# REMARK ON THE TRICOMI EQUATION 

TADATO MATSUZAWA

§1. As an application of the Carleman-type estimation Hörmander [4], p. 221, has proved the following:

A solution (distribution) of the Tricomi equation

$$
\frac{\partial^{2} u}{\partial t^{2}}+t \frac{\partial^{2} u}{\partial x^{2}}=0
$$

in an open set $\Omega$ in $R_{x, t}^{2}$ belongs to $C^{\infty}(\Omega)$ if it is in $C^{\infty}\left(\Omega_{-}\right)$where $\Omega_{-}=\{(x, t) ;(x, t) \in \Omega, t<0\}$.

In this note we shall consider the same problem for the inhomogeneous Tricomi equation

$$
\frac{\partial^{2} u}{\partial t^{2}}+t \frac{\partial^{2} u}{\partial x^{2}}=f(x, t)
$$

in a different manner. The existence of the solution in the generalized sense is well known. Furthermore we shall consider the propagation of analyticity. More precisely, the solution $u$ is analytic in $\Omega$ if it is analytic in $\Omega_{-}$and if $f(x, t)$ is analytic in $\Omega$ (Theorem 3.1). We shall use the results of [2] and [5] in the proof.
§ 2. The following theorem is obtained from the results of Berezin [2].
Theorem 2.1. Consider the following (backward) Cauchy problem:

$$
\begin{gather*}
u_{t t}+t u_{x x}=f(x, t) \quad \text { in } \mathrm{D},  \tag{2.1}\\
u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x) \quad \text { in } \quad a \leqq x \leqq b \tag{2.2}
\end{gather*}
$$

where $D$ denotes a domain in the region $t<0$ bounded by characteristics passing through $(a, 0)$ and $(b, 0),(a<b)$. Assume $f(x, t)$ and $f_{x}(x, t)$ are continuous in $\bar{D}$ and the initial data $\varphi(x), \psi(x)$ are thrice continuously differentiable in $[a, b]$. Then there exists one and only one solution
$u(x, t)$ of the problem (2.1), (2.2) having continuous second derivatives in $\bar{D}$. Furthermore, if $f(x, t)$ and $\varphi(x), \psi(x)$ are infinitely differentiable in $\bar{D}$ and in $[a, b]$ respectively, then the solution $u(x, t)$ is an infinitely differentiable function in $\bar{D}$.

By virtue of Theorem 2.1 it is shown that there exists a fundamental solution $E(x, t)$ for the backward Cauchy problem for the equation $L u=$ $u_{t t}+t u_{x x}=0$. That is, there exists a distribution $E(x, t)$ in the region $t \leqq 0$ such that

$$
\begin{gather*}
L E=E_{t t}+t E_{x x}=0 \quad \text { for } t<0,  \tag{2.3}\\
E(x, 0)=0, \quad E_{t}(x, 0)=\delta_{x} . \tag{2.4}
\end{gather*}
$$

In fact, take $f(x, t)=0, \varphi(x)=0$ and

$$
\psi(x)= \begin{cases}0 & x<0 \\ x^{4} / 4! & x \geqq 0\end{cases}
$$

in Theorem 2.1. Then there exists a solution $v(x, t)$ for the problem (2.1), (2.2) with these data having second continuous derivatives in the region $t \leqq 0$. The desired fundamental solution is given by

$$
\begin{equation*}
E(x, t)=\frac{\partial^{5}}{\partial x^{5}} v(x, t) \quad t \leqq 0 \tag{2.5}
\end{equation*}
$$

where differentiation in $x$ is interpreted in the sense of distributions. By Theorem 2.1 and (2.5) we have

$$
\begin{equation*}
\text { supp. } E(x, t) \subset\left\{(x, t) ;-\frac{2}{3}(-t)^{3 / 2} \leqq x \leqq \frac{2}{3}(-t)^{3 / 2}, t \leqq 0\right\}, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
E(\cdot, t) \in C\left([-T, 0] ; \mathscr{D}^{\prime}\left(R_{x}\right)\right), \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
E_{t}(\cdot, t) \in C\left([-T, 0] ; \mathscr{D}^{\prime}\left(R_{x}\right)\right) \tag{2.8}
\end{equation*}
$$

for any $T>0$, where $\mathscr{D}^{\prime}\left(R_{x}\right)$ denotes the space of distributions in $R_{x}$.
Furthermore, by using the partial hypoellipticity of the Tricomi operator $L$ in $t$ (cf. [4], §§2.2, 4.3), we have the following.

Corollary 2.1. Let $\Omega$ be an open set in $R_{x, t}^{2}$ such that $\{(x, 0)$; $a<x<b\} \subset \Omega$. If $u \in \mathscr{D}^{\prime}(\Omega)$ satisfies

$$
\begin{gather*}
L u=u_{t t}+t u_{x x}=0 \quad \text { in } \Omega  \tag{2.9}\\
u=0 \quad \text { in } \quad \Omega_{+}=\{(x, t) ;(x, t) \in \Omega, t>0\} \tag{2.10}
\end{gather*}
$$

Then $u=0$ in $\Omega_{+} \cap(\bar{D} \cup \Omega)$ where $D$ denotes a domain in the region $t<0$ bounded by characteristics passing through ( $a, 0$ ) and $(b, 0)$.

For the proof we apply Theorem 2.1 by regulariging $u$ with respect to $x$.
§3. Let $\Omega$ be an open set in $R_{x, t}^{2}$ which intersects $x$-axis.
Theorem 3.1. Let $u=u(x, t) \in \mathscr{D}^{\prime}(\Omega)$ be a solution of the equation

$$
\begin{equation*}
L u=u_{t t}+t u_{x x}=f(x, t) \quad \text { in } \Omega \tag{3.1}
\end{equation*}
$$

with $f \in C^{\infty}(\Omega)$. Then $u \in C^{\infty}(\Omega)$ if it is in $C^{\infty}\left(\Omega_{-}\right)$where $\Omega_{-}=\{(x, t)$; $(x, t) \in \Omega, t<0\}$. Furthermore, $u$ is an analytic function in $\Omega$ if it is analytic in $\Omega_{-}$and if $f(x, t)$ is analytic in $\Omega$.

We shall prove this theorem in several steps. First we shall show that $u(x, 0) \in C^{\infty}\{x ;(x, 0) \in \Omega\}$.

Assume $\{(x, 0) ; 0 \leqq x \leqq b\} \subset \Omega,(0<b)$. If we take $T>0$ sufficiently small then the closed domain $\bar{D}$ bounded by $\{(x, 0) ; 0 \leqq x \leqq b\}$, characteristics passing through ( 0,0 ) and $(b, 0)$ and $\{(x,-T) ;-\infty<x<+\infty\}$ is contained in $\Omega \cap\{(x, t) ; t \leqq 0\}$. Let $u(x, t)$ and $f(x, t)$ be functions given in Theorem 3.1 and $b, T$ be sufficiently small, then by the usual way (cf. [3]) we have

$$
\begin{align*}
u(x, 0)= & \int E_{t}(x-y,-T) u(y,-T) d y-\int E(x-y,-T) u_{t}(y,-T) d y  \tag{3.2}\\
& -\iint_{-T \leq \tau \leq 0} E(x-y, \tau) f(y, \tau) d y d \tau, \quad 0<x<b
\end{align*}
$$

where the integral is taken in the sense of distributions. We note that there exists $u(x, 0)=\lim _{t \rightarrow 0} u(\cdot, t)$ in $\mathscr{D}^{\prime}(0<x<b)$ by the partial hypoellipticity of $L$ in $t$ (cf. [4], §4). The formula (3.2) is justified because of the assumptions for $u, f$ and the properties of $E(x, t):(2.6)$, (2.7), (2.8). Thus we have proved that $u(x, 0) \in C^{\infty}(0, b)$, and hence

$$
u(x, 0) \in C^{\infty}\{x ;(x, 0) \in \Omega\} .
$$

Similarly, if $u$ and $f$ are analytic in $\Omega_{-}$and $\Omega$ respectively, then we see that $u(x, 0)$ is analytic in $\{x ;(x, 0) \in \Omega\}$. We omit the detail.

In the next section we shall show that

$$
\begin{equation*}
u \in C^{\infty}(\Omega \cap\{(x, t) ; t \geqq 0\}) \tag{3.3}
\end{equation*}
$$

from which we see that $u(x, 0)$ and $u_{t}(x, 0)$ are in $C^{\infty}\{x ;(x, 0) \in \Omega\}$. Then, applying Theorem 2.1 and Corollary 2.1, we have

$$
\begin{equation*}
u \in C^{\infty}(\Omega \cap\{(x, t) ; t \leqq 0\}) . \tag{3.4}
\end{equation*}
$$

By (3.3), (3.4) and noting that the form of the equation is $u_{t t}+t u_{x x}=f$ in $\Omega$ we have $u \in C^{\infty}(\Omega)$ by the usual method of calculation (cf. §4).

In the analytic case, from the assumption the $u(x, 0)$ is analytic in $\{x ;(x, 0) \in \Omega\}$ we shall show, in the next section, $u=u(x, t)$ is analytic in $\Omega \cap\{(x, t) ; t \geqq 0\}$ from where we have $u(x, 0), u_{t}(x, 0)$ are analytic in $\{x ;(x, 0) \in \Omega\}$. Then by Cauchy-Kowalevski theorem and Corollary 2.1, $u$ is analytic in a neighbourhood of the $x$-axis contained in $\Omega$. On the other hand, $u$ is analytic in $\Omega_{+}=\{(x, t) \in \Omega, t>0\}$ because it is a solution of an elliptic equation in $\Omega_{+}$. Thus $u$ is analytic in $\Omega$.
§4. It remains for us to prove the regularity property of the solution $u$ in $\Omega \cap\{(x, t) ; t \geqq 0\}$.

THEOREM 4.1. Let $f \in C^{\infty}(\Omega)\left(\in C^{\omega}(\Omega)\right)$ and $u \in \mathscr{D}^{\prime}(\Omega)$ such that

$$
\begin{gather*}
L u=u_{t t}+t u_{x x}=f(x, t) \quad \text { in } \Omega  \tag{4.1}\\
u(x, 0)=\psi(x) \in C^{\infty}\{x ;(x, 0) \in \Omega\} \quad\left(\in C^{\omega}\{x ;(x, 0) \in \Omega\}\right) . \tag{4.2}
\end{gather*}
$$

Then we have $u \in C^{\infty}(\Omega \cap\{(x, t) ; t \geqq 0\})\left(\in C^{\omega}(\Omega \cap\{(x, t) ; t \geqq 0\})\right)$. Here $C^{\omega}$ denotes the set of analytic functions.

To prove this theorem we use the method employed in [5], $\S \S 5,6$. We note that it is sufficient to prove the case $u(x, 0)=\psi(x)=0$. First we prepare the following theorem which is derived by a direct computation. Take $G=(a<x<b) \times[0, T)$ such that $\bar{G} \subset \Omega$ and introduce the notation:

$$
\begin{equation*}
\|v\|_{\mathfrak{פ}(G)}^{2}=\sum_{j=0}^{2}\left\|D_{t}^{j} v\right\|_{L^{2}(G)}^{2}+\left\|t^{1 / 2} v_{x t}\right\|_{L^{2}(G)}^{2}+\left\|t^{1 / 2} v_{x}\right\|_{L^{2}(G)}^{2}+\left\|t v_{x x}\right\|_{L^{2}(G)}^{2} . \tag{4.3}
\end{equation*}
$$

$\left(S_{\mathscr{C}}(G)\right.$ is a Hilbert space with the norm $\left.\|\cdot\|_{\mathscr{Q}_{(G)}}.\right)$
Theorem 4.2 (cf. [5], Theorem 4.2). There exists a constant $C>0$ such that

$$
\begin{equation*}
\|v\|_{\oiint_{( }(G)} \leqq C\|L v\|_{L^{2}(G)} \tag{4.4}
\end{equation*}
$$

for all $v \in \mathfrak{S}_{\mathcal{C}}(G)$ with supp. $v \subset G$ and $v(x, 0)=0$.

Suppose $f(x, t) \in C^{\infty}(\Omega)$, then by the partial hypoellipticity of $L$ in t (cf. [4], §4.3) we conclude that for any $r(\geqq 2)$ there exists a number $\beta=\beta(u, r)$ such that

$$
\begin{equation*}
\zeta u \in H_{(r, \beta)}(G)=\left.H_{(r, \beta)}\left(R^{2}\right)\right|_{G} \tag{4.5}
\end{equation*}
$$

for any $\zeta=\zeta(x, t) \in C_{0}^{\infty}(G)$, For the notation $H_{(r, \beta)}\left(R^{2}\right)$, we refer to [4], § 2.5.

For a real number $s$ we define an operator $T_{s}$ :

$$
\widehat{T_{s} v}(\xi, t)=\left(1+|\xi|^{2}\right)^{s / 2} \hat{v}(\xi, t)
$$

where $v \in \mathscr{S}^{\prime}\left(R_{x, t}^{2} \cap\{t \geqq 0\}\right)$ and $\hat{v}(\xi, t)$ denotes the partial Fourier transformation of $v$ with respect to $x$. (cf. [4], § 1.7.)

For any $x_{0} \in(a, b)$ take $\zeta \in C_{0}^{\infty}(G)$ such that $\zeta\left(x_{0}, 0\right) \neq 0$ and

$$
\frac{\partial \zeta}{\partial t}(x, t)=0 \quad \text { if } \quad(x, t) \in G, \quad 0 \leqq t \leqq \frac{T}{2}
$$

Then by (4.5) we have

$$
\begin{equation*}
\varphi T_{\beta} \zeta u \in \mathscr{S}_{C}(G) \tag{4.6}
\end{equation*}
$$

for any $\varphi \in C_{0}^{\infty}(G)$. Starting with (4.6), by using the estimate (4.4) we can easily show that $\varphi T_{s} \zeta u \in \mathscr{F}(G)$ for any $s$ and $\varphi \in C_{0}^{\infty}(G)$ from where we have $\varphi D_{x}^{j} u \in \mathscr{S}_{\mathcal{D}}(G), j=0,1,2, \cdots$. And rewriting the form of the equation $u_{t t}=-t u_{x x}+f$, we have $\varphi D_{t}^{r} D_{x}^{j} \in L^{2}(G), 0 \leqq r, j<\infty$. Then we have $u \in C^{\infty}(G)$, from where we have $u \in C^{\infty}(G)$.

Next we consider the case where $f \in C^{\omega}(G)$ and $u(x, 0)=0$. In this case we have $u \in C^{\infty}(G)$ by the above result. To obtain the analyticity of $u$ in $\Omega \cap\{(x, t) ; t \geqq 0\}$, we have to estimate precisely the successive derivatives of $u$. We can pursuit the manner employed in [6], § 6 where the analyticity of the solutions of the equations $u_{t t}+t^{2 k} u_{x x}=f, k=$ $0,1,2, \cdots$, was proved. In the following we shall give an outline of the reasoning.

Introduce the notations:

$$
\begin{aligned}
G_{\varepsilon} & =(a+\varepsilon<x<b-\varepsilon) \times[0 \leqq t<T) \quad 0<\varepsilon<\operatorname{Min}\left(\frac{b-a}{2}, \frac{T}{2}\right), \\
G_{\varepsilon}^{*} & =G_{\varepsilon} \backslash(a+\varepsilon<x<b-\varepsilon) \times\left[0 \leqq t<\frac{T}{2}\right), \\
N_{\varepsilon}(v) & =\|v\|_{L^{2}\left(G_{\varepsilon}\right)}, \quad N_{\varepsilon}^{*}(v)=\|v\|_{L^{2}\left(G_{\varepsilon}^{*}\right)} .
\end{aligned}
$$

Lemma 4.1 (cf. [4], ch. 1). Let $\varepsilon, \varepsilon_{1}$ be positive numbers with $0<$ $\varepsilon+\varepsilon_{1}<\operatorname{Min}((b-a) / 2, T / 2)$. Then there exists functions $\psi=\psi_{\varepsilon, \varepsilon_{1}}$ $\in C_{0}^{\infty}\left(G_{\varepsilon_{1}}\right)$ such that $\psi=\psi_{\varepsilon, c_{1}} \equiv 1$ on $G_{\varepsilon+c_{1}}$ and

$$
\begin{align*}
& \operatorname{Max}\left|D_{x}^{j} D_{t}^{r} \psi\right| \leqq C_{j+r} \varepsilon^{-(j+r)} 0 \leqq j+r \leqq 2 \\
& D_{t} \psi \equiv 0 \quad \text { on }\left(a+\varepsilon_{1}, b-\varepsilon_{1}\right) \times\left[0, \frac{T}{2}\right) . \tag{4.7}
\end{align*}
$$

Lemma 4.2 (cf. [6], Lemma 6.2). There exists a constant $C>0$ such that

$$
\begin{align*}
& \sum_{j=0}^{2} \varepsilon^{j} N_{t+\epsilon_{1}}\left(D_{t}^{j} v\right)+\sum_{j=0}^{2} \varepsilon^{j} N_{\epsilon+\epsilon_{1}}\left(t D_{x}^{j} v\right)+N_{t+\epsilon_{1}}^{*}(v) \\
&+\varepsilon N_{\epsilon+\epsilon_{1}}^{*}\left(D_{x} v\right)+\varepsilon^{2} N_{\epsilon+\epsilon_{1}}^{*}\left(D_{t} D_{x} v\right)  \tag{4.8}\\
& \leqq C\left\{\varepsilon^{2} N_{\epsilon_{1}}(L v)+\sum_{j=0,1} \varepsilon^{j} N_{\epsilon_{1}}\left(D_{x}^{j} v\right)+N_{\epsilon_{1}}^{*}(v)+\varepsilon N_{t_{1}}^{*}\left(D_{t} v\right)\right\}
\end{align*}
$$

for all $v \in C^{\infty}(G)$ and $v(x, 0)=0$. The constant $C$ does not depend on $\varepsilon, \varepsilon_{1}$ under the condition mentioned previously.

This lemma is obtained by substituting $\psi_{s, \varepsilon_{1}} v$ in (4.4).
Lemma 4.3 (cf. [4], ch. 7). Let $w$ be an analytic function in $G$. Then there exists a constant $C>0$ such that

$$
\begin{equation*}
\varepsilon^{j+r} N_{k s}\left(D_{x}^{j} D_{t}^{r} w\right) \leqq C^{j+r+1} \quad \text { if } j+r<k, \tag{4.9}
\end{equation*}
$$

for all integer $k>0$. Conversely, if $w \in C^{\infty}(G)$ suctisfies (4.9), then $w$ is analytic in $G$.

Proof of the analyticity of $u$ in $\Omega \cap\{(x, t) ; t \geqq 0\}$.
First we shall show that there exists a constant $B>0$ such that, for any $\varepsilon>0$ and for any integer $l>0$,

$$
\left.\begin{array}{l}
\sum_{r=0}^{2} \varepsilon^{r+j} N_{l e}\left(D_{t}^{r} D_{x}^{j} u\right)  \tag{4.10}\\
\sum_{r=0}^{2} \varepsilon^{r+j} N_{l e}\left(t^{2 k} D_{x}^{r+j} u\right) \\
\sum_{r=0,1} \varepsilon^{r+j} N_{l s}^{*}\left(D_{x}^{r+j} u\right) \\
\varepsilon^{2+j} N_{l s}^{*}\left(D_{t} D_{x}^{j+1} u\right)
\end{array}\right\} \leqq B^{l+1}
$$

if $j<l$.
It we take $B$ sufficiently large, we have (4.10) for $l=1$ by Lemma 4.2. Next, since $f(x, t)$ is analytic in $\bar{G}$, there exists a constant $C_{0}>0$ such that

$$
\varepsilon^{2+j} N_{j_{6}}\left(D_{x}^{j} f\right) \leqq C_{0}^{j+1},
$$

for $j=1,2, \cdots$ and $0<\varepsilon<(b-a) / 2$.
Assuming that (4.10) have been proved for an $l>0$, we shall prove (4.10) for $l+1$. Replacing $v$ by $\varepsilon^{l} D_{x}^{l} u$ and $\varepsilon_{1}$ by $l \varepsilon$ in (4.8), we see that the terms in the left hand side of (4.10) for the case $l+1$ are smaller than $5 C_{0} B^{l+1}$ if $j<l+1$. Hence we have (4.10) for $l+1$ if $5 C_{0} B^{l+1} \leqq B^{l+2}$. This condition is satisfied for all $l$ if $B>\max \left(5 C_{0}, 1\right)$.

From (4.10) (cf. Lemma 4.3) we obtain

$$
\begin{equation*}
\sum_{r=0}^{2}\left\|D_{t}^{r} D_{x}^{j} u\right\|_{L^{2}\left(G_{\left.t_{1}\right)}\right.} \leqq C_{1}^{j+1} j^{j}, \quad j=0,1,2, \cdots \tag{4.11}
\end{equation*}
$$

for some constant $C_{1}>0$ where $G_{\varepsilon_{1}}=\left(a+\varepsilon_{1}, b-\varepsilon_{1}\right) \times[0, T / 2]$ with $\varepsilon_{1}>0$ sufficiently small.

To obtain the successive estimates including the derivatives in both $x$ and $t$, we rewrite the equation $L u=f$ in the form $D_{t}^{2} u=-t D_{x}^{2} u+f$. And using (4.11) by the usual way (cf. [6] for example) we have

$$
\left\|D_{x}^{j} D_{t}^{r} u\right\|_{L^{2}\left(G_{e_{1}}\right)} \leqq C_{2}^{j+r+1}(j+r)^{j+r} \quad 0 \leqq j, r<\infty
$$

for some constant $C_{2}>0$, from which we have the analyticity of $u$ in $G_{\varepsilon_{1}}$ by the Sobolev lemma.

## References

[1] Baouendi M. S., Sur une class d'opérateurs elliptiques dégénérés, Bull. Soc. Math. France, 95, 45-87 (1967).
[2] Berezin I. S., On Cauchy's problem for linear equations of the second order with initial conditions on a parabolic line (in Russian). Mat. Sbornik, N. S. t24 (66), 301-320 (1949).
[3] Courant R. and Hilbert D.: Methods of mathematical phisics. Vol. II. Interscience Pub. New York (1962).
[4] Hörmander L.: Linear partial differential operators. Berlin, Springer-Verlag (1963).
[5] Matsuzawa T., Sur les équations $u_{t t}+t^{\alpha} u_{x x}=f(\alpha \geqq 0)$. Nagoya Math. J. Vol. 42, (1971).
[6] Matsuzawa T., Sur les équations quasi-elliptiques et les classes de Gevrey. Bull. Soc. Math. France, t96, 243-263 (1968).

