη = C0/(2a0). (4.8)

A relation for T2,fp is obtained from the variance of dufp/dt

〈
(

dufp

dt

)2

〉 = 2
π

∫ ∞

0
ω2Efp(ω) dω = 〈(ufp

′)2〉
TL,fpT2,fp

. (4.9)

Thus, we can empirically evaluate T2,fp using the measured values for 〈(du′
fp/dt)2〉 and

〈(ufp
′)2〉. The values are presented in figure 12, along with the prediction for tracers in

(4.8); T2,fp is measurably smaller than T2, although no clear trend with St is discerned.
Note that (4.9) relates the two time scales by a Taylor time scale of the sampled flow,

which can be defined as τ 2
fp,λ ≡ 〈(ufp

′)2〉/〈(du′
fp/dt)2〉 (Tennekes & Lumley 1972; Pope

2000), such that τ 2
fp,λ = TL,fpT2,fp.

With the above estimates of TL,fp and T2,fp, we use (4.1) to model the autocorrelations
of the sampled-fluid velocity, Rfp. We consider both horizontal and vertical components,
and present the results as correlation coefficients, ρfp, normalizing by the variance
of the sampled-fluid velocity for the respective components. The modelled curves are
plotted in figure 13, along with the corresponding measurements and the fluid velocity
autocorrelation (which is also modelled via (4.1), using TL and T2). For clarity we separate
both Reλ cases, as these have different fluid time scales. The plots only extend to values of t
for which the measured autocorrelations are based on at least 100 trajectories. This allows
for limited time lags, still sufficient to highlight the trends. The sampled-fluid velocity
decorrelates faster with Sv due to the crossing-trajectory effect. Despite quantitative
differences with the measurements, (4.1) captures well this trend for short times. In
figure 14 we compare the measured ρfp against the particle velocity autocorrelation
coefficients, ρp; the fluid velocity autocorrelation is also included for reference. The
apparent trend is that ρp decays more slowly for heavier and heavier particles, which
is a consequence of inertia; while ρfp decays more rapidly, which is a consequence of
gravity.
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Figure 13. Autocorrelation of the sampled-fluid velocity. Horizontal components for the Reλ = 289 (a) and
462 (b) cases; vertical components for the Reλ = 289 (c) and 462 (d) cases. Thick solid lines indicate the
measured autocorrelation. Thin black lines indicate the prediction for tracers in (4.1). Dashed lines indicate the
prediction from (4.1) with corrected time scales for inertial particles using (4.7) and (4.9).
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Figure 14. Autocorrelation of the particle velocity. Horizontal components for the Reλ = 289 (a) and 462
(b) cases; vertical components for the Reλ = 289 (c) and 462 (d) cases. Thick solid lines indicate the
autocorrelation. Thin black lines indicate the prediction for tracers in (4.1). Dashed lines indicate the
autocorrelation of the particle–sampled-fluid velocity as presented in figure 13.

4.3. Model predictions
We now compare the measured variances of the particle velocity and particle acceleration
against the respective predictions from (4.3) and (4.4). In non-dimensional form

〈(up
′)2〉

〈(ufp′)2〉 = 1 − St2

(TL,fp/τη + St)(T2,fp/τη + St)
, (4.10)

〈(ap
′)2〉

〈(ufp′)2〉τ−2
η

= 1
(TL,fp/τη + St)(T2,fp/τη + St)

. (4.11)
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Figure 15. Modelled variances of the vertical component of the particle velocity (a) and acceleration (b).
Red lines indicate the predictions from (4.10) and (4.11), coloured by Fr. Circles indicated measured data,
coloured by Sv (see, for example figure 13 for colour coding). The ‘+’ signs indicate case-specific predictions
as discussed in the text for matching colours. Grey and black dashed lines in (a) indicate results from the model
by Ayala et al. (2008) for Fr = 10−3 and 102 respectively. The dashed line in (b) indicates the asymptote St−2.

These are shown in figures 15(a) and 15(b), respectively, as a function of St. The
expressions are essentially model forms of the particle response function, as they describe
the variance of the particle velocity and acceleration with respect to the sampled-fluid
flow. Here, and in the following, we again consider the vertical components only, the
horizontal components leading to analogous conclusions. These ‘generalized predictions’
are compared with the measurements and with ‘case-specific predictions’. The latter differ
from the generalized predictions due to the difference in T2,fp: for the generalized model
we approximate T2,fp ≈ T2 (which is calculated for any St according to (4.8)), whereas for
the case-specific predictions we use the empirically determined values for T2,fp (figure 12).
As can be seen, this simplification has a moderate impact and does not alter the trends.
In the small St limit, the modelled particle velocity variance equals the variance of
the sampled-fluid velocity, regardless of Fr. For finite St, the particle velocity variance
〈(u′

p)
2〉/〈(u′

fp)
2〉 decreases with both inertia and gravity (figure 15a). The dependence

with St reflects inertial filtering, while the effect of Fr reflects the decrease of TL,fp with
gravitational drift, which in turn damps 〈(u′

p)
2〉 (4.10). The effect of gravity becomes

negligible for Fr � 10. In the limits of either strong gravity (Fr � 1) or large inertia
(St 
 1), 〈(u′

p)
2〉 vanishes compared to 〈(u′

fp)
2〉. Overall, the generalized model represents

well the present data. Modelled results are qualitatively similar to results of the model
presented in Ayala, Rosa & Wang (2008), the main quantitative difference resulting from
the omission of a second time scale (T2) in that model.

The normalized particle acceleration variance 〈(a′
p)

2〉/(〈(u′
fp)

2〉τ−2
η ) (figure 15b) tends

to a0/u0 for small St, where u0 ≡ 〈a2
f 〉/u2

η is a function of Reλ. For large St, it asymptotes
to St−2, or 〈(a′

p)
2〉 = 〈(u′

fp)
2〉τ−2

p . For Fr � 1 the particle acceleration variance displays
a non-monotonic behaviour with St, due to the competing effects of inertia and gravity:
an increase of inertia for a fixed Fr implies an increase of Sv and therefore of
crossing-trajectory drift, augmenting dufp,y/dt and in turn also the particle acceleration.
As St increases further, inertial filtering eventually dominates and the particle acceleration
is dampened.
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Figure 16. Vertical component of the particle acceleration variance, modelled using (4.12). Variation in Fr
for Reλ = 300 (a). Variation in Reλ for Fr = 0.01 (solid lines) and Fr = ∞ (dashed lines) (b). Comparison of
cases from Ireland et al. (2016b) (squares) and the present study (circles) with the prediction in (4.12) (lines)
(c). Matching colours have matched Fr and Reλ.

As the sampled-fluid properties are not known a priori, (4.10) and (4.11) have limited
predictive power. However, as shown in figure 5, the sampled-fluid velocity variance is
marginally smaller than the fluid velocity variance, and one can approximate 〈(u′

f )
2〉 ≈

〈(u′
fp)

2〉. Taking 〈(u′
f )

2〉/u2
η = Reλ/

√
15 (Hinze 1975) and substituting in (4.11) leads to

〈(ap
′)2〉

a2
η

= Reλ√
15

1
(TL,fp/τη + St)(T2/τη + St)

, (4.12)

where we assumed T2,fp ≈ T2 and TL,fp is obtained from (4.6). Because of the assumptions
made, (4.12) is expected to underpredict somewhat the observations. The dependence
on St, Fr and Reλ is illustrated in figure 16. For large St, the curves asymptote to
ReλSt−2/

√
15. At intermediate St and Fr � 1, we retrieve the non-monotonic behaviour

discussed above. This non-monotonicity was also reported by Ireland et al. (2016b)
for Fr = 0.052 as well as by Parishani et al. (2015) for Fr ≈ 0.14. In general (4.12)
agrees remarkably well with the trends reported by their simulations as well as with our
experimental data. The present model demonstrates how the value of St that maximizes
the particle acceleration increases with Fr, while the maximum shrinks and eventually
disappears for Fr � 0.1. This is the reason why the non-monotonic behaviour found by
Ireland et al. (2016b) at Fr = 0.052 is not seen in our study at Fr = O(1), nor in previous
studies at Fr ≈ 0.3 (Ayyalasomayajula et al. 2006) and Fr ≈ 30 (Volk et al. 2008). For
increasing Reλ, the maximum of 〈(a′

p)
2〉/a2

η is found at larger St. This is consistent with
the view that, with increasing Reλ, a wider range of scales may influence the particle
motion, and therefore also particles with St > O(1) may respond strongly to the turbulence
(Yoshimoto & Goto 2007).

We now use (4.11) to derive an expression for the slip velocity variance. Squaring and
averaging the fluctuating part of the particle equation of motion, ap

′ = −us
′/τp , we have

〈(us
′)2〉 = τ 2

p 〈(ap
′)2〉. Substituting in (4.11) gives

〈(us
′)2〉

〈(ufp′)2〉 = St2

(TL,fp/τη + St)(T2/τη + St)
, (4.13)
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Figure 17. Vertical components of the modelled variance of the slip velocity (a) and covariance of the slip
velocity and the sampled-fluid velocity (b). Red lines indicate the predictions from (4.13) and 〈ufp

′us
′〉 =

−〈(us
′)2〉, coloured by Fr. Circles indicated measured data, coloured by Sv (see, for example figure 13 for

colour coding). The ‘+’ signs indicate case-specific predictions as discussed in the text for matching colours.

where again we assumed T2,fp ≈ T2 and TL,fp is obtained from (4.6). Figure 17(a)
verifies this prediction, comparing it with the case-specific predictions (using empirical
estimates for T2) and the measurements. The modelled slip velocity variance is in the
ranges 〈(u′

s,y)
2〉 ≈ 0 in the small St limit, when particles faithfully follow the flow;

to 〈(u′
s,y)

2〉 ≈ (u′
fp,y)

2 at large St, when particles are ballistic and the slip velocity
fluctuations effectively equal the velocity fluctuations of the sampled fluid. In between,
the variance of the slip velocity increases with both inertia and gravity as both effects
reduce the ability of the particles to follow the fluid fluctuations. The agreement with
the measurements is remarkable. Also, the generalized model is consistent with the
scaling derived by Balachandar (2009) for the different regimes: for the slip velocity
variance, his arguments imply 〈(u′

s,y)
2〉 ∝ St2 for τp < τη, 〈(u′

s,y)
2〉 ∝ St for τη < τp < TL,

and 〈(u′
s,y)

2〉 ≈ constant for τp > TL. Figure 17(b) shows that the covariance of the
sampled-fluid velocity and slip velocity is approximately 〈ufp

′us
′〉 ≈ −〈(us

′)2〉. This result
is supported by the measurements (see figure 4), and can be derived from the assumptions
of the model: comparing (4.13) and (4.10) implies 〈(up

′)2〉 = 〈(ufp
′)2〉 − 〈(us

′)2〉, and
comparing the latter equality with the variance of the particle velocity (expressed as
up = ufp + us) implies 〈ufp

′us
′〉 = −〈(us

′)2〉. Accordingly, the covariance ranges from
approximately zero at small St, where there is no slip velocity, to 〈ufp

′us
′〉 = 〈(ufp

′)2〉
at large St, where the slip velocity equals the sampled-fluid velocity.

From the relationship 〈ufp
′us

′〉 ≈ −〈(us
′)2〉 (and substituting us

′ = τpap
′ and/or

us
′ = up

′ − ufp
′) we can derive other covariances between the particle velocity, the

sampled-fluid velocity, and the particle acceleration; those are especially useful to
formulate stochastic models (Zamansky, Vinkovic & Gorokhovski 2013; Pope 2014).
Normalizing by the respective r.m.s. values, we have expressions for the following
correlation coefficients:

ρ(upufp) =
√

1 − St2

(TL,fp/τη + St)(T2/τη + St)
, (4.14)
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Figure 18. Modelled correlation coefficients of the vertical components of the particle velocity and
sampled-fluid velocity (a) and of the particle acceleration and sampled-fluid velocity (b). Red lines indicate
the predictions from (4.14) and (4.15), coloured by Fr. Circles indicated measured data, coloured by Sv (see,
for example figure 13 for colour coding). The ‘+’ signs indicate case-specific predictions as discussed in the
text for matching colours.

ρ(apufp) =
√

St2

(TL,fp/τη + St)(T2/τη + St)
, (4.15)

ρ(apup) = 0. (4.16)

The model predictions in (4.14) and (4.15) are presented in figure 18 for the vertical
component. The correlation between the particle velocity and sampled-fluid velocity,
ρ(upufp), approximates unity in the small St limit as expected, and the model predicts the
decorrelation due to inertia and gravity (figure 18a). The agreement with the measurements
is satisfactory, although a comparison with data at lower Fr is needed to corroborate the
prediction. In contrast, the particle acceleration does not correlate with the fluid velocity
at small St (figure 18b), with ρ(apufp) increasing with gravity and inertia. Indeed, in the
ballistic limit, the slip velocity fluctuations are equal and opposite to the fluid velocity
fluctuations, that is ap

′ = −us
′/τp = ufp

′/τp. The significant mismatch with the data
(approximately 40 % for most of the cases) may partly be due to inherent uncertainty on
the particle acceleration, but is also likely related to the simplistic assumption that drag
and gravity are the only forces at play. Finally, the prediction that the particle acceleration
is uncorrelated from the particle velocity (4.16) is confirmed by our measurements, from
which we find ρ(apup) < 0.05 for all cases.

5. Discussion and conclusions

We have experimentally investigated the transport of sub-Kolmogorov heavy particles in
homogeneous turbulence. All relevant spatio temporal scales are resolved for the first time
in a similar configuration, albeit through planar measurements. We consider ranges of
St and Sv for which a rich particle–turbulence interaction is expected, including settling
enhancement, inertial filtering and preferential sampling. The focus is on the respective
roles of inertia and gravity, which have different and often competing influence on the
particle motion. A unique feature of the present measurements is the access to the local
properties of the turbulence experienced by the particles along their trajectories.

The importance of the sampled-fluid properties is already clear from the mean vertical
velocities. It is proposed that, in the present ranges of St and Sv, the particle settling
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velocity can be rationalized by assuming 〈ufp,y〉/uη = C. Because, to first order, the
settling enhancement �uy = 〈ufp,y〉, it is also proportional to the velocity scale of the
turbulence, consistent with previously reported trends. The limited range of Reλ, however,
cannot clarify whether this scale shall be uη, urms, or a multi-scale quantity between those.
The mean of the instantaneous slip velocity is well represented by Stokes drag with the
Schiller & Neumann correction, at least for moderate St. Upward- and downward-moving
particles sample fluid regions with large velocity fluctuations in those same directions,
with similar magnitude in both cases. Therefore, the settling velocity is augmented due to
the downward-moving particles being more numerous, not because the sampled downward
fluid fluctuations are stronger than the upward ones.

The fluid fluctuations also play a dominant role in determining the particle velocity
fluctuations. The variance of the particle velocity 〈(up

′)2〉 is comparable to but somewhat
smaller than the sampled-fluid velocity variance 〈(ufp

′)2〉, due to inertial filtering; and the
latter is slightly smaller than the fluid velocity variance 〈(uf

′)2〉, due to gravitational drift.
While gravity and inertia have concurrent effects on the particle fluctuating energy, their
influences on the particle accelerations are opposite to each other: the crossing-trajectories
effect augments the temporal derivative of the sampled-fluid velocity, 〈(dufp

′/dt)2〉, which
act to enhance the particle acceleration variance; but this is offset (at least in the present
range of parameters) by inertial filtering. The net result is that heavier particles display
smaller r.m.s. accelerations and less intermittent acceleration p.d.f.s. The preferential
sampling of high-strain/low-vorticity regions is measurable, but its global impact on the
particle motion is weak.

The competing influences of inertia and gravity are on display also in the two-particle
statistics. The uncorrelated component of the relative motion augments the particle
velocity structure functions at small separations; while the reduced fluctuating energy of
the particles (compared to tracers) has an opposite effect at inertial-range and large-scale
separations. The large relative velocities of nearby particles, which increase with particle
inertia, cause heavier particles to separate faster; still, the mean square separation is
generally below the expectation for tracers. This is attributed to gravity causing the
particles to experience fluid velocities that decorrelate faster in time, with respect to
zero-gravity conditions. The inertial particles appear to transition out of the ballistic
regime at earlier times compared to tracers, similarly to what recently shown for bubbles
rising in homogeneous turbulence.

The planar nature of the measurements limits the full characterization of both the
particle motion and the turbulent fluid flow. This is expected to affect especially the
two-particle statistics in the form of a biased sampling of the trajectories, although this
may not obscure the apparent trends. The three-dimensional tracking of the particles would
overcome this limitation. Nevertheless, volumetric techniques are presently not capable
of simultaneously capturing both phases at the required resolution: despite fast-paced
advances in this area, the spatial resolution in volumetric PIV/PTV is still generally
below what can be achieved by planar measurements (Discetti & Coletti 2018); nor these
methods have systematically been adapted to multi-phase flows yet. The present study
indeed highlights the central role of the sampled-fluid properties, and extending such an
analysis to three-dimensional experiments remains a challenge.

Based on these experimental observations, we have derived an analytical model of
particle velocity and acceleration inspired by the seminal work of Csanady (1963). This
is based on applying a response function to the spectrum of fluid velocities experienced
by the particles. To this end, we use the expression proposed by Sawford (1991) for the
fluid velocity autocorrelation, in which we substitute estimates for the time scales TL and
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T2 of the sampled fluid. We lack an analytical expression for the latter time scale, but
we show that using the unconditional-fluid formulation (with classic estimates of the C0
constant) has a small quantitative influence. In its basic form ((4.10) and (4.11)) the model
provides the particle velocity and acceleration variances as a function of 〈(ufp

′)2〉. The
model agrees generally well with the experimental observations, captures the respective
effects of inertia and gravity over a wide range of the controlling parameters, and predicts
correlations between particle and sampled-fluid velocities and accelerations. In particular,
consistent with the arguments by Balachandar (2009), it predicts the variance of the slip
velocity 〈(us

′)2〉 to scale as St2 for τp < τη, as St for τη < τp < TL, and to plateau for
τp > TL.

Because we show that 〈(ufp
′)2〉 is only slightly smaller than 〈(uf

′)2〉 (at least in the
present range of parameters), the model can be written in a weaker form with more
predictive power by substituting 〈(ufp

′)2〉 = u2
ηReλ/

√
15 (Hinze 1975)

〈(up
′)2〉

u2
η

= Reλ√
15

[
1 − St2

(TL,fp/τη + St)(T2/τη + St)

]
, (5.1)

〈(ap
′)2〉

a2
η

= Reλ√
15

1
(TL,fp/τη + St)(T2/τη + St)

, (5.2)

in which T2/τη is a function of Reλ only and TL,fp/τη is a function of Reλ and Sv only, given
by (4.8) and (4.7), respectively. When compared with the present experiments and recent
simulations, in particular for the particle acceleration, this version of the model also agrees
well with the observations and represents the complex dependency with inertia and gravity.
In particular, it predicts the increase in r.m.s. particle acceleration with gravitational drift,
and its non-monotonic dependence with St when Fr � 1 as recently reported by Ireland
et al. (2016b).

Taken together, the laboratory observations and the derived model indicate how, unless
the turbulence acceleration is overwhelming (Fr 
 1), both inertia and gravity are key
ingredients to understand the transport of heavy particles in homogeneous turbulence. This
calls into question the practice of setting gravity to zero to isolate inertial effects. Such a
consideration appears to be broadly applicable: recent studies on bubbles in homogeneous
turbulence (Mathai et al. 2016) and heavy particles in turbulent boundary layers (Baker &
Coletti 2021) reached a similar conclusion.
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