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Abstract

The Brown-McCoy radical is the upper radical defined by the class of simple rings with identities.
For associative or alternative rings the Brown-McCoy radical is hereditary, and its semi-simple
class consists of all subdirect products of simple rings with identities. In this paper we present
some classes of simple non-associative algebras whose upper radicals behave similarly. Classi-
fications are then obtained of 'most' semi-simple radical classes of (y, <5) and right alternative
rings.

1980 Mathematics subject classification (Amer. Math. Soc): 16 A 21, 17 A 30.

It is well known that in the universal class of all associative rings, the Brown-
McCoy radical class, the upper radical class <& defined by the class 11 of simple
rings with identities, has the following properties:

(i) &(A) = f){I*aA\ A/IeW} for all A.
(ii) &(A) = 0 if and only if A is a subdirect product of rings in aU.

(iii) <${T) = / n <&(A) for all / < : A, for all A.
(Here &(A) is the largest ideal of A which belongs to IS.)

Sulinski (1958) showed that the only classes of simple associative rings for which
the analogues of (i), (ii) and (iii) are true are the subclasses of %. (We note in
passing that recently Leavitt (preprint) has shown that these are, in fact, the only
classes for which the analogues of (i) and (ii) are true.) Later, Sulinski (1966)
proved that in the universal class of all alternative rings, any class of simple rings
with identities satisfies the three conditions.

No other examples of classes of simple rings or algebras exhibiting this behaviour
appear to have been reported. Sulinski (1966) proposed as a candidate a certain
class of Lie algebras, but Andrunakievich and Ryabukhin (1968) subsequently
proved that in fact no class of simple Lie algebras behaves appropriately.
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284 B. J. Gardner [2]

Our main purpose in this paper is to present some further examples of classes
of simple rings and algebras which do satisfy the conditions. We also point out
that the class of simple rings with identities need not satisfy the conditions, even
in universal classes where all simple rings are associative.

Our results should be of some interest as sources of hereditary semi-simple
classes in non-associative universal classes. Among the hereditary semi-simple
classes are the semi-simple radical classes. After discarding rings of characteristic 2
(resp. 2 and 3) we are able to characterize the latter for the universal classes of
right alternative rings (resp. (y,d) rings, where (y,5) jt (±1,0), (1,1)).

Throughout, we shall use as universal classes varieties of (not necessarily
associative) algebras over a commutative, associative ring with identity, sometimes
specializing to rings (Z-algebras) or algebras over a field.

1. Generalities

In an algebra A, associative or otherwise, an element a is said to be F^-regular
if a is in the ideal generated by

{ax-x+ya-y | x, ye A}.

The algebra A is said to be ^-regular if it consists of T^-regular elements.
The Brown-McCoy radical class & (in any variety) is the class of all Fj-regular

algebras. It is also the upper radical class defined (in the given variety) by the class
of all simple algebras with identities.

For associative rings it is customary to define the Brown-McCoy radical by a
property different from ^-regularity (see, for example, Wiegandt (1974), p. 116),
but for rings in general, this latter property defines a different radical. For some
comments on this, see Smiley (1950), pp. 96-97.

In their original paper, where they considered only associative rings, Brown and
McCoy (1947) obtained further information about ^ . For any algebra A we define

T(A) = f){I'<' A | A/1 is a simple algebra with identity}.

(This of course makes sense in any variety, if appropriately interpreted.) For
associative algebras we have

(*) r(A) = &(A) for all A

(**) <&(A) = 0 # j 4 o y 4 i s a subdirect product of simple rings with identities.
Smiley (1950) transferred the radical theory of Brown and McCoy to rings in

an arbitrary variety and called F(A) the Brown-McCoy radical of A. In general,
T(A) # <&(A) (see Section 2 below) though of course %4) £ T(A) in every case.

PROPOSITION 1.1. In any variety of algebras, (*) and (**) are equivalent.
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PROOF. (*)=>(**): &(A) = 0 = r(A) if and only if A s AIT(A), while the latter
is a subdirect product of simple algebras with identities.

(**)=>(*): For any A, Al${A) is a subdirect product of simple algebras with
identities, so A has a set {Ix | A e A} of ideals such that Ajlx ^ {Aj^{A))j{lJ&(AJ)
is a simple algebra with identity for each A and D ^ A A — ^C^)- Hence
9{A) 2 T04), and so 9(A) = r(A).

The apparent assumption that &(A) = F(A) in the class of all rings leads to
some inaccuracies in Friedman (1965).

Sulinski (1966) imposed a set of conditions on a class Jt of simple objects in a
category (subject to constraints we need not list here, but which make the category
'at least as good as' a variety of rings) which ensure that the upper radical class
defined by Jt satisfies (*) and (**).

Adapting Sulinski's terminology, we shall call a class Jt of simple algebras
modular if it satisfies the following conditions.

(Ml) If SeJt and S«a A, then A = S@X for some X<\ A.
(M2) If /-=3 y<i 4̂ and J/Ie Jt, then / o A.

(Sulinski included the requirement, in (Ml), that there be a unique maximal
normal subobject M of A such that Sn M = 0, but we shall not need this.)

PROPOSITION 1.2. A class Jt of simple algebras is modular if and only if for every
algebra A and every surjective homomorphism f: J -> S, with J<* A and SeJt,
there is a homomorphism g: A -* S such that g \ J =f i.e. the diagram

J<A

s

can be completed to a commutative diagram.

PROOF. Suppose the stated condition is satisfied. If 5<i A and SeJt, then there
is a homomorphism g: A -* S such thatg(s) =.sfor each.se S. Then^4 = S©Ker(g)
and (Ml) is satisfied. If I<tJ-<A and J\IeJt, the following diagram can be
completed.

We then have I—Jn Ker(g)-=i A, so (M2) is satisfied. Hence M is modular.
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Conversely, if Jl is modular, consider a situation Jo A,f.J-* SeJK. We have
Ker(f)oJo A and / / K e r ( / ) e ^ , so by (M2), Ker (f)o A. But then

so by (Ml),

AfKst(f) =//Ker(/)©Jr/Ker(/)

for some Xo A. If as A, then

a+Ker(/)=O+Ker(/))+(^+KerC/)), jeJ, xeX.

Define g: A -• 5 by #(a) =/C0- If y+Ker ( / ) = / + K e r (/), then / ( / ) = / ( / ) , so
# is well denned. Also, for aeJ, we have g(a) =/(a). This completes the proof.

THEOREM 1.3. Let M be a modular family of simple algebras, and let & be the
upper radical class defined by Jt. Then the following conditions hold.

(i) 3t is hereditary.
(ii) 3t{A) = f]{J^ A | A/JeJ(} for all A.
(iii) M(A) = 0 if and only if A is a subdirect product of algebras from M.
(iv) & has a hereditary semi-simple class.

PROOF, (i) If Jo A&0t and J$&, then J has a homomorphic image in M. By
Proposition 1.2, so does A—contradiction.

(ii) Let K = (~){Jo A | AfJeJi}. If K has a homomorphic image S in ^ , then
by Proposition 1.2 we have a commutative diagram

K<A

But then K^ Ker(<7), by definition of K. This is impossible, so KeM and thus
K £ ^(4). The reverse inclusion holds, as noted previously.

(iii) now follows as in Proposition 1.1.
(iv) The class of subdirect products of any family of simple objects is hereditary.

COROLLARY 1.4. In a variety of algebras, if the class of simple algebras with
identities is modular, then the following conditions are satisfied.

(i) <S is hereditary.
(ii) &(A) = r(A)forallA.

(iii) &(A) =0 if and only if A is a subdirect product of simple algebras with
identities.

(iv) ^ has a hereditary semi-simple class.
(v) &(J) =Jr\ &(A) whenever Jo A.
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[5] The Brown-McCoy radical 287

Note that in a variety wherein every algebra can be embedded, as an ideal, in
an algebra with identity, every modular family of simple algebras must consist of
simple algebras with identities (by (Ml)).

As noted previously, in the variety of all associative algebras, the class of all
simple algebras with identities is modular. Sulinski (1966) showed that the
analogous statement for alternative algebras is also true. Further examples do not
seem to have been pointed out. Sulinski (1966) observed that the class of complete
simple Lie algebras satisfies (Ml) and asked whether this class is in fact modular.
This question was answered in the negative by Andrunakievich and Ryabukhin
(1968).

In the next section we shall present some further examples. For later use, we
mention the following obvious result.

PROPOSITION 1.5. If Jt is a modular class of simple algebras, so is any non-empty
subclass.

2. Examples

EXAMPLE 2.1. Corollary 1.4 is false for the variety of all rings. Let A be the
algebra over the two-element field K2 with basis {«, v, w} and multiplication table

u

V

w

u

u

0

V

V

w

V

V

w

0

0

w

A is subdirectly irreducible, with heart H = {0, v, w, v+w}. Since

we have 1X4) £ H, and thus F(A) = H. However, we have

K2 s {0,t>}«a {0,v,w,v+w}; {0,v,w,v+w}l{0,v} s K2,

A (y, S)-algebra, where y, 5 are scalars, is an algebra satisfying the identity

(x,y,z)+y(y,x,z)+S(z,x,y) = 0,

where (x, y, z) = (xy) z - x(yz).
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THEOREM 2.2. In the variety of (y,S)-algebras over afield K, where

(y,S) #(±1,0), (1,1)

and K does not have characteristic 2,3, the class of simple algebras with identities
is modular, and thus the Brown-McCoy radical satisfies all the conditions of
Corollary 1.4.

PROOF. It has been shown by Hentzel and Cattaneo (1977) that all simple
(y, <5)-algebras are associative. Moreover, for every (y, £)-algebra A, the associator
ideal A" is locally nilpotent. Let S be simple, with identity, let / be an ideal of an
algebra A and let f.J-* S be a homomorphism. Then J n A" is locally nilpotent,
so f(Jn A") = 0 and we have an induced map / : J/Jn A" -* S, where

f(J+J n A") = / 0 ) for each j e J.
But

J/JnA" £ (J+Aa)IAa<i A/A",

and here everything is associative, so there is a homomorphism g: A/A" -* S such
that g( j+A") =f(j+Jn A") for each jeJ. Define g: A -> S by

g(a)=g(a+A").

Then for each jeJ, we have g(j) =g(j+A") =J(J+J^ A") =/ ( / ) • The result now
follows from Proposition 1.2.

Our next example concerns the right alternative algebras over a (commutative,
asspciative) ring containing 1 and \. These are the algebras satisfying the identity

We have not been able to show that the class of all simple algebras with identities
is modular, but shall prove the modularity of the class of simple algebras with
identities and with no nilpotent elements. These latter are alternative, by the
following result of Mikheev (1969): right alternative algebras over a ring containing
^ satisfy the identity

(x,x,y)A=Q.

In what follows, S is a simple right alternative algebra with identity and with no
nilpotent elements, / i s an ideal of A,f: /-> S is a non-zero homomorphism, and
a, b and c are elements of A.

We firstly note that linearization of the right alternative identity gives us

(1) (a,b,c) = -(a,c,b)

(compare Schafer (1966), p. 27). Lemma 1 of Kleinfeld (1953) says that

(2) a((cb)c)=(iac)b)c.
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[7] The Brown-McCoy radical 289

Somewhat analogously to (1), we have

(3) f(a,b,u) = -f(b,a,u) for all we/.

To see this, we first note that since (ab) u, a(bu), and so on, are in /, the expressions
in (3) are defined.

Now (a+b,a+b,iif = 0, so f{a+b,a+b,u)4 =0 , and thus

0 =f(a+b, a+b, u) =f(a, a, u)+f(a, b, u)+f(b, a, u)+f{b, b, u)
=f(a,b,u)+f(b,a,u),

since/(a, a, u) = 0 =f(b, b, u), (a, a, u) and (b, b, u) being nilpotent.
We now choose an iel such that/(i) = 1. We need to examine the effect of/

on some elements involving i.

(4) / f t a, 0 = 0,

(5) f((ia)i)=f{i{ai)\

By (1), / f t a, 0 = —/ft». o) = 0. since ft i, df = 0. This gives us (4), from which
(5) immediately follows.

(6) /( /a-a/) = 0.

This is because

f(ia-ai) =f(i)f(ia-ai) =f(i)f(id)-f(i)f(ai)

=f{ia)-f{i{ai))=f{id)-f({ia)i) (by (5))

(7) f(a,ib,

By (2),/(((«) ft) 0 =f(a((ib)i)), so

0 =f(((ai)b)i
=f(a,i,b)-f(a,ib,i).

(8) f(i,a,b)=f(i,a,bi).

We have

f(i,a,b)-f(i,a,bi) =Ma)b)-f((ab)i)-f((ia)(bi))+f(i)f{a(bi)) (by (6))

=/((/«) *) - / (a , 6,0 - / ( (k) (M))

=/(-(&, fa, 0)+/(6, a, 0 (by (3))
=f(b,i,a)+f(b,a,i) (by (7))
= 0.

(9) f(a,ib,i)=f(a,b,i).

10
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We have

/(«, ib, i) - / (a , ft, i) =/(«, ib, i)+f(a, i, b)
=f((a(ib)) /-a((/ft) 0+(«) b - a(ib))
=f{-aHib)i))+f(a(ib))+fiiai)b)-f{a{ib))
=/(-a((/ft)/)+((a/)ft)i) = 0 by (2).

(10) /(ft, a,/) = - / ( / , a, ft).

Here we have

/(ft, a, i) =f{b, ia, /) = -/(ft, i, ia) =/(/ , ft, /a) = - / ( / , fa, ft) = - / ( / , ia, bi)
=f(ia, i, bi) = -/(fa, ft/, 0 =/(ft/, fa, 0 = -/(ft/, /, a) =/(ft/, a, /)
= - / (a , ft/, 0 =/(<*, i, ftO = - / ( i , a, W) = - / ( / , a, ft).

(11) /((/(aft)) /) =/(/((aft) /)) =/((fa) (ft/)).

The first equahty comes from (4). Furthermore,

/((fa) (ft/)) -/((/(aft)) 0 = / ( - (fa, ft, i)+((fa) ft) / - (/(aft)) i)
=/((ft, fa, /)+(/, a, ft)) =/((ft(/a)) /-ft((/a) /)+(/, a, ft))
=/((ft(/a)) / - ((ft/) a) /+(/, a, ft)) = / ( - (ft, /, a)+(i, a, ft))
=/((ft, a, /)+(/, a, ft)) =/(ft, a, /)+/(/, a, ft) = 0.

THEOREM 2.3. In the variety of right alternative algebras over a commutative
associative ring containing 1 and\, the class of simple algebras with identities and
without nilpotent elements is modular.

PROOF. Let / «=a A, let S be simple, with identity and without nilpotent elements.
Let / : / - » 5 k a surjective homomorphism. Let iel be such that /(/) = leS.
Define g: A -> S by

g{a) =f(iai).

(This is unambiguous by (4).)
It is clear that g preserves addition, while for a,beA we have

g(ab) =Mab) i) =/((fa) (ft/)) (by (11))
=/(/a)/(ft/) = Uiia)f(m LV(O/(ftO] =fiiai)f{ibi)
= 9(a)g(b).

Thus a is a ring homomorphism, and for jel we have gr(7) =/(///) = / ( 0 / 0 ) / ( 0
(unambiguously, since >S is alternative) =f{j). The result now follows from
Proposition 1.2.

Each modular class of simple algebras thus far exhibited has consisted of
alternative algebras. Alternativity is, however, neither necessary nor sufficient for
modularity.
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An algebra over the two-element field K2 is autodistributive (Fiedorowicz (1974);
see also Kepka (1977), Gardner (1979c) if it satisfies the identities

x(yz) = (xy) (xz); (xy) z = (xz) (yz).

Simple autodistributive algebras with identities need not be alternative; see
Fiedorowicz (1974), Theorems 14, 16 or Kepka (1977), Theorem 4.4.

If, however, S is a simple autodistributive algebra with identity, A is auto-
distributive, /-=a A, f: / -» S is a surjective homomorphism and f(i) = 1, then if
as in the previous proof we define g: A -» S by

g(a)=f((ia)i),
we have

g(ab) =f((i(ab))i) =f(((ia) (ib))i) =f(((ia)i) ((fc)i)) =f((ia)i)f((ib)i) = g(a)g(b).

THEOREM 3.4. In the variety of autodistributive algebras, the class of simple rings
with identities is modular and so the Brown-McCoy radical satisfies the conclusions
of Corollary 1.4.

Now consider the variety of all associative-by-associative rings:

{A | there exists / <a A with / and Ajl associative}.

It is clear that all simple rings in this variety are associative.

THEOREM 2.5. In the variety of associative-by-associative rings, the class of simple
rings with identities is not modular.

PROOF. If the class were modular, then by Corollary 1.4, 'S would be a radical
class containing all zerorings and having a hereditary semi-simple class. But by
Theorem 2.10 of Gardner (1979a) the only such radical class is the whole variety.

Sulifiski (1966) dealt with a generalization of the Brown-McCoy radical to
categories, and sought examples of modular classes of simple objects in this context.
We have given here some further examples of modular classes of simple algebras.
It would be nice to know about modular classes of simple objects of other types.
We mention in passing a marginal case, for the category of modules over a ring
(not necessarily commutative). The set of injective simple modules (if there are
any; see, for example, Zaks (1968) for some relevant information) is clearly
modular.

3. Semi-simple radical classes

Most known examples of semi-simple radical classes are varieties generated by
finite sets of simple algebras with identities (see, for example, Stewart (1970),
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Gardner (1975), Gardner and Stewart (1975)). In this section we shall characterize
'most' semi-simple radical classes of (y, <5)-rings (for (y,S) ^ ((±1,0), (1,1)) and
right alternative rings.

A semi-simple radical class is, inter alia, a variety (that is, a subvariety of the
universal variety under consideration) which is closed under extensions (in the
given universal variety) (see Gardner (1975), Theorems 1.4, 1.5 and Corollary 1.6).
A variety •f is the product of subvarieties

"7 1>' 2i • • •*' n> ' = A [ X . . . X r „,

if every A e ~V is uniquely expressible in the form

A=A1x...xAn; ^j£fj.

Our result is obtained from Theorem 1.1 of Gardner (1979b) in which the
hypothesis can be weakened to require only the rings without nilpotent elements
to be power-associative. This condition is clearly met by right alternative rings.
In the case of (y, <5)-rings, it follows from Theorem 11 of Hentzel and Cattaneo
(1977) that the condition is satisfied.

THEOREM 3.1. Let V be a proper extension-closed subvariety of the variety of
(y,5)-rings ((y,5)^ (±1,0), (1,1)) or the variety of right alternative rings. Then
there exist finitely many primes P\,p%,---,pn and finitely many subvarieties
-f~1,

lf~2,...,i
r
nsuch that

(i) ir ='T1 x -T2 x ... x rn and
(ii) each ring in f',• has characteristic pt.

Furthermore, ~f contains no ring A for which A2 = 0 # A.

Let ~f~ be a subvariety of some universal variety if. For A e "W, let

A(-T) = f){7<] A |

Then V is said to have attainable identities if A(-f) (Y~) = A(i^) for every A.
(This terminology is due to Tamura (1966).) A semi-simple radical class is the
same thing as a variety with attainable identities (Gardner (1975), Theorem 1.5).

THEOREM 3.2. Let "T be a variety of(y,8)-rings where (y,§) # (± 1,0), (1,1), such
that

where p is a prime > 3. The following conditions are equivalent.
(i) V is closed under extensions.

(ii) "f is a semi-simple radical class.
(hi) "V has attainable identities.
(iv) "V~ is generated, as a variety, by a finite set of finite (associative) fields.
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PROOF, (i) => (ii): By Theorem 3.1, Y contains no nilpotent rings, so by
Theorem 11 of Hentzel and Cattaneo (1977) Y consists of associative rings. As
an extension-closed variety of associative rings, Y is therefore generated by a
finite strongly hereditary set J5" of finite fields (see Stewart (1970) or Gardner and
Stewart (1975)). This means that Y consists of all subdirect products of fields in # \
Now every field in J* has characteristic p, so by Theorem 2.2, Theorem 1.3 and
Proposition 1.5, i f is a semi-simple class of (y, (5)-algebras over the field GF(p) of
p elements. Arguing as in the final paragraph of the proof of Theorem 3.3 of
Gardner (1975), we can now show that Y isa. semi-simple class of (y, (5)-rings.

(ii) o (in), as noted above.
(iii)=>(i): See Corollary 1.6 of Gardner (1975) (or Mal'tsev 1967)).
(i)=>(iv): This has already been shown.
(iv) => (i): Y consists of all subdirect products of finite fields from a finite set

and the latter is modular, so Y is a semi-simple class, and hence Y is closed under
extensions.

THEOREM 3.3. Let Ybe a variety of right alternative rings such that

where p is an odd prime. The following conditions are equivalent.
(i) Y is closed under extensions.
(ii) Y is a semi-simple radical class.

(iii) Y has attainable identities.
(iv) Y is generated, as a variety, by a finite set of finite fields.

PROOF. (i)=>(ii). By Theorem 3.1, Y contains no nilpotent rings, so by the
result of Mikheev cited in Section 2, each ring in Y satisfies the identity
(x,x,y)=0, that is, Y consists of alternative rings. The rest of the proof of
(i) => (ii) is now like that of (i) => (ii) in Theorem 3.2, provided Theorem 4.3 of
Gardner (1979b) is used instead of the results of Gardner and Stewart (1975).

(ii)o(iii); (iii)=>(i); ( i )o( iv) : As for Theorem 3.2.

Theorem 3.1, 3.2 and 3.3 combine to yield complete descriptions of those
radical semi-simple classes of (y, <5)-rings (respectively right alternative rings)
which do not contain rings of characteristic 2 or 3 (respectively 2).
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