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Methods for descriptive network analysis have reached statistical maturity and general acceptance across the

social sciences in recent years. However, methods for statistical inference with network data remain fledgling

by comparison. We introduce and evaluate a general model for inference with network data, the Exponential

Random Graph Model (ERGM) and several of its recent extensions. The ERGM simultaneously allows both

inference on covariates and for arbitrarily complex network structures to be modeled. Our contributions are

three-fold: beyond introducing the ERGM and discussing its limitations, we discuss extensions to the model

that allow for the analysis of non-binary and longitudinally observed networks and show through applications

that network-based inference can improve our understanding of political phenomena.

1 Introduction

Over the past several decades, political scientists have increasingly looked to relational data generally and
network data specifically to address important substantive questions. However, statistical tools for the anal-
ysis of political networks have not kept pace with the breadth and complexity of the substantive questions
being asked of such data. In relational data, it is common that the relational tie between a given pair of actors
depends on one or more of the other ties in the network. For example, if we consider the conflict network of
World War II, it is clear that the United Kingdom’s choice to declare war on Germany was strongly influ-
enced by the conflict ties that Germany had already initiated with other states, Poland in particular. Re-
lational dependencies need not even exert their influence on actors directly involved in the influential
relation: Canada, the Netherlands, the United Kingdom, Australia, New Zealand, and others declared
war on Japan in the immediate wake of the Pearl Harbor attack even though none of them were directly
involved. The extent of the complex dependence can be further seen by fact that Italy and Germany then
quickly declaredwar on theUnited States. Thisdependence among relationships in network data constitutes
the core statistical challenge, and also a great opportunity, associated with the empirical study of networks.

The two common approaches to the statistical analysis of relational data in political science are (1) to
assume the covariates in adyadic regressionmodel are sufficient to account for dependenceamong theobser-
vations and (2) to condition out interdependence through the innovative use of random effects. The first
approach is necessarily biased in the many instances where relationships between the observations cannot
be represented as a covariate, violating the regression assumption of conditional independence of observa-
tions. Complex random-effect specifications are often sufficient to condition out the dependence among the

Authors’ note: Many thanks to Tom Carsey, James Fowler, Justin Gross, and Peter Mucha for their valuable comments on a previous
version of this article. Supplementary materials for this article are available on the Political Analysis Web site.

� The Author 2010. Published by Oxford University Press on behalf of the Society for Political Methodology.
All rights reserved. For Permissions, please email: journals.permissions@oup.com

66

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pq
03

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpq037


observations, but such approaches are not generally capable of characterizing the precise forms of inter-
dependence that characterize the data—properties thatmay be theoretically important to political scientists.

Our aim is to introduce a model for inference on network data called the Exponential Random Graph
Model (ERGM) as well as several of its recent extensions and demonstrate the application of these meth-
ods on political science data. The ERGM is a statistical model that can be used to estimate the effects of
covariates on the ties in a network while simultaneously estimating parameters that provide a precise and
parsimonious description of the forms of dependence that can exist in relational data. We introduce the
ERGM, its estimation, and its limitations; the most restrictive of which are the fact that ERGMs are only
defined for single networks with binary ties. We then, by means of example, discuss the common applied
problems of valued edges and longitudinally observed networks—demonstrating some extensions of the
ERGM that allow the analyst to overcome these problems. Our applications show that using ERGMs can
not only avoid faulty inference on covariates but can also provide new insight to substantive problems via
empirical characterization of the interdependence among political relationships.

Standard regression models are designed to estimate the effect of covariates on the outcome, not to
estimate the influence of the outcomes on each other. Therefore, the regression framework is not only
unable to model network dependencies but the validity of regression results breaks down when such de-
pendencies go unmodeled. Consider, for example, a model of international conflict where the outcome
variable is war and the single independent variable is joint democracy; both variables are measured on the
dyad. If it is the case that the enemy of my enemy is likely to be my friend, the outcome observations
(conflict relationships) are nonindependent because of an endogenous effect in the network generating
process. A triadic effect such as this cannot be captured by covariates and so, in the context of a traditional
regression, must be omitted from the model specification. The effect of this omission will be bias in the
coefficients and inconsistency in the SEs because of model misspecification. The bias here is a result of
unobserved heterogeneity. Proper specification is essential to produce a valid result for any type of pa-
rameter (covariate or structural). As such, even if the researcher is only interested in evaluating a particular
hypothesis about a covariate, bias due to the omission of relevant structural effects can compromise the
analysis. Furthermore, clustering the SEs could not correct the problem because the nonindependence of
nodes in complex networks prevents the node-wise partitioning necessary to cluster the SEs.1

The ERGMpermits construction of a comprehensivemodel for the state of the network through amech-
anism that departsmarkedly from regression. Because the observed network is treated as a single realization
from amultivariate distribution, no assumptions about the independence of actors or ties within the network
are necessary. Furthermore, the ERGM can model both exogenous effects (covariates) and effects that are
endogenous to the network (structural effects in the network). Dependence terms in anERGMspecification,
which are endogenousmeasures on the network, capture theories postulating relationships among the ties in
the network (e.g., the friend ofmy friend ismy friend). In other words, researchers can proceedwith ERGM
analysis based on hypotheses similar to those that would produce regression specifications (i.e., covariate x
is expected to affect the outcome y), and as much network structure (dependence) as they see fit. Moreover,
the ERGM is poised for widespread application in political science and is implemented in a number of
software packages. The ERGM is, as we will show, widely applicable to network analysis in political sci-
ence and is remarkably flexible in its ability to model relational interdependence.

We are not the first to have noticed that treating relational data as independent, an assumption required
by the regression framework, is a problematic practice (Hoff and Ward 2004; Ward, Siverson, and Cao
2007). Qualitative theory in various subfields has discussed the interdependence of relationships for some
time (i.e., Hoag 1960, Rosecrance and Stein 1973, Rosecrance et al. 1977, Keohane and Nye 1989, and
Kroll 1993) and descriptive techniques for network data are now reasonably well known (i.e., Fowler 2006
and Maoz et al. 2006; Maoz 2006, 2009). Although the discipline as a whole has yet to move away from
regression on network data, many recent works have striven to adapt regression modeling to the network
framework (Baybeck and Huckfeldt 2002; Schneider et al. 2003; Lazer 2005; Fowler 2006; Maoz et al.
2006; Franzese and Hays 2006; Scholz and Wang 2006; Crescenzi 2007; Ward and Hoff 2007; Ahlquist
and Ward 2009; Hays, Kachi, and Franzese 2010).

1Additionally, unlike the linear regression model, robust-clustered SEs have been shown to be inconsistent for grouped discrete-
choice data (i.e., clustered logit) Greene (2008, p. 517).
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Oneefforttoextendtheregressionframeworktothenetworkcontextinvolvestheinclusionofnetworkstatistics
as covariates in regression analyses. Maoz (2009) models the dyad-level incidence of conflict, as well as the
annual aggregate count of militarized interstate disputes, as functions of characteristics of the international
trade and alliance networks.Also,Maoz et al. (2006) compute structural equivalence scores for each dyad in
the network and include those estimates as covariates in a logistic regression of international conflict. This
approach tomodelingnetworks, as applied to both international relations andAmericanpolitics, is pivotal in
its recognition of the importance of endogenous network structures to network outcomes.However, because
it applies standard regression to account for this interdependence, it does not do awaywith the independence
assumption and, as such, does not solve the bias problemdiscussed above. Furthermore, this approach treats
structural effects, which are necessarily endogenous to the outcome network, as exogenous to the network.
The ERGM framework wewill introduce easily handles both endogenous and exogenous effects and, more
importantly, departs from the regression framework and its independence assumptions.

A number of promising approaches have been developed outside the ERGM framework (Hoff, Raftery,
and Handcock 2002; Hoff and Ward 2004; Franzese and Hays 2006; Hays, Kachi, and Franzese 2010).
Perhaps the most visible approach is the latent space network model originally proposed by Hoff, Raftery,
and Handcock (2002). The latent space model takes account of network dependencies by mapping each
node to a position in k-dimensional Euclidean space. The positions of the nodes in this latent space are then
linked back to the network through the assumption that the closer any two nodes are to one another in the
latent space, the more likely they are to share an edge. A logistic regression is then estimated where, in
addition to covariates, the Euclidean distance between each node and each other node is controlled for.
Since its development, the latent space approach has been applied to international conflict (Ward,
Siverson, and Cao 2007) and rather extensively to trade, job protection, and international political econ-
omy generally (Cao, Prakash and Ward 2007; Ward and Hoff 2007; Ahlquist and Ward 2009).

It is not our intention here to pit the ERGM against these alternative approaches and discover the ‘‘best’’
method for modeling complex networks; the best approach will vary by application based on the substance
of the problem and the quest for a universally best method is quixotic. Instead, we seek to introduce the
ERGM and some of its extensions as an approach that may be useful in many political science analyses,
particularly those where actors are thought to condition their tie-formation behaviors on the ties formed by
others in the network and/or exogenous covariates.

Though the general framework for ERGMs is well developed, there remain a number of applied prob-
lems that currently limit the utility of ERGMs for political scientists. Chief among these problems are the
inability of ERGMs to model longitudinally observed networks or handle non-binary edge types. We pres-
ent extensions to the basic ERGM that can overcome the problem in the case of longitudinally observed
networks and can work around the valued-edges problem by transforming a valued-edge network into
a binary network. We demonstrate the efficacy of these extensions with two illustrative examples—one
on cosponsorship in the U.S. House of Representatives and another on international conflict.

We begin by deriving the ERGM and discussing the ways in which it requires us to think differently
about network data, how it accommodates dependence among the edges, how it can be estimated, and
some limitations of the model. We demonstrate the ERGM, along with extensions to valued (non-binary)
edges and longitudinally observed networks using two examples chosen for both salience and exposition:
cosponsorship networks in the U.S. Congress and conflict networks in the international system. We feel
that these are good expository applications because they pose challenges to ERGM analysis that are likely
to be encountered in many other political network analyses: the cosponsorship network has non-binary
edges and the conflict network is observed over a long period of time. Through these examples, we will
also show that using ERGMs to model these networks not only rectifies bias problems often encountered
with the erroneous application of classical methods but can also provide deeper substantive insight and
suggest new theoretical approaches.

2 The Exponential Random Graph Model

The ERGM has evolved out of a series of efforts by scholars in many disciplines to address the same
limitations of classical statistical models that have frustrated political scientists using network data.
The theoretical foundations for the ERGM were originally laid by Besag (1975) who proved that there
exists a class of probability distributions that are consistent with the Markovian property that the value of
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any one location is dependent only on the values of its contiguous neighbors.2 Building on Besag’s (1975)
work, Holland and Leinhardt (1981) derived the exponential family of distributions for networks. That
same year, Fienberg and Wasserman (1981) put the exponential family of models into the context of log-
linear models and examined issues with the likelihood estimation of such models. This class of models and
the accompanying estimation techniques were developed further by Frank and Strauss (1986) and Strauss
and Ikeda (1990), but it was not until Wasserman and Pattison (1996) that the fully specified ERGM was
first derived.

To make inference about the determinants of outcomes that are dependent upon each other (i.e., the ties
within a network), even if one is only interested in the effects of exogenous covariates on the individual
outcomes, those individual outcomes must be combined within the context of a multivariate distribution
(i.e., joint distribution) that accurately represents the dependence among them (Hyvrinen, Hurri and Hoyer
2009). The failure of a model to recognize dependences among outcomes is as threatening to the validity of
results as omitting an important covariate. There are many established methods in political methodology
that take this approach—accounting for correlation among observed or latent outcomes that is not captured
by the covariates—including, seemingly unrelated regression (Jackson 2002), multinomial probit
(Alvarez and Nagler 1998), spatial regression (Franzese and Hays 2007; Hays, Kachi, and Franzese
2010), and copula modeling (Boehmke 2006). Aside from being tailored to network data, the character-
istic that differentiates the ERGM from these other multivariate methods is that the researcher must fully
specify the forms of interdependence that are captured by the model. With that in mind, an appropriate
model for statistical inference on network data must meet two criteria. First, the model must be sufficiently
general so as to allow ties to depend upon covariates as well as other ties in the network. Second, to allow
for this dependence, the model must be derived as a proper joint distribution so as to avoid, altogether, the
restrictive assumption that the ties are conditionally independent. The ERGMmeets both of these criteria.3

In order to construct a model without assuming relational independence, we need to think in a somewhat
different fashion about the data generating process.We can construct a likelihood function for any network
of interest, Y, without assuming independence by considering Y to be a single observation from a multi-
variate probability distribution. So instead of thinking about Y as a series of values drawn from a condi-
tional univariate distribution (as is the case for standard regression models), we think of it as a single draw
from a multivariate distribution where many other draws (many other realizations of the network) are
possible. If Y is a single realization from a multivariate distribution, we no longer have to assume inde-
pendence among the values of Y in any way. It is important to note that this generalization does not require
us to abandon the ability to characterize the conditional probability of a tie given covariates, as in a re-
gression. Once a proper joint distribution is defined for the ties in the network, the conditional distribution
of any tie given covariates is implied. We provide the formula for the conditional probability of a tie in
Section 2.2 on interpretation below (equation 5 specifically). The multivariate treatment of Y is the con-
ceptual leap necessary to avoid the problems associated with independence violations. The modeling chal-
lenge is then shifted from constructing a model of a univariate outcome, the parameters of which are
estimated using many observations, to constructing a model of the multivariate distribution from which
a single network is drawn and whose parameters are estimated with a single observation. ERGMs provide
a general approach to constructing these probability distributions.

To formalize the intuition given above, we follow and build upon the derivation of the general class of
ERGMs presented by Park and Newman (2004). Suppose there are k statistics Ci, i 5 1,.., k that can be
computed on the network (or graph) Y—an N � N adjacency matrix—which the analyst believes affect the
likelihood of observing Y. These statistics can include measures of interconnectedness, reciprocity in
directed networks, and node (e.g., political party of a legislator) or dyad-level (e.g., trade between
two states) covariates. For example, node and dyad-level covariates, Xn and Xd, respectively, are included
in an ERGM via

2Specifically, Besag (1975) proved the Hammersley-Clifford theorem that shows this in the context of spatial data, but that theorem is
naturally generalized to networks.

3To revisit a topic from above, including network statistics as predictors in a regression meets the first criteria in that ties are rendered
dependent upon other ties, but does not meet the second.
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CXn
ðY;XnÞ5

X
i 6¼j

XiXjYij and CXd
ðY;XdÞ5

X
i 6¼j

XijYij; ð1Þ

and reciprocity, a dependence term, is accommodated as

CRðYÞ5
X
i<j

YijYji: ð2Þ

Like with the selection of independent variables, the selection of network statistics should be motivated
by theory. For example, in our international relations application below, we have a theoretical reason for
believing that the enemy of my enemy should not be my enemy. In other words, we suspect that we will
find a negative coefficient for the count of closed triangles in the conflict network. Although a detailed
review of possible network statistics to include is beyond the scope of this discussion, interested readers
are referred to Handcock et al. (2010) and Snijders et al. (2006) for such a treatment. The only condition
we require is that no subset of C be linearly dependent on another; in other words, there can be no perfect
collinearity. Given N, the (fixed) number of nodes in Y, there are M possible sets of edges on N. This means
that the observed network Y is one of M possible networks with the same number of nodes that could have
been observed. This illustrates the assumption that the observed network Y arises stochastically from the
support YM.

The general ERGM is derived using a moment-matching exercise. We start by making one of only two
assumptions that are invoked to derive the ERGM: we assume that each of the network statistics calculated
on graph Yare the expected values of those statistics across all possible graphs: E[Ci]5 Ci, where Ci is any
network statistic. In other words, we assume that the expected value of the network statistics are their
values as computed from Y. Although this may seem like a strong assumption, one must keep in mind
the fact that, in many cases, we will only observe a single realization of the network (i.e., there is only one
realized Supreme Court citation network) and so the observed value of the statistic Ci is actually our best
indication of its expected value E[Ci]. This assumption is necessary because it establishes an identifying
condition on the probabilities of the networks in YM:

E½Cm�5
XM
m5 1

PðYmÞCm: ð3Þ

Yet the distribution over YM is not fully identified at this point. We must also assume that only the
statistics included in C influence the probability that graph m is observed, P(Ym).

4 This is accomplished

by maximizing the Gibbs entropy, S52
PM
m5 1

PðYmÞlnPðYmÞ, on the discrete distribution of graphs in YM

subject to the condition in equation (3). In effect, the network statistics pull the distribution of networks
away from a uniform distribution over all possible networks to the extent that such a weighting increases
the likelihood of observing Ym.

As a result of this optimization, we can recover an elegant formula reflecting the relationship between
the probability of a network m and the network statistics in C,

PðYmÞ5
exp
�
2
Pk

j5 1 Cmjhj
�

PM
m5 1 exp

�
2
Pk

j5 1 Cmjhj
�; ð4Þ

where h is the vector of k parameters that describe the dependence of P(Ym) on the network statistics in C.
Equation (4) is the full joint distribution of the edges in Y. We describe below, a number of ways that this
distribution can be used for inference on h.

4This boils down to an assumption that the model is correctly specified—an assumption that underlies many methods used for sta-
tistical inference in political science, including the generalized linear model.
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The power of the ERGM approach lies in the fact that we have derived the parametric form of the
distribution of interest from very general conditions. The only assumptions we have made are (1) that
we observe the expected values of C and (2) that we have identified the factors that influence the prob-
ability of observing any given graph (i.e., the model is correctly specified). ERGMs thus provide a method
capable of estimating standard covariate effects as well as the effects of other network properties without
having to make any assumptions about independence.

The ERGM is a natural way to model a number of network generating processes, both structural (i.e.,
network level) and individual, common to political science. One approach to thinking about network gen-
erating processes is to hypothesize that certain substructures are likely to emerge in the network. For
example, theory may imply that dense clusters (e.g., polarized political parties) should exist in the net-
work; a theory that may not be well articulated at the individual choice level. The ERGM can also be used
to study relationships among individuals who are thought to condition their individual choices on the
behaviors of others in the network. An alternative way to think about the ERGM and the network gen-
erating process is that the ERGM can be viewed as the limiting joint distribution of ties formed conditional
on all other ties in the network. In other words, when individuals—say legislators—condition their tie
formation behavior on the tie formation behavior of others in the network, a complex structure easily
modeled with the ERGM emerges. The applications in sections 4.1 and 4.2 make use of the individual
and structural perspectives on the network generating process, respectively.

2.1 A Small-Scale Illustration

As noted above, the largest conceptual difference between the conventional regression framework and the
ERGM is that the model used to describe the data is specified at the network level and cannot be con-
structed from the individual links or nodes independently. Given a set of network statistics (C), the pa-
rameters (h) are estimated to maximize the likelihood of observing the network on hand. To fit the ERGM
well, the analyst should choose C such that the vector of statistics collectively differentiates the observed
network from the other possible networks that could have been observed.

Consider a small-scale hypothetical example of a directed network defined on three nodes {A, B, C},
with an exogenous edge attribute (i.e., directed, dyadic covariate) X. Suppose X takes on one of three
discrete values: low, moderate, and high. The distribution of possible graphs under a naive uniform as-
sumption is shown in Fig. 1; there are 64 possible realizations of this three-node directed network. The
probability of each, given in the center of the graph, is 1/64.

Suppose the starred network in Fig. 2 is observed. This network contains four out of six possible edges,
one reciprocal edge, two edges corresponding to low covariate values, one edge corresponding to a mod-
erate covariate value, and one edge corresponding to a high covariate value. We now specify an ERGM on
this network including three statistics: the number of edges (E), the number of reciprocal edges (R), and the
sum of the covariate values corresponding to the edges (SX). The maximum likelihood estimates of the
effects of these statistics, estimated from the starred network, are hE 5 16.96, hR 5 2 14.61, and
hSx 521:07. A negative (positive) parameter estimate means that the probability of observing a network
with a higher value of the corresponding statistic relative to some hypothetical baseline network is lower
(higher) than the probability of observing the baseline. Figure 2 gives the distribution over three-node
directed networks implied by these ERGM parameters and statistics. The probability of having observed
the starred networks is 0.06, almost four times as high as the uniform probability of 0.016.

This small-scale example shows a microcosm of the process of statistical inference on network data
using ERGM. The null model (i.e., when h5 0) is a uniform distribution across the possible networks. A
set of network characteristics are hypothesized to account for the configuration of the observed
network—identifying the factors that collectively differentiate the observed network from the others that
could have been observed. Parameters are then estimated that give the effect of network characteristics on
the probability of observing that network. The distribution of networks can then be reweighted to account
for the systematic structure discovered in the modeling process.

2.2 Interpreting ERGMs

As is the casewith standard regressionmodels, there are several ways in which one can interpret the estimated
parameters of an ERGM. We focus on two levels of interpretation: the network level and the dyad level.
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At the network level, the network statistics directly condition the probability of the entire
network—allowing us to estimate the effect of within-network configurations (e.g., alignment of edges
with covariates and/or reciprocal ties) on the predicted probability of observing a particular instance of the
network. Specifically, the probability of observing (Y) is proportional to the exponent of the sum of net-
work statistics, weighted by their respective parameters. If hi is positive (negative), then the effect of Ci (Y)
on the predicted probability of Y is positive (negative). It can be illustrative to compare the predicted
probabilities of two possible realizations of the network, Y (1)and Y (2). Suppose Y (1) and Y (2) are equal

on every network statistic besidesCi (Y). LetCi (Y
(1))2Ci (Y

(2))5 d, then
PðY ð1ÞÞ
PðY ð2ÞÞ5 exp

n
hid
o
(Desmarais

2010, 49). In other words, we are exp{hi d} times as likely to observe Y(1) as we are Y(2).
Another popular network-level approach to interpretation of the ERGM is mechanically very similar to

the method advocated by King et al. (2001). The large number of networks to be summed over in the
denominator in equation (4) make it difficult to arrive at a closed-form expression for predicted quantities
such as the average number of ties in the network or the distribution of ties about nodes (the degree dis-
tribution). In the absence of closed form solutions, simulation techniques provide a straightforward means
of approximating the distribution of a given network statistic. Morris, Handcock, and Hunter (2008) de-
velop an algorithm to simulate networks from the distributions implied by ERGM parameters. Thus, if one
is interested in the distribution of some statistic C (�) defined on the network, an approximation to this
distribution is easily obtainable by simulating a large number of networks based on the ERGM parameters
and computing Ci (�) for each network (Morris, Handcock, and Hunter 2008; Handcock et al. 2010). The
larger the number of simulations, the more accurate the approximation. Once the distribution is obtained,
approximations to the characteristics of the distribution of the network statistic can be obtained with sum-
mary statistics (e.g., what is the variance in the number of wars?).

The dyadic level of interpretation will be the most familiar to political scientists as it closely resembles
the form of a logistic regression. At the dyad level, the quantity of primary interest in most networks is the
probability of the existence of a particular edge (e.g., how likely is it that there is war between the United
States and Canada?). The probability of an edge between nodes i and j is written,

Fig. 1 The uniform distribution over a three-node directed network. The darker the edge, the higher the value of
a hypothetical edge-wise covariate with three possible values. The number in each cell gives the probability of
observing that configuration.
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PðYij 5 1jn; Yc
ijÞ5 logit21

 XK
k5 1

hkdðCykÞ
!
; ð5Þ

where n is the number of nodes, Yc
ij denotes all dyads other than Yij, K is the number of network statistics

in the ERGM, and d (Cyk) is the amount by which Cyk changes when Yij is toggled from 0 to 1 (Goodreau,
Kitts, and Morris 2009). Using equation (5), we can produce predicted probabilities for the edges in
the network. Notice that the predicted probabilities cannot be produced without including Yc

ij; this
is a major departure from the computation of predicted probabilities in a logit or probit model. The in-
clusion of Yc

ij is necessary because in ERGMs, P(Yij) is dependent on the dyad-wise outcomes of every
other dyad.

It is important to note that a special case of equation (5) is equal to logistic regression. Consider a simple
example where there are three network statistics in the model: the count of the number of edges in the
network (CE (Y)), a dyadic covariate (CXd

ðYÞ), and reciprocity (CR (Y )). In this model, the change statistics
for the ijth dyad on these statistics are

d
�
CE

�
Y
��

5 1; d
�
CXd

�
Y
��

5Xij; and d
�
CR

�
Y
��

5 Yji; such that;

PðYij 5 1jYc
ijÞ5 logit21

�
hE1hXdXij1hRYji

�
:

If hR 5 0, then P(Yij 5 1j Yc
ij) 5 logit21 (hE 1 hXd Xij). Note that this is equal to the predicted prob-

ability in a logistic regression with hE equal to the intercept and hXd the regression coefficient for Xd.

Indeed, if the coefficients on the dependence terms—terms for which the change statistics involve other
edges in Y—are all zero, the ERGM reduces to a logistic regression on the binary dyadic edge values, with
the intercept equal to the edges coefficient and the regression coefficients equal to the exogenous covariate
parameters (Strauss and Ikeda 1990; Wasserman and Pattison 1996).

Fig. 2 The ERG distribution over a three-node directed network. The parameters were estimated by MLE on the
starred network. The darker the edge, the higher the value of a hypothetical edge-wise covariate with three possible
values. The number in each cell gives the probability of observing that configuration.
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2.3 Limitations of ERGMs

Though the ERGM is a powerful and flexiblemodel, it suffers from a number of limitations thatmay hamper
itsutility to researchers.Themajor limitationsof theERGMaredegeneracyproblems, a sensitivity tomissing
data, an inability to model networks over time or networks with nonbinary edges, and (related) the fact that
ideal coding rules for edgesareoftennotobvious.Wediscussmostof these limitationshere; in somecases,we
argue that the drawbacks are not as limiting as theymight seem.We reserve a discussion of the binary edges/
coding rule problems and the longitudinal analysis problem for sections 4.1 and 4.2, respectively, where we
examine some extensions to the ERGM that can be useful for addressing these problems.

Degeneracy is an estimation problem associated with models that fit the data poorly. Essentially, de-
generacy results from the specification of a model that is so unlikely to have generated the network, that the
ERGM cannot be computed. Degeneracy occurs when the model lumps all or most of its probability mass
on just one or a few possible graphs. In most cases of degeneracy, disproportionate probability mass is
placed either on the complete (fully connected) or empty (entirely unconnected) networks (Handcock
2003). Once the ERGM has been specified, it is estimated using Markov chain Monte Carlo, but degen-
erate or near degenerate models cause problems in the estimation process (see Snijders 2002 for a detailed
description). If the model is not well specified, the chain will move to an extreme graph of all or no edges,
where it will stay, and the model is said to be degenerate.

Although degeneracy can be frustrating, it is not necessarily a major hindrance to applied research.
Because models that are highly unlikely to have generated the network will be degenerate, degeneracy is,
in some sense, a statement about model fit. This certainly should not be taken to mean that a given model
fits well simply because it is not degenerate, but any model that is degenerate is sure not to fit well. Since
including parameters or variables that contribute no meaningful information to the prediction of the out-
come network will usually cause degeneracy, one must think carefully about the components of the models
to be estimated and sometimes specification searches may be necessary. Quite unlike standard regression
models, ERGMs with a set of ‘‘standard controls’’ that do nothing to predict the outcome will cause de-
generacy problems and thus should not be specified. Themajor ‘‘weakness’’ of ERGMs then is the fact that
one’s model must actually fit the data reasonably well, not much of a limitation in our opinion.

Missing data can also be especially problematic in a network context. Specifically, inferences on the
importance of covariate or structural parameters can be altered by missing edge values; in certain cases,
small amounts of missing data can have pronounced effects. In some ways, this is not different from
missing data problems encountered in the traditional regression framework: small amounts of missingness
(particularly missing observations for rare events) can have pronounced effects on inference (King et al.
2001). Where the missing data challenge is magnified for ERGMs is that effective multiple imputation is
more difficult to achieve than it is for models that maintain the traditional rectangular structure of the data.
One option for solving this problem is to use multiple imputation on the edge-list (dyadic) representation
of the network. One can even compute descriptive network statistics on the node level—such as centrality,
betweenness, and so on—and include those in the imputation model. This is an imperfect solution, how-
ever, because dependencies from certain network structures could not be taken into account. This is an
open problem that recent work on inference with sampled networks is attempting to address Handcock and
Gile (2010) but remains problematic from an applied perspective.

3 Estimation of the ERGM

Parameterized in the form of equation (4), the ERGM has an exponential family form log-likelihood
function, and as a result, the log-likelihood surface is globally concave in the parameters (van Duijn,
Gile, and Handcock 2009). This is an ideal setup for Newton-Raphson type maximization of the likelihood
function, but a challenge arises in the fact that the exact computation of the likelihood function is too
computationally demanding for most networks and network statistics (Cs) of practical interest. As
can be seen in the denominator of equation (4), the computation of the likelihood function requires
the summation over all possible configurations of the network. For an undirected network with N nodes,

this constitutes 2

�
N
2

�
networks. A network with just 9 nodes can assume 68,719,476,736 configurations,

a number that increases by a multiplicative factor of 1,073,741,824 if the number of nodes increases to 12.

74 Skyler J. Cranmer and Bruce A. Desmarais

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pq
03

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpq037


Needless to say, in order to estimate the ERGM on a network of 100–200 nodes, the likelihood function
must be approximated. Two methods of approximation have found regular application in the literature—
maximum pseudolikelihood (Frank and Strauss 1986) and Markov chain Monte Carlo (MCMC) maxi-
mum likelihood (Geyer and Thompson 1992).

The MCMC approach is currently the default for most software packages and is a form of maximum
simulated likelihood.5 The method is iterative and the algorithm works as follows: in a given optimization
iteration, the sum in the denominator of the likelihood function is approximated using a series of networks
sampled from the distribution parameterized with those parameters that maximized the likelihood using
the previous sample of networks. This iterative optimization proceeds until there is little change in the
approximate likelihood function value. The covariance matrix of the parameters is then computed as the
inverse of the negative Hessian of the log-likelihood function. Pseudocode for the Maximum Likelihood
Estimation (MCMC-MLE) algorithm in Geyer and Thompson (1992), which is the algorithm used in most
software packages for ERGM estimation, is given in Fig. 1 of our online supplement.

The pseudolikelihood technique is an analytic approximation method. The joint likelihood of the ties in
the network is replaced with the product over the conditional probability of each tie given the other ties in
the network. For a given edge ij, the edge-wise probability of a tie, given the rest of the network, (pij) is
given in equation (5). The maximum pseudolikelihood is computed by using a hill-climbing algorithm to
find the vector of parameters that maximize

log

 Yn
i5 2

Yi
j5 1

p
Yij
ij

�
12pij

�12Yij

!
:

This is convenient in that it can be computed using standard logistic regression software, with the dyadic
covariates and network change statistics composing the design matrix. As with the MCMC method, an
approximate covariance matrix for the maximum pseudolikelihood is formed by inverting the observed
information matrix.

As two methods of approximation, there are pros and cons associated with each approach. The ad-
vantage of the MCMC approach is that in the limit (with an infinite number of draws from the distribution
of networks), it produces estimates equivalent to the MLE. The disadvantages of the technique are that the
number of draws must be finite, computation can prove quite difficult for large networks, and—because
simulation is used—two analysts can produce different results when conducting the same study. For the
pseudolikelihood approach, computation is typically fast and convergence certain, but there are few finite-
sample results that characterize the degree of bias or loss of efficiency induced by replacing the joint
likelihood with a product over conditionals. MCMC estimation has been favored in recent analyses,
though not without exception (see, e.g., Faust and Skvoretz 2002 and Saul and Filkov 2007). van Duijn,
Gile, and Handcock (2009) perform a Monte Carlo experiment to compare pseudolikelihood and MCMC
methods; their findings support the recent dominance of theMCMC-MLE. For network statistics, they find
that the maximum pseudolikelihood is 60%–80% as efficient as the MCMC-MLE, and for exogenous
covariate effects it is 80%–95% as efficient as the MLE.6 More alarming for the task of hypothesis testing
is the finding that the confidence intervals derived from the inverse of the observed fisher information are
biased using pseudolikelihood but not with MCMC. Specifically, they find that the coverage probability
for the nominal 95% confidence interval is only 74.6% for a statistic that captures clustering in the net-
work. In the first application below, we use MCMC, which is implemented in the R package ERGM
(Handcock et al. 2010), and in the second application, we adapt the pseudolikelihood approach for
the estimation of a single vector of ERGM parameters that covers multiple realizations of the same
network.

5Most ERGM software comes complete with a suite of convergence diagnostics for MCMC estimation. See Handcock et al. (2010)
for a detailed discussion.

6Efficiency is measured as the inverse of the mean squared error of the parameter estimate in the Monte Carlo experiment.
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4 Applications

Opportunities for analysis with the ERGM abound in political science. Indeed, data for which the unit of
analysis is the relationship between actors can occur in any subfield of the discipline. The degree to which
an application conforms to what we might call a ‘‘basic’’ ERGM setup, one in which a network with
naturally binary relationships is observed in a single cross section, does much to inform how straightfor-
ward the ERGM analysis will be.

In some instances, the data will conform well to the basic ERGM setup. For example, in an application
that lies at the intersection of comparative politics and interest group studies, Lusher and Ackland (2010)
examine the structure of hyperlinks between the Web sites of 144 Australian groups that advocate for
Asylum seekers. They use the ERGM to study the structure of this network, in which a directed edge
exists from group A to group B if there is a link to group B on group A’s Web site, at two cross sections.7

Lusher and Ackland (2010) begin by developing a typology of advocacy groups, classifying them as either
lobbying, research, or service-provision groups. They then specify an ERGM with exogenous terms to
capture intratype homophily (the tendency to link to groups of the same type), type-sender effects, and
type-receiver effects as well as terms to account for nine possible endogenous effects including, for in-
stance, reciprocity, popularity, and cyclicality. Like our applications below, Lusher and Ackland (2010)
estimate a dyadic logit model and an ERGM. They find that eight of the nine endogenous effects are
statistically significant at the 0.05 level (two tailed) and that the substantive inferences regarding the ex-
ogenous sender and receiver effects differ between logit and the ERGM. Specifically, in the logit model,
groups that lobby are found to receive more links than groups that do not lobby (but do not differ in their
link-sending behavior), and in the ERGM, this finding is reversed, with groups that lobby found to send
more links than those that do not (but do not differ on the tendency to receive links). This shows that (1) the
ERGM can shed light on interesting dependencies within networks and (2) remove bias from the estimates
of covariates that results from the inappropriate assumption that there is no endogeneity in the network.

Unfortunately, many applications in political science do not conform directly to the basicERGM setup.
We now develop and consider two such applications. We have chosen these applications because they
allow us not only to further illustrate the methods we have described above but also because each forces
us to grapple with a different (and common) applied problem we have not addressed specifically above:
what to dowhen the network is both dense and valued (i.e., the edges can assumemore values than 0 and 1)
and how to work with multiple realizations of a particular network. Lastly, the different subfields from
which the applications are drawn demonstrate the broad applicability of ERGMs.

For each of the applications, we walk through the specification process and the considerations that go
into it from beginning to end more as a researcher would in their office than readers are accustomed to
seeing in print. This is done strictly for exposition.

4.1 Analyzing Valued Cross-Sectional Networks:

4.1.1 Cosponsorship in the U.S. Congress

Our first application is drawn fromAmerican politics and extends ideas developed by Fowler (2006). In the
U.S. Congress, legislators commonly cosponsor legislation sponsored by other legislators.8 The cospon-
sorship network is realized when one considers a legislator’s cosponsorship of another legislator’s leg-
islation to be an edge between the two legislators. It is worth noting that there is some disagreement about
the precise meaning of a cosponsorship tie: some have argued that it represents a signal from the cosponsor
of support for the subject matter of the legislation (Kessler and Krehbiel 1996). Others have argued that it
represents a show of support from one legislator to another (Fowler 2006). Although it is beyond the scope
of this application to sort out the precise meaning of a cosponsorship tie, we believe that we can remove the
definitional problem by viewing the cosponsorship tie as a form of closeness between any two legislators;

7They impose the restriction that the ERGM parameters are the same in both periods. These parameters are estimated with the
software LPNet: http://www.sna.unimelb.edu.au/pnet/pnet.html.

8Congressional rules dictate that there may be only one sponsor to a bill, and there are no joint sponsorships.
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whether they are in agreement with regard to policy or politics, the cosponsorship tie is indicative of active
engagement between the legislators.

We examine the cosponsorship network using data from Fowler (2006).9 This data set records the
sponsorship and cosponsorship of every bill in the U.S. House and Senate for the 93rd through the
109th Congress. The edge from legislator i to legislator j in the network is the number of times legislator
i has cosponsored legislator j. Note that the network is directed and that the edge value is a nonnegative
integer.

When undertaking the analysis, we are quickly presented with a technical problem.Within Congresses,
the time interval we use to define an instance of the cosponsorship network, it is possible that any rep-
resentative cosponsors another numerous times. This is problematic for two reasons. First, the ERGM has
only been developed to handle binary ties, so we cannot use ERGM technology to model the number of
times each representative cosponsors others within a session.10 Many tools for network analysis are only
appropriate for binary ties, and we are not the first to confront this problem—with the Congressional
Cosponsorship network specifically. We can set thresholds of cosponsorship above which a tie is said
to exist and, thus, coerce a count-valued network into a binary network that can be modeled with an
ERGM. Both Fowler (2006) and Faust and Skvoretz (2002) address this problem by thresholding and
treating any positive cosponsorship count greater than zero as a cosponsorship.11 The second problem
relates to the structure of the cosponsorship network specifically. As can be seen in Fig. 3, treating
any cosponsorship act as an instance of a cosponsorship relationship would produce an extremely dense

Fig. 3 This figure has six cells each showing the 108th House cosponsorship network at the same time t. The network
is thinned by drawing a link from a legislator that cosponsors at least X% of the legislation sponsored by the receiver.
The degree of thinning increases as increases from left to right (15%, 30%, and 50%, respectively). The top row depicts
the network and the bottom row shows histograms of the in-degree of legislators (i.e., the in-degree distribution).

9Fowler’s cosponsorship data are freely available from his Web site at http://jhfowler.ucsd.edu/cosponsorship.htm.
10The ERGM requires a finite and discrete number of possible networks. As can be seen in equation (4), the denominator sums over all
possible networks. Because there is no upper bound for Poisson variables, a ‘‘Poisson ERGM’’ would require summation over an
infinite space and is thus not possible.

11An alternative solution to this problemwould be to treat the network as bipartite—meaning that two types of nodes (called modes in
this context) exist—members of Congress are one type of mode and bills are another type of mode. This would eliminate the count-
valued-edges problem because the unit of analysis would be changed from the legislator to the bill and, accordingly, there would be
only one edge receiver and several edge-senders with no possible cosponsorship structure between them. This approach would lead
to an analytic setup suitable for regression modeling. However, the majority of the cosponsorship literature treats the network as
unipartite (as we do) because the structure of the unipartite network is substantively interesting (Fowler 2006; Zhang et al. 2007;
Faust and Skvoretz 2002).
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network. If we attempt to estimate an ERGM on this network, the parameters will produce a sample of
networks where every possible tie exists and the MCMC sample will be degenerate as discussed above.

In order to transform the count-based ties into binary edges as well as produce a network that permits
nondegenerate ERGM estimation, we elect to create a binary network that is less dense than that in pre-
vious treatments by requiring a larger number of cosponsorships than one to indicate a cosponsorship
relationship. The average number of cosponsorship ties between legislators in the 108th House is
13.76. To ‘‘thin’’ the network, we must pick a threshold (number of cosponsorship ties between any
two legislators) above which wewill code an edge and below which wewill not. Obviously, when thinning
a network, careful attention must be paid to the substantive meaning of the thinning as well as the sen-
sitivity of the model ultimately produced to the thinning rule. The selection of such a threshold is nec-
essarily somewhat arbitrary and so it is important to try several threshold values as a sensitivity analysis.
When testing the sensitivity of the model, one should be looking for both significant changes in the
estimates as well as problems with model degeneracy.

Further, we should point out that sensitivity of the model to the thinning thresholds chosen is not nec-
essarily a strictly bad thing. If the results are noticeably different between, say, low and high threshold
values, that tells us something quite interesting about the data. It could even suggest that low threshold
edges represent a fundamentally different type of edge than high threshold edges (in this case, that casual
cosponsorship is fundamentally different from very frequent cosponsorship) and that fundamentally dif-
ferent processes are at work.

Our first step is to customize our coding (thinning) rule to the substantive application. A constant thresh-
oldmay be inappropriate due to the fact that there is variance in the number of bills each legislator sponsors.
Therefore, censoring at a threshold is in part a census on legislator i’s propensity to cosponsor legislator j and
legislator j’s frequency of sponsorship. Becausewe are only interested in the former, we apply a new coding
rulebyconsidering legislator i acosponsor of legislator j if legislator ihascosponsoredppercent of legislator
j’s sponsored legislation. We restrict our focus to the 108th House for the sake of brevity.

After experimenting with several thinning threshold values, we found that thresholds between 1% and
10% produce reasonably dense networks capturing between 20% and 50% of all possible ties. This me-
dium-level density produces substantively invariant model estimates and avoids degeneracy. The cova-
riates that we include in the model are an indicator of whether legislators share the same party, the absolute
difference in the first dimension of DW-Nominate, a count of committee service overlap, and a shared-
state indicator. We also include network parameters for reciprocity (asymmetric tie count), cyclicality
(count of cyclic triples), and transitivity (count of transitive triples). Recall that an asymmetric tie is
one of the form {i/j} and a cyclic triple takes the form {i / j, j / k, k / i}, whereas a transitive
triple is of the form {i/k, i/j, j/k}.12

The results of the ERGM with and without network statistics are presented in Table 1. A first look at
model fit tells us that systemic properties of the Cosponsorship network are extremely important; the
inclusion of the three network parameters reduces the Bayesian Information Criteria (BIC) by more than
25%. The signs of all the covariates are in the expected direction. Representatives from the same state are
more likely to be cosponsors and so are members from the same party, those who share committee mem-
berships, and those that are ideologically similar.

One striking finding is that when the network characteristics are accounted for, shared party is no longer
statistically significant at any traditional threshold. The p value for shared party is approximately.0074 in
the restricted model that does not account for network structure but rises to .64 when network parameters
are included. This is a clear and consequential example of the faulty weight that can be attributed to
covariate effects when network structure is not properly accounted for. As can be seen in Table 1, arti-
ficially inflated covariate effects can easily result in faulty inference. The House network exhibits a high
degree of reciprocity, a low degree of cyclicality, and a high degree of transitivity; failing to account for
these pronounced effects is akin to model misspecification, and the restricted model in Table 1 reflects the
resulting bias.

We can also use the ERGMs we have specified to produce better descriptive understandings of the
relationships between legislators. Table 2 presents an alternative look at how taking account of network

12We used the R package ERGM (Handcock et al. 2010) to fit the model.
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factors can change (and improve) inferences about dyadic outcomes in the cosponsorship network. Each
off-diagonal entry is a three-element set that includes (1) a binary indicator of a cosponsorship relation-
ship, (2) a conditional probability of cosponsorship from the full model, (3) a conditional probability of
cosponsorship from the covariates-only model. The rows correspond to the cosponsor and the columns the
sponsor. We see that the full and covariates-only models produce noticeably different probabilities, and
that, in 23 of the 30 ties, the full model provides more accurate predictions.

4.2 A Network over Time

4.2.1 Conflict in the international system

Our second application is drawn from international relations; we seek to replicate and reanalyze the model
of militarized interstate disputes (MIDs) originally developed by Maoz et al. (2006) using ERGM tech-
nology. Our reasons for selecting this application are two-fold: dyad-year data are extremely common in
conflict scholarship and, because of the international context and implications of conflict decisions, dyadic
independence is a problematic assumption. Few studies in international relations have specified inferential
models of conflict as a network phenomenon; the article by Maoz et al. (2006) is appealing because the
authors explicitly argue that international conflict should be treated as a network (other pioneering exam-
ples include Maoz 2006 and Hoff and Ward 2004). Before going into greater detail regarding the spec-
ification of the model, we present an innovation in the estimation of ERGMs for longitudinally observed
networks that we use to analyze the conflict network.

4.2.1.1 ERGM for longitudinal networks. In this second application, we construct a model that is as
close as possible to one estimated in Maoz et al. (2006) in order to observe the substantive and technical
advantages of working within the ERGM framework. The original application considers all dyads in the
international system from 1870–1996, a total of 450,306 dyadic observations. The dependent variable is an
indicator for the occurrence of at least one MID between the two states in a given dyad (MID5 1, NoMID
5 0). The method used in the original application is logistic regression, and, critically, one set of param-
eters is estimated that covers the entire time period—pooling all years into the same analysis. This last
point poses a challenge for our replication; ERGMs were developed to handle single networks and cannot
be used to compute a single set of estimates that covers multiple pooled networks. Because the network of
interest is observed longitudinally, we apply a longitudinal extension to the ERGM called the temporal
Exponential Random Graph Model (TERGM), developed by Hanneke and Xing (2007) and extended by
Desmarais and Cranmer (2010). One helpful quality of the TERGM for the purpose of comparison with
dyadic logit is that the TERGM parameters (like those of ERGM discussed above) reduce to those of
logistic regression if the coefficients on the network statistics are zero (i.e., dependence terms are either
not included or have no effect). The parameters in this model are interpreted in the same way as ERGM
parameters, with the multivariate observation (Y) being the network-year. The likelihood function for the
TERGM, with T networks is the product over equation (4) evaluated on each of the T networks in the

Table 1 ERGM fit for the 108th U.S. House Cosponsorship Network

Term

Full model Covariates-only model

Estimate SE p Value Estimate SE p Value

Edges –2.8894 0.0155 0.0000 –0.6831 0.0301 0.0000
Same State 2.0864 0.0290 0.0000 1.8000 0.0249 0.0000
Nominate Distance –1.0456 0.0269 0.0000 –1.4015 0.0327 0.0000
Same Party 0.0029 0.0062 0.6371 0.0688 0.0257 0.0074
Shared Committees 0.4822 0.0119 0.0000 0.3543 0.0111 0.0000
Asymmetric Ties –0.1896 0.0075 0.0000 – – –
Cyclic Triples –0.0300 0.0047 0.0000 – – –
Transitive Triples 0.0297 0.0016 0.0000 – – –
BIC 139,506 196,043
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series. Another extension is that C(�) can be a function of past networks (e.g., a lagged network as a dyadic
covariate or the delayed reciprocation of edges).13

The choice we would typically have to make between maximum pseudolikelihood and MCMC to es-
timate the TERGM is nullified in this case: the computational burden associated with the use of MCMC-
MLE is insurmountable given current technology and the fact that we have to estimate the model on 126
networks. We use maximum pseudolikelihood, which is shown by Strauss and Ikeda (1990), to produce
consistent estimates of the parameters and implement a bootstrap resampling method (Efron 1981) for
computing confidence intervals. The method we use is the nonparametric bootstrap, and the resampled
unit is the network-year. For each iteration in each model, we resample with replacement 126 networks,
find the maximum pseudolikelihood estimate for that sample, and store the TERGM. Desmarais
and Cranmer (2010) show that this bootstrap scheme, when applied to the TERGM estimated by pseu-
dolikelihood, provides bootstrapped percentile confidence intervals with coverage probabilities that are
asymptotically equivalent to their nominal levels. The algorithm for bootstrapped pseudolikelihood es-
timation in the TERGM is given in Fig. 2 of our online supplement to this article. We use 1,000 bootstrap
iterations for each model. The 95% confidence intervals are constructed with the 2.5th and 97.5th per-
centiles of the sample of 1,000 bootstrap estimates.

4.2.1.2 Specification and results. Maoz et al. (2006) argue that a network statistic called structural
equivalence, which measures the similarity of ties held by nodes in a number of important international
networks, is a measure of international affinity.14 They compute structural equivalence statistics for each
node with respect to alliance relationships, trade relationships, and IGO membership—ultimately com-
bining these measures into an integrated structural equivalence (SEq) score.15 They find that SEq has
a negative effect on the probability of conflict between any two states. We use the replication data by
Maoz et al. and specify the same theoretical model they did: militarized interstate disputes are predicted
by the dyad’s weak-link regime score (Maoz and Russett 1993) (Minimum Regime Score), military-in-
dustrial capabilities ratio (Capability Ratio), geographical distance between capitols (Distance), and its
integrated structural equivalence score (SEq).

We expand the model by Maoz et al. (2006) to include two likely structural characteristics of the con-
flict network. First, it is likely that we will see an effect akin to the ‘‘popularity’’ of a state in the conflict
network; by which we mean that the covariates may not capture everything that renders certain countries
likely targets of conflict. In an age where international emergencies, including conflicts, receive highly
organized and internationally coordinated responses, it is likely we will see association among states in
their decisions to enter into conflict with other states. In the context of ERGMs, the popularity property is
captured with the use of a two-star statistic (Robins et al. 2007), which is the number of times in the
network where two states are at war with the same state.

Second, we contend that another local configuration, the triangle, is especially unlikely to be present in
the conflict network. More specifically, if state i is at war with j and state k is at war with j (i.e., i and k have
a common enemy), it is very unlikely that i and k are also at war. At a minimum, a war between i and k
would be counterproductive to their efforts against j, weakening the enemy of their enemy. With regard to
network effects, the presence of more two stars and less triangles should increase the likelihood of ob-
serving a particular realization of the conflict network. Specifically, we expect that the two-star parameter
will be positive and the triangles parameter will be negative.16

The results from the logistic regression and TERGM analysis of the MID network are presented in
Table 3. The results confirm our expectations regarding the network structure that characterizes the
MID network. The positive two-star coefficient, which is statistically significant at the 0.05 level based
on the 95% bootstrapped confidence interval, indicates that there are forces above and beyond the

13For a comparison of TERGM with other methods for longitudinal social network analysis, particularly that proposed by Snijders,
van de Bunt, and Steglich (2010), see Desmarais and Cranmer (2010).

14See Maoz et al. (2006) for details.
15Maoz et al. (2006) estimate models with just the integrated measure and with the three components as independent variables. Since
the BIC indicates that breaking the integrated score into its components does not improve model fit, we elect to replicate the model
with the integrated score.

16We estimate each model with a lagged MID network as a covariate.
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covariates that motivate collections of states to become involved in conflicts with the same country. The
negative and statistically significant effect of triangles confirms that states are unlikely to enter into con-
flicts with the enemy of their enemy. We should note that triadic effects, though highly intuitive, can be
difficult to accommodate outside the ERGM framework, whereas ERGMs make the inclusion of such
effects simple both theoretically and computationally. Overall, we find that the network structure repre-
sents an essential component of the process underlying the MID network.

Equally important considerations in the analysis are the effects that accounting for network structure
have on inferences relating to the dyadic covariates. A particularly important inference changes once we
move from dyadic logit to ERGM: the democratic peace effect. The variable Minimum Regime Score
measures the minimum democratic regime score among the two states in the dyad. Within the logistic
regression framework of the original analysis, this variable has a negative effect on the likelihood of con-
flict that is statistically significant at the 0.05 level. This is consistent with the democratic peace—the
theory suggesting that democratic states are unlikely to fight one another. In the TERGM results, the effect
of Minimum Regime Score is not distinguishable from zero at the 0.05 level of significance. In other words,
we cannot reject the null hypothesis that the effect of Minimum Regime Score, the operationalization of the
democratic peace, is equal to zero.

In the previous two paragraphs, we have claimed findings of interesting network structure in the MID
network and called into question one of the central findings of the conflict literature. This illustrates the
inferential power and broad applicability of the TERGM. Yet one question we have yet to answer is
whether the TERGM provides a better fit to the data than logistic regression. Given that we have used
pseudolikelihood, and not maximum likelihood, we cannot assess model fit using information-theoretic
parametric measures of fit such as the BIC or AIC. Though we cannot claim to have discovered the set of
parameters that maximize the likelihood function, in our use of the bootstrapped pseudolikelihood, we
have provided an alternative algorithm for finding TERGM parameters. These parameters constitute an
ERGM distribution for each network in the series. We can simulate hypothetical conflict networks from
the distributions implied by the estimated parameters and the simulated networks can be compared to the
observed networks in order to assess model fit. Both the logistic regression and TERGM estimates can thus
be used to predict the binary event that there is or is not a MID between two states in any given year.

The receiver operating characteristic (ROC) curve is a tool that can be used to nonparametrically assess
the performance of competing methods for classifying binary outcomes (Pete, Pattipati, and Kleinman
1993; Pepe 2000). We will use it to compare logit to ERGM in terms of classifying MIDs. The ROC curve
plots the degree of true positive predictions against the degree of false-positive predictions. The area under
the ROC curve gives the integrated difference between the predictive success and predictive error of a clas-
sifier and represents a scalar-valued measure of model fit. Similar to the R2, the greater the area under the

Fig. 4 ROC curves demonstrating the in-sample predictive performance of the models for MIDs. The area under the
ROC curve (AUC) listed in the legend is a common nonparametric measure of predictive fit. The closer the AUC is to
one, the closer the model is to perfect classification. LDV indicates that a lagged dependent variable was included in
the model specification.
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ROC curve, the better the predictive value of a model. If classification is perfect, the area under the ROC
curve is 1.0 and if the classifier is never right, it is 0. The ROC curve has been used previously to assess the
ability of an ERGM to predict edge values (Saul and Filkov 2007). We use the ROC curve to compare the
performance of the specifications in table 3. The ROC curves as well as the areas under them are presented
in Fig. 4. The TERGM with a lagged network performs the best, the TERGM without a lagged network
performs better than the original logistic regression model, and the logit with a lagged network performs
better than the TERGM without a lagged network. As such, we have identified two important, and pre-
viously unverified, factors related to the prediction of conflict. First, there is memory in the conflict net-
work, and it is thus important to account for the past behavior of a dyad. Second, network structure is
nontrivially important. Whether a lagged network is or is not included, moving from the logistic to the
ERGM modeling framework with network structure improves the fit of the model. This reinforces con-
fidence in our findings that (1) there is a popularity effect in the MID network, (2) states are not likely to
fight the enemies of their enemies, and (3) once we have controlled for network structure, the effect of the
democratic peace is not statistically significant.

5 Concluding Thoughts

Relational data, as they commonly occur in political science, can often be conceptualized as networks
rather than sets of conditionally independent dyads. The ERGM is a means of conducting inference on
network data. By accounting for the interdependence common in social networks, the ERGM eliminates
the threats to valid inference induced by the conditional independence assumption associated with tra-
ditional regression models. Moreover, the ERGM permits a precise account of the forms of interdepen-
dence present in the network—allowing researchers to formulate and test hypotheses about the
dependencies among ties in the network. When inappropriately applied to relational data, as we demon-
strate in the empirical applications, i.i.d. regression models can cause explanatory power generated by
systematic interdependence between relationships to be falsely attributed to the covariates.

We reviewed the basic concept of the ERGM, its strengths, limitations, and estimation. We then pre-
sented solutions to two of the ERGM’s limitations: difficulties with non-binary edges and its inability to
cope with longitudinally observed networks. Perhaps our most notable findings come from our applica-
tions of the ERGM to political science data. First, we found that several previously unexplored network
parameters are strong predictors of the U.S. House of Representatives’ legislative cosponsorship network.
Specifically, we found that the House cosponsorship network exhibits high reciprocity, low cyclicality, and
high transitivity and that the failure to account for network structure in the model would lead one to falsely
conclude that party-based homophily characterizes the cosponsorship network. Then, in our international
conflict application, we demonstrated that there is a popularity effect in conflict networks—meaning that
there is positive correlation among states in their decisions to go to war with other states—and that there is
little triangle formation in the conflict network, supporting the claim that ‘‘the enemy of your enemy
is your friend.’’ Also, once we account for the network structure underlying international conflict, there
is less support for the operation of the democratic peace. We feel that our discussions and applications
highlight the promise of network analysis in political science generally and the utility of the ERGM
approach to inference specifically.
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