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MINIMAL AND MAXIMAL OPERATOR 
THEORY WITH APPLICATIONS 

M. W. WONG 

ABSTRACT. Let X be a complex Banach space and A a linear operator from X into X 
with dense domain. We construct the minimal and maximal operators of the operator A 
and prove that they are equal under reasonable hypotheses on the space X and operator 
A. As an application, we obtain the existence and regularity of weak solutions of linear 
equations on the space X. As another application we obtain a criterion for a symmetric 
operator on a complex Hilbert space to be essentially self-adjoint. An application to 
pseudo-differential operators of the Weyl type is given. 

1. Introduction. Let X be a complex Banach space and S a dense subspace of X. 
Let A be a linear operator from X into X with domain 5. In applications, we are usually 
interested in the following question: 

QUESTION 1.1. Does the operator A have a closed extension B with the property that 
the space S is contained in the domain of the adjoint of Bl 

If the answer to Question 1.1 is yes, then we can proceed to ask another question. 

QUESTION 1.2. Is the extension unique? 
In this paper, we show that under suitable conditions on the space X and operator 

A, the answers to Questions 1.1 and 1.2 are yes. This is achieved by constructing the 
minimal and maximal extensions of the operator A and then proving that the extensions 
are equal. 

In Section 2, we briefly recall the well-known notions of adjoints and minimal opera
tors. The minimal operator is the smallest closed extension of the operator A. These are 
explained clearly in the book [5] by Schechter. We include these topics in order to fix 
notation and make the paper more self-contained. In Section 3, we introduce the notions 
of formal adjoints and maximal operators. We prove in Theorem 3.8 that the maximal 
operator of A is the largest closed extension of A satisfying the requirements of Ques
tion 1.1. Hence, by proving in Section 4 that the minimal and maximal operators of A are 
equal, we can conclude that the answers to Questions 1.1 and 1.2 are yes under reason
able hypotheses on the space X and linear operator A. The detailed hypotheses are given 
in Section 4. In Section 5, we introduce the notion of weak solutions of linear equations 
on Banach spaces. Then we use the equality of minimal and maximal operators to ob
tain the existence and regularity of weak solutions of linear equations on Banach spaces. 
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For a brief discussion of the meaning of regularity, see Remark 5.4. In Section 6, we 
give a criterion for a symmetric operator on a complex Hilbert space to be essentially 
self-adjoint. This is also based on the equality of minimal and maximal operators proved 
in Section 4. As an application to pseudo-differential operators, we prove that an ellip
tic pseudo-differential operator of the Weyl type with real-valued symbol is essentially 
self-adjoint. 

Finally, it should be mentioned that the theory of minimal and maximal partial and 
pseudo-differential operators have been studied by many authors. See, for instance, 
Hormander [2], Schechter [8], Wong [9], Wong [10] and Wong [11]. 

2. Adjoints and minimal operators. Let X, S and A be as in Section 1. Of fun
damental importance in linear operator theory is the notion of the adjoint of a linear 
operator. We begin with a brief recall of the definition and some properties of the adjoint 
A1 of the linear operator A. 

Let X! be the Banach space of all bounded linear functionals on X. We usually call X! 
the dual space of X. The value of a functional x! in X' at an element x in X is denoted by 
(JC7, x). We define a linear operator from X! into X! as follows: we let 2)(A') be the set of 
all functionals / in X! for which there is a functional xf in X' such that 

(2.1) (y\Ax) = (x,,x\ xeS-

For any / in X', we can prove that there is at most one x! in X! for which (2.1) holds. 
Hence we can define A ' / to be equal to x/ for all / in 2)(A'). We call A1 the adjoint of 
A. It can be proved easily that A1 is a closed linear operator from X' into X' with domain 
2)(Af). Finally, we observe that if B is a linear extension of A, then A1 is a linear extension 
of£'. 

We say that A is closable if and only if 

(fk G 5, <£*•—+ 0 in X, Atfk —» x in X => x = 0. 

If A is a closable operator, then we can construct a closed linear extension A0 of A as 
follows: we let 2)(Ao) be the set of all x in X for which there exists a sequence {<fk} of 
elements in S such that ip^ —• x in X and A(fk —• y in X for some y in X as k —• oo. For 
any x in 2)(A0), we define A0x to be equal to y. It can be proved that the definition of A0 

does not depend on the particular choice of the sequence { <£>*}. It can also be proved 
that Ao is the smallest closed linear extension of A. This means that if B is any closed 
linear extension of A, then B is also a linear extension of Ao. For this reason, we call Ao 
the minimal operator of A. 

To determine when A is closable, we use a criterion based on the adjoint A1 of A. 

PROPOSITION 2.1. The operator A is closable if and only if the domain Œ)(Af) of A1 

is total in X'. 

Let us recall that a subset T of X' is total in X' if and only if the zero vector is the 
only element x in X with the property that (x/,x) — 0 for all xf in T. Proposition 2.1 is a 
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well-known result in functional analysis and hence its proof is omitted. See Problem 5 
in Chapter 12 of the book [5] by Schechter. 

REMARK 2.2. Let us recall that if X is a reflexive complex Banach space, then a 
subset of X' is total in X' if and only if it is dense in X'. See Lemma 4.2 in Chapter 7 of 
Schechter [5]. 

From now on, we assume that X is a reflexive complex Banach space. 

3. Formal adjoints and maximal operators. The aim of this section is to define 
another closed linear extension of the operator A and study some of its properties. To do 
this, we first introduce the notion of the formal adjoint of the operator A. This requires 
more restrictions on the space X and the operator A. To wit, we make the following 
assumptions: 

(i) The space X and its dual space X' can be continuously embedded in some topo
logical space Y. Henceforth, the spaces X and X' will be identified as subspaces 
ofy. 

(ii) There exists a subspace S of Y such that S is a dense subspace of X and Xf. 
Let A be a linear operator from X into X with domain S. 

DEFINITION 3.1. The formal adjoint A* of the operator A, if it exists, is defined to be 
the restriction of the true adjoint A1 to the space 5. 

REMARK 3.2. It is clear from Definition 3.1 that the formal adjoint A* exists if and 
only if S is contained in the domain of A1. 

We are now ready to define another closed linear extension of the operator A. 

DEFINITION 3.3. We define the linear operator A\ from X into X by A\ = (A*)*. 

PROPOSITION 3.4. A\ is a closed linear operator from X into X with domain *D{A\) 
containing the space S. 

PROOF. It is clear that A\ is a closed linear operator. Let \j) G S. Then, by Defini

tion 3.1, 

(A*cp,ip) = O,Ai/0, <P,V> £ S. 

So, by Definition 3.3, xjj £ ®(Ai) and A ^ = Ai/>. 

PROPOSITION 3.5. The domain *D(A\) of the adjoint ofA\ contains the space S. 

PROOF. By Proposition 3.4, A i is a closed linear operator from X into X with domain 
D(Ai) containing the space S. It follows that A\ is a closed linear operator from X' into 
X'. Let V> € 5. Then, for all x in (D(Ai), we have, by Definition 3.3, 

(^,AIJC) = (A>,JC) . 

Hence, by the definition of the adjoint, ^ G ©(Aj) and A\^ = A*^ • 
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PROPOSITION 3.6. Ai is a linear extension ofA0. 

PROOF. From the proof of Proposition 3.4, we know that A \ is a closed linear exten
sion of A. Hence the conclusion of Proposition 3.6 follows immediately. 

REMARK3.7. As a corollary of Proposition 3.6, we see that(Ao)f is a linear extension 
of (Ai)f. Since, by Proposition 3.5, the domain of (A\)* contains the space 5, it follows 
that the domain of (Ao)f contains the space S as well. 

We can now give the main result of this section. 

THEOREM 3.8. A\ is the largest closed linear extension of A with the property that 
the space 5 is contained in the domain of its adjoint. In other words, ifB is any closed 
linear extension of A such that S Q ŒHJ?), then A\ is a linear extension ofB. 

PROOF. Let x G £>(#). Then, for all ^ in 5, we have ^ € VXP*) by hypothesis. 
Hence, by the definition of B\ 

(3.1) ty,Bx) = (&il),x). 

Since B is a linear extension of A, it follows that A1 is a linear extension of Bl. Hence, by 
(3.1) and the definition of A*, 

(V^x) = (AV,*) = (A*iM). 

So, by the definition of A\, x G (D(A\) and A\x — Bx. 

REMARK 3.9. Because of Theorem 3.8, we call A\ the maximal operator of A. 

4. The equality of minimal and maximal operators. In this section, we impose 
conditions on the space X and the operator A to ensure that the minimal operator AQ and 
maximal operator A i of A are equal. 

Let X be a reflexive complex Banach space. Let 5 be a dense subspace of X. We as
sume that S is a topological vector space of which the topology is defined by a countable 
family of semi-norms { | \j• : j = 1,2,.. .}. A sequence { </?*} in S is said to converge to 
an element ip in S if and only if | <^ — <p \j• —•> 0 as k —• oo for ally = 1,2,... . We let 5 ' 
be the space of all continuous linear functionals on the space 5. We denote the value of a 
functional u in S at an element ip in S by (M, (p). We say that a functional u is continuous 
if and only if («, (pk) —• 0 as k —+ oo for all sequences { ip^\ converging to zero in S as 
k —-> oo. A sequence { Uk} in S' is said to converge to an element u in S if and only if 
(w*, (p) —> (w, (p) as k —• oo for all (p in 5. 

We assume that the spaces X and X! are continuously embedded in S. Furthermore, let 
us suppose that there exist a one-parameter family of reflexive complex Banach spaces Xs 

with norms denoted by || ||̂ , —oo < s < oo, and a one-parameter group of continuous 
linear mappings Js:S

f —> 5', —oo < s < oo, satisfying the following conditions: 
(i) Js maps S into 5, —oo < s < oo. 

(ii) Xs = {ueS' : J-Su G X}, - o o < s < oo. 
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(iii) 

(4.1) \\u\\s = | | / - 5M|| , u EXS, —oo < s < oo. 

(iv) Let s < t. Then Xt Ç Xs and 

(4.2) IMI,<| |K| |„ uext. 
(v) Xs can be continuously embedded in Sf, — oo < s < oo. 

(vi) S can be continuously embedded in X's and X's can be continuously embedded in 
5', —oo < 5 < oo. 

(vii) 

(4.3) (w, (/?) = (<p, w), M G X5, (p G 5. 

PROPOSITION 4.1. Let s,t e (-oo, oo). 77ze« 
(ï) 7f : X5 —• X5+, is a unitary operator, 

(ii) S is dense in Xs. 

PROOF, (i) Let u G Xs. Then, by (4.1), 

| |^M||m = \\J-sU\\ = ||w||j. 

This proves that Jt:Xs —> Xy+, is an isometry. It remains to prove that Jt:Xs —> Xs+t 

is onto. To do this, let y G Xs+t. Then J_ty G Xs and Jt(J-ty) = J- This proves that 
7,:Xy —+Xm is onto. 
(ii) Let u G Xs. Then 7_5w G X. Since 5 is dense in X, it follows that there is a sequence 
{ (fk} of elements in 5 such that <pk —• J-Su inXas k —• oo. Let 1/̂  = Js<Pk, k — 1,2,... . 
Since 75 maps 5 into 5, it follows that fa G 5, k — 1,2,... . Also, by the definition of 
Xs again, 

||^* — M| | J= \\J-s^k-J-sU\\ = \\(fk-J-su\\ 

for all k = 1,2,... . Hence fa —• u in Xs as k —• oo. This proves that 5 is dense in Xs. 
Let A be a linear operator from X into X with domain 5. We assume that A maps 5 

into S and its formal adjoint A* maps S into S continuously. In other words, if { <̂ *} is 
any sequence in S such that ipk —+ 0 m S as k —• oo, then Ay?* —» 0 and A* (fk —• 0 in S 
as & —• oo. We can now extend the linear operator A to the space S' as follows: for any 
u in 5', we define Au to be the element in S given by 

(Au, ip) = (u,A*ip), ip G 5. 

It is easy to prove that A: 5 ' —* Sf is a continuous linear mapping. 
Before we formulate the main theorem of this section, we introduce some new notions. 
Let T: S —» S' be a continuous linear mapping. Suppose that there exists a real number 

m such that T: Xs —* Xs-m is a bounded linear operator for all s G (—oo, oo). Then 
we call T an operator of order m if m is the least number for which T: Xs —> X5_m is a 
bounded linear operator. If the least number m is equal to —oo, then we call T an infinitely 
smoothing operator. If A is a linear operator from X into X with domain 5 such that A 
maps 5 into 5 and its formal adjoint A* maps S into S continuously, then we call A an 
operator of order m if the extended operator A: S' —• S' is of order m. 

We can now formulate the main theorem in this section. 
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THEOREM 4.2. Let Abe a linear operator from X into X with domain S such that A 
maps S into S and its formal adjoint A* maps S into S continuously. Suppose that A is 
of positive order m and there exists a linear operator B of order —m from X into X with 
domain S such that 

(4.4) BA = I + R 

where I is the identity operator, and R is an infinitely smoothing operator. Then the min
imal and maximal operators of A are equal, i.e., Ao — A\. 

To prove Theorem 4.2, we need some lemmas. 

LEMMA 4.3. Let A be as in Theorem 4.2. Then 2)(Ao) — Xm. 

Lemma 4.3 follows from the following lemma: 

LEMMA 4.4. Let A be as in Theorem 4.1. Then there exist positive constants C\ and 
C2 such that 

Ci\\x\\m < \\Ax\\ + ||*|| < C2\\x\\m, x G Xm. 

PROOF. By using the fact that A is of order m and (4.2), we can find a positive con
stant C such that 

| | ^ | | +||JC|| <C| | JC| | W , xexm. 

Next, by (4.4), 
x = BAx — Rx, x G Xm, 

where B is an operator of order — m and R an infinitely smoothing operator. Hence there 
exists another positive constant C such that 

N U < C / ( | | A C | | + | | J : | | ) , xexm. 

This proves Lemma 4.4. 
We can now prove Lemma 4.3. 

PROOF OF LEMMA 4.3. Let x G Xm. Since S is dense in Xm, we can find a sequence 
{ ifk\ of elements in S such that (fk —* x in Xm as k —• 00. By Lemma 4.4, { Aipk} and 
{(fk} are Cauchy sequences in X. Hence (fk —> u and A<pk - ^ / in X for some u and 
/ in X as k —> 00. Hence, by the definition of A0, u G ©(A0) and A0w = / . By (4.2), 
(fk —> x in X as k —• 00. Hence x = u. This proves that JC G 2)(A0). On the other hand, if 
x G £>(Ao), then by the definition of Ao again, we can find a sequence { (fk} of elements 
in 5 for which (fk —• x in X and Aifk —->/ in X for some/ in X as k —> 00. Hence {(fk} 
and {A(fk} are Cauchy sequences in Xm. Since Xm is complete, it follows that ^ —> M 
in Xm for some u in Xm as k —• 00. Hence, by (4.2), fk —* u in X as k —+ 00. Therefore 
JC = u. This proves that x G Xm. 
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PROOF OF THEOREM 4.2. Since A\ is a linear extension of A0 and £>(A0) = Xm, it is 
sufficient to prove that £>(Ai) Ç Xm. To this end, let x G 2>(Ai). Then, by (4.4), 

JC = #Ax — &c, 

where B is of order — m and /? infinitely smoothing. Now, we claim that 

(4.5) Am = Au, u€(D(Ai). 

Let us assume (4.5) for a moment. Then Ax G X. Since B is of order —ra, it follows that 
BAx G Xm. Since JC G X and /? is infinitely smoothing, we can conclude that Rx £ Xm. 
Hence JC G Xm. 

It remains to prove (4.5). By the definition of A\, we have 

(4.6) (<p9Aiu) = (A*<p9u), yeS. 

Next, by the definition of A on Sf, we have 

(4.7) (Au,<p) = (u,A*<p), ^ G 5 . 

But, by (4.3) and (4.7), 

(4.8) ((p,Au) = (A*<p,u\ <peS. 

Hence, by (4.3), (4.6) and (4.8), 

(AIM, <p) = (AM, <p), ^ G 5. 

Therefore Ai« = AM for all u G 2)(Ai). 

5. Linear equations on Banach spaces. Let X be a reflexive complex Banach 
space and A a linear operator from X into X with domain 5. We assume that the for
mal adjoint A* of A exists. For any element/ in X, we call an element u in X a w^a/: 
solution of the linear equation AM = / if and only if 

(AV,K) = (¥>,A <? G 5. 

From the definition of the maximal operator A\ of A, it is obvious that the following 
statement is true. 

PROPOSITION 5.1. Letf G X. Then an element u in X is a weak solution of the linear 
equation Au = f if and only ifu G ©(Ai) andA\u = f. 

The following theorem characterizes the elements/ in X for which the linear equation 
Au — f has a weak solution u in X. For a special case of it in the theory of linear partial 
differential equations, see Theorem 1.12 in Chapter 1 of Schechter's book [6]. 
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THEOREM 5.2. Letf G X. Then the linear equation Au = / has a weak solution u in 
X if and only if there exists a positive constant C such that 

(5.1) |(^/)|<c||AVII, ^ es. 

PROOF. Suppose that Au—f has a weak solution u in X. Then 

(p,f) = (A*<p,u\ <peS. 

Hence 

|(v>,/)|<||AV|||M|, veS 

and the inequality (5.1) holds with C = ||w||. Conversely, suppose that the inequality 
(5.1) is true. Let W be a nonempty subspace of X' defined by 

W' = { w' G X' : A*<p = w' for some p £ S}. 

We define a linear functional F: W —> C by 

FW = (ifjl W G W, 

where ip is any element in 5 with the property that A* if = W. The definition of F: W —• 
C is independent of the choice of the element p. Indeed, if p\ and p2 are elements in 5 
such that A*(f\ = w1 and A*ip2 = w', then, by (5.1), 

| ( ^ i - ^ 2 , / ) | < C\\A\px - <p2)\\ = 0. 

Hence (p\,/) = (<^2,/)- This proves that the choice of the element <̂  is irrelevant to the 
definition of F: W —• C. Since, by (5.1), 

|Fw,|-|(^,/)|<C||AVH=C||w,|| 

for all w' G W, it follows that F: W' —• C is a bounded linear functional. Hence, by 
using the Hahn-Banach theorem and the reflexivity of X, we can find an element u in X 
such that 

(5.2) Fw = (<p,/) = (vv,M), w' G W', 

where p is any element in S satisfying A* <̂  = vJ. Since {A* (/?:</? G 5} is obviously a 
subspace of Wf, it follows from (5.2) that 

(^,/) = (AV,«), ¥> G 5. 

This proves that w is a weak solution of the linear equation Au—f and the proof is now 
complete. 

We can prove the following regularity theorem easily by using Theorem 4.2 and 
Lemma 4.3. 
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THEOREM 5.3. Letf E X. Then, under the hypotheses of Theorem 4.2, every weak 
solution u of the linear equation Au — f is in Xm. 

REMARK 5.4. Theorem 5.3 asserts that every weak solution u of the linear equation 
Au — f lies in a more selective or regular space Xm. If we recall, by (4.2), that Xm C X, 
then the weak solution u can be thought of being m units more selective or regular than 
the given source data/ lying in X. For this reason, we call Theorem 5.3 a regularity 
theorem. 

PROOF OF THEOREM 5.3. Let u be a weak solution of Au = / . Then, by Proposi
tion 5.1, u e £>(Ai). By Theorem 4.2, A\ = A0. Therefore u e <D(A0). By Lemma 4.3, 
<D(A0) = Xm. Hence u G Xm. 

6. Essential self-adjointness. In this section, we assume that the family of spaces 
Xs, —oo < s < oo, introduced in Section 4 are complex Hilbert spaces. The inner 
product of the Hilbert space X is denoted by (, ). We say that a linear operator A from X 
into X with domain S is symmetric if and only if (Ax, y) = (JC, Ay) for all x and y in 5. We 
say that A is essentially self-adjoint if and only if it has a unique self-adjoint extension. 
For discussions of symmetric and self-adjoint operators, see Section 2 in Chapter 8 of 
the book [4] by Reed and Simon or page 61 in the book [7] by Schechter. 

We can prove that the following criterion for a symmetric operator to be essentially 
self-adjoint is an easy consequence of Theorem 4.2. 

THEOREM 6.1. Under the hypotheses of Theorem 4.2 and the assumption that the 
spaces XS9 —oo < s < oo, are complex Hilbert spaces, the linear operator A from X 
into X with domain S is essentially self-adjoint if and only if it is symmetric. 

PROOF. By Theorem 4.2, A has a unique closed linear extension B with the property 
that the domain of Bl contains the space 5. Let B\ and B2 be self-adjoint extensions of 
A. The #i and #2 are obviously closed linear extensions of A such that the domains of 
B\ and B\ both contain the space 5. Hence B\ — #2 and the proof of the theorem is 
complete. 

7. An application to pseudo-differential operators. As a prelude to an applica
tion to pseudo-differential operators, it is important to realize that mathematical physi
cists are interested in determining when a symmetric operator is essentially self-adjoint. 
See Section 2 in Chapter 8 of the book [4] by Reed and Simon or page 61 in the book 
[7] by Schechter for discussions of this problem. It is an interesting fact that for pseudo-
differential operators of the Weyl type (to be explained later), the problem of determining 
when symmetry implies essential self-adjointness has a very nice solution. 

Let m > 0. We define Sm to be the set of all C°° functions a on Rn x Rn such that 
for all multi-indices a and f3, there exists a positive constant Ca^ for which 

\(D?D%a)(x,t)\ < C ^ ( 1 + |É|)W-W, *,£ GR". 
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We call any function in Sm a symbol of order ra. Let a G Sm. Then the pseudo-differential 
operator Ta is defined on the Schwartz space S by 

(7»(*) = (2nrn/2 f e*M*,O0(O^. x G R"> 

for all functions <p in 5, where 

(7.1) $(0 = (2irrn'2JRHe-ix<ip(x)dx, £ É Rn. 

It is an easy matter to prove that Ta maps S into 5. Hence we can consider Ta as a linear 
operator from If(Rn) into Z/(Rn), 1 < p < oo, with dense domain 5. It is well-known 
that the formal adjoint T*a of Ta exists and is also a pseudo-differential operator with 
symbol in Sm. By using the formal adjoint, we can extend Ta: S —> 5 to a continuous 
linear mapping from 5 ' into 5', where S' is the space of all tempered distributions. It is 
also well-known that Ta : H

s,p —-> Hs~m,p is a bounded linear operator for 1 < /? < oo 
and —ex) < s < oo, where //s/? is the Lp Sobolev space of order s. For any fixed value 
of p in (1, oo), the one-parameter family of spaces HS4?, indexed by s, — oo < s < oo, 
satisfies the conditions (i)-(vii) in Section 4 provided that Js is chosen to be the pseudo-
differential operator of which the symbol is given by 

*s(0 = (i + lÊl2r* / 2 , Ê É R " . 

Let a G 5m, m > 0. Then we call a an elliptic symbol of order m if there exist positive 
constants C and R such that 

k(*,Ol > C ( i + |É|)m, ICI > * . 

It is a well-known fact that for any elliptic symbol a in Sm, m > 0, we can find a symbol 
T in Sm such that 

r a r T = / + /? 

and 
7V7; = 7 + 5, 

where / is the identity operator, and R and S are pseudo-differential operators with sym
bols in C\keR Sk. The above mentioned results concerning pseudo-differential operators 
can be found in the book [11] by Wong. The corresponding results for p = 2 can be 
found in the book [3] by Kumano-go. 

For any symbol a in Sm, m > 0, there is another way of associating a linear operator 
with a. To wit, we define the linear operator Wa on the Schwartz space S by 

{Wa<pXx) = (2ir)-nJRJRH^x^ * G R \ 

for all functions <p in 5, where the integral is an oscillatory integral. See Section 6 in 
Chapter 1 of the book [3] by Kumano-go for a discussion of oscillatory integrals. We 
call Wa the pseudo-differential operator ofthe Weyl type with symbol a. It can be proved 
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that Wa is a pseudo-differential operator TK, where K is some other symbol in Sm. It can 
also be proved that if a is elliptic, then K is elliptic as well. 

Let us now consider Wa as a linear operator from L2(R n) into L2(K n) with dense do
main 5. Then an important property of pseudo-differential operators of the Weyl type 
is that Wa is symmetric if and only if a is real-valued. For a discussion of pseudo-
differential operators of the Weyl type, see the book [1] by Folland. 

By using Theorem 6.1 and the theory of pseudo-differential operators described in 
this section, we have proved the following theorem: 

THEOREM 7.1. Let a be a symbol in Sm, m > 0, such that a is real-valued and 
elliptic. Then the pseudo-differential operator Wa of the Weyl type from L2(Kn) into 
L2(Rn) with dense domain S is essentially self-adjoint. 

8. Acknowledgement. I wish to thank the referees for their detailed and construc
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