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REMARK ON THE TRICOMI EQUATION
TADATO MATSUZAWA

§1. As an application of the Carleman-type estimation Hérmander
[4], p. 221, has proved the following:
A solution (distribution) of the Tricomi equation
o'u o*u

S
ot* ox?

in an open set 2 in R, belongs to C=(Q) if it is in C~(Q_) where
Q2_={,t); @& t)e,t <0}

In this note we shall consider the same problem for the inhomogeneous
Tricomi equation

ou

2,
N I

in a different manner. The existence of the solution in the generalized
sense is well known. Furthermore we shall consider the propagation of
analyticity. More precisely, the solution # is analytic in £ if it is
analytic in £_ and if f(z,¢) is analytic in 2 (Theorem 3.1). We shall
use the results of [2] and [5] in the proof.

§2. The following theorem is obtained from the results of Berezin [2].
THEOREM 2.1. Consider the following (backward) Cauchy problem:
2.1 Uy + Ty, = f(2, 1) in D,
(2.2) wx,0) =@, w@,0)=9 n a=<zr=0D

where D denotes a domain in the region t < 0 bounded by characteristics
passing through (a,0) and (b,0), (@ <b). Assume f(x,t) and f,(x,t) are
continuous in D and the initial date o(x),y(x) are thrice continuously
differentiable in [a,b]l. Then there exists one and only one solution
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u(z,t) of the problem (2.1), (2.2) having continuous second derivatives
in D. Furthermore, if f(z,t) and o), ¥ (x) are infinitely differentiable
in D and in [a,b] respectively, then the solution w(x,t) is an infinitely
differentiable function in D.

By virtue of Theorem 2.1 it is shown that there exists a fundamental
solution E(z,t) for the backward Cauchy problem for the equation Lu =
Uy + tugz, = 0. That is, there exists a distribution E(x,t) in the region
t < 0 such that

2.3) LE=E,+tE,,=0 for t <O,
(204) E(-’L', 0) =0 ’ Et(xy 0) = 5.1: .
In fact, take f(x,t) = 0,¢p(x) = 0 and

_ [0 <0
@) = xt/4! =0

in Theorem 2.1. Then there exists a solution v(x,%) for the problem
2.1), (2.2) with these data having second continuous derivatives in the
region ¢t < 0. The desired fundamental solution is given by

@.5) B t) = -2 v@t t<o,
o0x®
where differentiation in 2« is interpreted in the sense of distributions.
By Theorem 2.1 and (2.5) we have
(2.6) supp. E(z,t) C {(@,); —3(—D" =2 < 3(—0)*%t < 0},
(2.7 E(-,)eC(—-T,0]; 2'(R.) ,
(2.8) E(-,t)e C(—-T,0]; 2'(R.))

for any T > 0, where 2'(R,) denotes the space of distributions in R,.
Furthermore, by using the partial hypoellipticity of the Tricomi
operator L in ¢ (cf. [4], §82.2, 4.3), we have the following.

COROLLARY 2.1. Let 2 be an open set in R, such that {(x,0);
o <x<blC Q. If ueP' () satisfies

2.9) Lu = 4y + tuy, = 0 m 2,
(2.10) u=0 in 2,={x1;@t)e,t>0}.
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Then =0 in Q, N (D U 2) where D denotes a domain in the region
t < 0 bounded by characteristics passing through (a,0) and (b, 0).

For the proof we apply Theorem 2.1 by regulariging u with respect
to «.

§3. Let 2 be an open set in R%, which intersects z-axis.
THEOREM 3.1. Let u = u(x,t) ¢ 2/(2) be a solution of the equation
3.1 Ly = u,, + tuz, = f(x, 1) m 02

with feC=(R). Then ueC=(Q) if it is in C~(Q.) where 2_ = {(x,1);
(x, D) e 2,t <0}, Furthermore, u is an analytic function in Q if it is
analytic in 2_ and if f(x,t) is analytic in Q.

We shall prove this theorem in several steps. First we shall show
that u(x,0) e C~{x; (x,0) € 2}.

Assume {(z,0);0 < x < b} C 2,(0 <b). If we take T > 0 sufficiently
small then the closed domain D bounded by {(@,0); 0 £ z < b}, charac-
teristics passing through (0,0) and (b,0) and {(x, —T); —o0 < 2 < + oo}
is contained in 2 N {(z,?);t < 0}. Let u(x,t) and f(x,t) be functions
given in Theorem 3.1 and b,T be sufficiently small, then by the usual
way (cf. [3]) we have

u(x, 0) = IEz(x — ¥, —Du(y, —T)dy — IE(Q; — y, —Tu,(y, —T)dy
3.2)
—‘[J‘—Ts SOE(:L' — 9,0 f(y, 0)dyde , 0<a2<b,

where the integral is taken in the sense of distributions. We note that
there exists wu(x,0) = lirzl u(-,t) in 2'(0 < x < b) by the partial hypo-
ellipticity of L in £ (cft. [4], §4). The formula (3.2) is justified because
of the assumptions for u,f and the properties of E(x,t): (2.6), (2.7),

(2.8). Thus we have proved that u(x, 0) € C~(0,b), and hence
u(x, 0) e C={x; (x,0) e 2} .

Similarly, if 4 and f are analytic in 2_ and Q respectively, then we see
that u(x,0) is analytic in {x; (x,0) e 2}. We omit the detail.
In the next section we shall show that

3.3) ueC(2 N {(x,t);t =0}
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from which we see that u(x, 0) and u,(x, 0) are in C~{x; (x,0) € 2}. Then,
applying Theorem 2.1 and Corollary 2.1, we have

3.4 ueC=(2 N {(x,t);t <0} .

By (8.3), (3.4) and noting that the form of the equation is u,, + tu,, = f
in 2 we have ue C(2) by the usual method of calculation (cf. §4).

In the analytic case, from the assumption the u(z,0) is analytic in
{x; (x,0) e 2} we shall show, in the next section, u = wu(x,?) is analytic
in 2 N {(z,?);¢t = 0} from where we have u(x,0),u,(x,0) are analytic in
{w;(x,0)e2}. Then by Cauchy-Kowalevski theorem and Corollary 2.1, u
is analytic in a neighbourhood of the z-axis contained in 2. On the
other hand, « is analytic in 2, = {(x,?) € 2,t > 0} because it is a solution
of an elliptic equation in £,. Thus » is analytic in 2.

§4. It remains for us to prove the regularity property of the solu-
tion  in 2 N {(x,?); ¢t = 0}

THEOREM 4.1. Let feC=(2) (eC*Q) and ue 2'(Q) such that
4.1) Ly = uy + tu,, = f(x, 1) n 2,
4.2) u(z, 0) = Y(x) € C~{z; (x,0) € 2} (eCzx; (x,0)e 2] .

Then we have ue C*(2 N {(x,t);t = 0} (e C*Q2 N {(x,8);t = 0})). Here
C* denotes the set of analytic functions.

To prove this theorem we use the method employed in [5], §§5, 6.
We note that it is sufficient to prove the case wu(x,0) = y(x) = 0. First
we prepare the following theorem which is derived by a direct compu-
tation. Take G = (o < 2 < b) X [0,7) such that G C 2 and introduce
the notation:

2
4.3) “”H%(G) = ;L;‘:;”Df’v“iz(a) + 1105 [Laey + 1802 lfiae + 1EV22liec) -

®(G) is a Hilbert space with the norm ||-||©(G).)

THEOREM 4.2 (cf. [5], Theorem 4.2). There exists a constant C > 0
such thot

(4'4) “?)“@(a) é C”Lv“LZ(G)
for all ve H(@) with supp.v C G and v(x,0) = 0.
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Suppose f(x,t) e C*(2), then by the partial hypoellipticity of L in t
(cf. [4], §4.3) we conclude that for any 7(=2) there exists a number
B = pu,r) such that

(4.5) ue H(r,ﬁ)(G) = H(r,p)(Rz) e

for any { = {(z,?) € C;(G), For the notation H,, ,(R?, we refer to [4],
§2.5.
For a real number s we define an operator T,:

N\
T, =0+ [EH70E, D,

where ve #'(R%, N {t = 0}) and 9(§,t) denotes the partial Fourier trans-
formation of v with respect to =. (cf. [4], §1.7.)
For any x,¢(a,b) take ¢ e Cy(G) such that &(x,, 0) = 0 and

T

o¢ :
9 (@, t) =0 if (x,t , 0<t< .
at(%) if (,t)eG, 0 5

Then by (4.5) we have
(4.6) oTslu € H(G)

for any ¢e Cy(G). Starting with (4.6), by using the estimate (4.4) we
can easily show that ¢Tlue H(G) for any s and ¢ e Cy(G) from where
we have ¢Diuec H(G),j =0,1,2,---. And rewriting the form of the
equation w,, = —tu,, + f, we have ¢D;D} e L¥G), 0 < r,j < co. Then
we have u e C*(G), from where we have u e C(G).

Next we consider the case where f e C*(G) and u(x,0) = 0. In this
case we have u € C°(G) by the above result. To obtain the analyticity
of win 2 N {(x,?);t = 0}, we have to estimate precisely the successive
derivatives of . We can pursuit the manner employed in [6], § 6 where
the analyticity of the solutions of the equations u, + t**u,, = f, k =
0,1,2,..., was proved. In the following we shall give an outline of the
reasoning.

Introduce the notations:

G =(@te<a<booX0<t<T) 0<e<Min(b;“,§),

G?:G,\(a+e<x<b—e)><[0§t<—:§),

N,) = V]2 > N¥) = [0 llzaen -
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LEMMA 4.1 (cf. [4], ch. 1). Let ¢,¢, be positive numbers with 0 <
e+ ¢ < Min((b — @)/2, T/2). Then there exists functions + =,
e Cy(G,,) such that ¥ =+,,=1 on G,,,, and

Max |DIDiy| £ Cyipe™*” 0=j+r=2

4.7 T

D=0 on@+e,b—e) X [0, E)'

LEMMA 4.2 (cf. [6], Lemma 6.2). There exists a constant C > 0

such that
326N, (Div) + 3. &N, (tDiv) + N, (v)
7=0 7=0

4.8) + eN¥, . (Dv) + &NX, (D.Dyv)

< CI#N,(I) + 3 &N, (tD4v) + N*(@) + eN*(D,v)}
i=0,1

for all ve C~(@) and v(x,0) = 0. The constant C does not depend on
e, ¢, under the condition mentioned previously.

This lemma is obtained by substituting +, v in (4.4).

LEMMA 4.3 (cf. [4], ch. 7). Let w be an analytic function in G.
Then there exists a constant C > 0 such that

(4.9) "N (DDjw) < €t dif j+r <k,

for all integer k > 0. Conversely, if we C~(G) suctisfies (4.9), then w
is analytic in G.

Proof of the analyticity of % in 2 N {(x,?);t = 0}.
First we shall show that there exists a constant B > 0 such that,
for any ¢ > 0 and for any integer I > 0,

> N, (D5 D)
2

(4.10) go e HIN (E* D5 u) < Bi+t
> eHINE(DLHu)

r=0,1
e INK(D, D)
if 7 <.
It we take B sufficiently large, we have (4.10) for [ = 1 by Lemma 4.2.
Next, since f(x,t) is analytic in G, there exists a constant C, > 0 such
that
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62+ij‘(Dif) é Cg+l s

for j=1,2,... and 0 < e < (b — @)/2.
Assuming that (4.10) have been proved for an I > 0, we shall prove (4.10)
for I + 1. Replacing v by ¢D.u and ¢ by le in (4.8), we see that the
terms in the left hand side of (4.10) for the case ! + 1 are smaller than
5C,B'*' if j <1+ 1. Hence we have (4.10) for [ + 1 if 5C,B'*! < B!*2,
This condition is satisfied for all I if B > max (5C,,1).

From (4.10) (cf. Lemma 4.3) we obtain

2
(4.11) 2 DD ey = G177 7=0,1,2, .-
=0

for some constant C, > 0 where G,, = (@ + ¢,b — ¢) X [0,T/2] with¢ >0
sufficiently small.

To obtain the successive estimates including the derivatives in both
x and t, we rewrite the equation Lu = f in the form Diu = —tD>u + f.
And using (4.11) by the usual way (cf. [6] for example) we have

”D.?;D:,M’HL?(GH) é Cg'+r+l(j + 7»)1'*'1‘ 0 é j,r < o0

for some constant C, > 0, from which we have the analyticity of « in
G., by the Sobolev lemma.
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