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Cognitive integration of recognition information and additional cues

in memory-based decisions
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Abstract

Glöckner and Bröder (2011) have shown that for 77.5% of their participants’ decision making behavior in deci-

sions involving recognition information and explicitly provided additional cues could be better described by weighted-

compensatory Parallel Constraint Satisfaction (PCS) Models than by non-compensatory strategies such as recognition

heuristic (RH) or Take the Best (TTB). We investigate whether this predominance of PCS models also holds in memory-

based decisions in which information retrieval is effortful and cognitively demanding. Decision strategies were analyzed

using a maximum-likelihood strategy classification method, taking into account choices, response times and confidence

ratings simultaneously. In contrast to the memory-based-RH hypothesis, results show that also in memory-based decisions

for 62% of the participants behavior is best explained by a compensatory PCS model. There is, however, a slight increase

in participants classified as users of the non-compensatory strategies RH and TTB (32%) compared to the previous study,

mirroring other studies suggesting effects of costly retrieval.

Keywords: parallel constraint satisfaction, probabilistic inferences, recognition, strategy classification, decision time,

confidence.

1 Introduction

How do people integrate different pieces of information to

draw inferences about unknown criterion variables? For

example, how do they infer which of two cities has the

higher population? How do they infer which of two exotic

bugs is more poisonous? Or how do they decide which of

two desserts has more calories? In judgment and decision

research, there is wide agreement that summary evalua-

tions or inferences are arrived at by considering pieces of

evidence (cues) or attributes of the decision objects (e.g.,

Brunswik, 1955; Doherty & Kurz, 1996; Karelaia & Hog-

arth, 2008). For example, individuals will monitor the

size as well as the cream and sugar content of a dessert

to assess its calories. However, there is less agreement

on how this cue information is processed. Whereas tradi-

tional approaches assumed a full compensatory integration

of available information (e.g., Brehmer, 1994), the sim-

ple heuristics framework put forward by Gigerenzer, Todd,

and the ABC Research Group (1999) challenged this view

and pointed to various simple heuristics that operate only

on subsets of available information. Despite their ignoring

of information, these heuristics have been shown to be sur-

prisingly accurate and robust in a variety of environments
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(e.g., Czerlinski, Gigerenzer, & Goldstein, 1999; Davis-

Stober, Dana, & Budescu, 2010; Hogarth & Karelaia,

2007; Todd & Gigerenzer, 2012). One particularly fru-

gal strategy is the Recognition Heuristic (RH) promoted

by Goldstein and Gigerenzer (2002). If you encounter two

objects and recognize only one of them, then infer that the

recognized object scores higher on the to-be-judged crite-

rion. This simple strategy works well in domains where

recognition is correlated with the criterion (e.g., city sizes,

mountain heights, turnover rates of companies), and it has

been proposed as a psychological model for these situa-

tions. However, the non-compensatory nature of RH (peo-

ple rely exclusively on recognition) has been debated ex-

tensively (e.g., Bröder & Eichler, 2006; Hilbig, Erdfelder,

& Pohl, 2010; Marewski, Pohl, & Vitouch, 2010, 2011a,

2011b; Newell, 2011; Newell & Fernandez, 2006; Pachur

& Hertwig, 2006; Pachur, Todd, Gigerenzer, Schooler, &

Goldstein, 2011, 2012; Pohl, 2011), and studies demon-

strating the compensatory use of additional cue knowl-

edge have helped to delineate the conditions under which

RH might be used (see Goldstein & Gigerenzer, 2011;

Gigerenzer, Hertwig & Pachur, 2011).

The experiment reported in this article pits the recog-

nition heuristic and a sophisticated Take-The-Best (TTB)

heuristic in a city size task against the parallel constraint

satisfaction model (PCS; Glöckner & Betsch, 2008a)

which assumes a compensatory automatic integration of

all available cue information. It is an improved follow-up

experiment to that of Glöckner and Bröder (2011), which

had been criticized by Goldstein and Gigerenzer (2011)
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for using an inferences from givens paradigm for which

RH had not be formulated in the first place. Hence, the

current experiment is important in extending the model

comparison to memory-based inferences, thus fulfilling

one major methodological desideratum for testing the RH

against other models.

The current article is organized as follows: First, we

will briefly summarize the debate on the alleged non-

compensatory use of recognition information, including

increasingly sophisticated methodological requirements.

Second, we will introduce PCS and summarize the re-

sults from Glöckner and Bröder (2011) as well as the criti-

cism by Goldstein and Gigerenzer (2011). Finally, we will

present the results of the new study and discuss how this

further delineates RH’s range of applicability as a psycho-

logical model.

2 Testing the recognition heuristic:

methodological debate

RH’s appeal as a cognitive model of inferences under par-

tial ignorance stems from convincing demonstrations that

it can be quite accurate in situations where the validity of

the recognition cue is high (e.g., Goldstein & Gigerenzer,

2002). Further, all studies up to now examining the use

of recognition information in situations with high recog-

nition validity demonstrated that this meta-cognitive cue

is indeed relied upon heavily in probabilistic inferences.

The importance of this novel discovery notwithstanding,

some stronger claims proposed by Goldstein and Gigeren-

zer (2002) have been apprehended with more skepticism.

One example is the prediction concerning objects that

“may be recognized for having a small criterion value.

Yet even in such cases the recognition heuristic still pre-

dicts that a recognized object will be chosen over an

unrecognized object.” (Goldstein & Gigerenzer, 2002,

p. 76). Oppenheimer (2003) took the challenge to test

this claim by having people decide between unknown

(fictitious) cities with Chinese-sounding names and well-

known small cities, and he found that people did not fol-

low the RH in these cases, thus falsifying this specific pre-

diction which is therefore not seen as an essential feature

of RH anymore (Gigerenzer, Hertwig, & Pachur, 2011, p.

59). Pachur and Hertwig (2006) termed these situations

in which RH use is not expected as those involving “con-

clusive criterion knowledge” (see also Pachur, Bröder, &

Marewski, 2008; Hilbig, Pohl, & Bröder, 2009).

A more prominent controversial prediction is the non-

compensatory use of the RH, described by Goldstein and

Gigerenzer (2002, p. 82) as follows: “The recognition

heuristic is a noncompensatory strategy: If one object is

recognized and the other is not, then the inference is deter-

mined; no other information about the recognized object

is searched for and, therefore, no other information can

reverse the choice determined by recognition.” Numerous

experiments have tested this claim and found counterev-

idence (Bröder & Eichler, 2006; Hilbig & Pohl, 2009;

Newell & Fernandez, 2006; Newell & Shanks, 2004; Pohl,

2006).1 These studies all suggested that some further

available cue information is integrated into the judgments

in addition to or instead of mere recognition (although al-

ternatives to RH are not directly tested). However, after

the fact, most of these studies were criticized as violat-

ing one or more alleged preconditions of RH. For exam-

ple, some studies used a paradigm in which cue informa-

tion was available on the computer screen during decision

making (e.g., Newell & Shanks, 2004), whereas the RH is

formulated for memory-based decisions. Other studies in-

duced recognition by repeated confrontation with stimuli

that had been unrecognized before (e.g., Bröder & Eich-

ler, 2006; Newell & Shanks, 2004) rather than relying on

“naturally” recognized objects. Or, the RH was tested in

environments with demonstrably low recognition validity

(Richter & Späth, 2006). Pachur et al. (2008) summarize

and discuss several of these methodological caveats (see

their Table 1). Their own Experiment 3 tried to come close

to the ideal of a fair test of the RH by (a) avoiding induced

object and cue knowledge, by (b) relying on memory-

based decisions, (c) using the city size task with recog-

nition validity known to be high, (d) controlling for the

nature of additional cue knowledge, and (e) by not provid-

ing cue information for unrecognized objects. As a depen-

dent variable, Pachur et al. (2008) assessed the proportion

of trials in which an individual made choices compatible

with RH’s prediction (see Hilbig, 2010; Hilbig et al., 2010,

for critiques). At the group level, Pachur et al. could show

a significant influence of the nature and amount of cue

knowledge participants had about the recognized cities,

thus clearly ruling out that all participants used recogni-

tion information in a noncompensatory fashion. However,

at the level of individual participants, 50% of them never

departed from RH’s prediction and always chose the rec-

ognized over the unrecognized object. Hence, at least 50%

of Pachur et al.’s participants may have used the RH con-

sistently.

However, the merely outcome-based adherence rate

does not allow for strict conclusions about the cognitive

processes involved: A perfect adherence to RH may occur

even when a person considers all available cue informa-

tion, but the available “conflicting” cues never suffice to

overrule the weight of the recognition cue. Hence, the ad-

herence rate at the individual level cannot tell us whether

1Note that there is further work that lead to ambiguous results.

For example, a noteworthy model comparison (Marewski, Gaissmaier,

Schooler, Goldstein, & Gigerenzer, 2010) revealed that RH could ac-

count better for choices than competing models but at the same time

observed influences of further knowledge.
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someone used the RH even if it perfectly conforms to RH.

On the other hand, even if adherence is not perfect, this

could also be explained by unsystematic lapses if someone

consistently uses RH!2 Hence, adherence rates are only

ambiguous evidence for or against RH use (Hilbig, 2010).

3 The screen-based study by Glöck-

ner and Bröder (2011)

The ambiguity of mere choice outcome data in assess-

ing decision strategies led Glöckner and Bröder (2011)

to include reaction times and confidence ratings as fur-

ther dependent variables in their experiment. Although

different heuristics and strategies will often predict iden-

tical choices (depending on the subjective weighting of

cues), the different cognitive mechanisms can be differen-

tiated by varying predictions for response times and con-

fidence judgments across different item types. These de-

pendent variables can be analyzed simultaneously in the

Multiple-Measure Maximum Likelihood (MM-ML) ap-

proach (Glöckner, 2009, 2010; Jekel, Nicklisch, & Glöck-

ner, 2010) by determining the joint likelihood of choices,

response times, and confidence judgments under each

competing model. The MM-ML approach is described in

detail in Appendix B. Participants are classified as users

of the strategy which produces the highest joint likelihood

of the data. However, to derive model predictions, it is

necessary to have experimental control over the cues par-

ticipants might possibly include in their judgments.

In their study, Glöckner and Bröder (2011) had German

participants compare the population sizes for 16 medium-

sized American cities in a full paired comparison (120

trials). Eight of these cities were mostly recognized, the

other eight cities were mostly unrecognized according to a

pilot study.3 Both sets of cities comprised all possible pat-

terns of 3 binary cues (state capital, diocese, major univer-

sity). Note that the cue values were veridical, so no invalid

information was ever presented to the participants. During

the decision phase, participants were provided with the

city names along with the cue patterns (in a matrix for-

mat containing “+” and “-” for positive and negative cue

values, respectively). They chose one of the cities as the

more populous, and response times were recorded. Each

trial was followed by a confidence assessment.

The goal of the study by Glöckner and Bröder (2011)

was to assess the strategies participants would use in such

a task, pitting RH, TTB and two variants of the PCS model

2Of course, there must not be more lapses than compatible choices.

At the group level, however, the systematic effect demonstrated by

Pachur et al. implies that at least some participants must have integrated

cue knowledge in their judgments (i.e., some of the remaining 50% that

did not show total adherence with RH predictions).
3The actual model predictions were based on the individual recogni-

tion judgments of each participant, however.

against each other. For RH it was assumed that, in cases

where one object is recognized and the other is not, peo-

ple would rely exclusively on the recognition cue with-

out considering further information. In case of a non-

discriminating recognition cue, we expected that partic-

ipants commence in a TTB-like manner (that is, going

through the attributes in a fixed order of decreasing va-

lidity until one of them discriminates the two options;

see Gigerenzer & Goldstein, 1996). TTB in our version

did not necessarily consult the recognition cue first, but

it searched recognition and the other cues in order of de-

creasing subjectively estimated validity until one discrim-

inating cue was found on which the decision could be

based. Hence, TTB and RH could both be applied to any

comparison between cities, including decisions between

cities that were both known or unknown and strategy pre-

dictions could still differ. The PCS model by Glöckner

and Betsch (2008a) is a network model in which activa-

tion spreads through the network until a stable and consis-

tent representation is found (e.g., Holyoak & Simon, 1999;

McClelland & Rumelhart, 1981; Read, Vanman, & Miller,

1997; Simon, Snow, & Read, 2004; Thagard & Millgram,

1995). All cues are processed in parallel, and reaction time

predictions can be derived from the number of cycles the

network needs to settle in the stable state. In contrast to

RH and TTB, PCS is a fully compensatory model which

includes all available cue information. Confidence judg-

ments are predicted by comparing the final activation of

both option nodes.

Details about the network specifics are provided in Ap-

pendix A, and recent developments can be found in sev-

eral current publications (e.g., Betsch & Glöckner, 2010;

Glöckner & Betsch, 2012; Glöckner & Bröder, 2011). Al-

though the PCS model is an overarching single-strategy

model, it allows for taking into account individual dif-

ferences in sensitivity to cue validities. This difference

can potentially be captured by a continuous parameter, but

Glöckner and Bröder (2011) used the strategy in a low

(i.e., PCS1) and a high (i.e., PCS2) cue-sensitivity imple-

mentation only.4

4More precisely, according to PCS individuals do not use qualita-

tively different heuristics as assumed by the adaptive toolbox approach

but differ in how sensitive they are to differences in cue validities.

Medium sensitivity (i.e., using a sensitivity exponent of 2 as in PCS2,

see Table A1) leads to choices that closely approximate the naïve Bayes

solution (Jekel, Glöckner, Fiedler, & Bröder, 2012). Higher sensitivity

leads to increasingly noncompensatory choices with infinity as special

case in which choice predictions from PCS converge with TTB. Lower

sensitivity as implemented in PCS1 leads to choices in which cues re-

ceive less differentiated weights than they are supposed to get according

to the naïve Bayes probability standard. For the special case of a sen-

sitivity of zero, PCS predicts choices in line with an equal weighting

strategy. Accounting for individual differences is necessary to account

for the heterogeneity of choices data observed in past research. Impor-

tantly, however, PCS remains a testable model that makes strong and

precise predictions even after including this necessary degree of flexibil-

ity. In the current paper we follow the approach by Glöckner and Bröder
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According to the MM-ML classification taking into ac-

count the full set of 120 tasks (including comparisons be-

tween two recognized or two unrecognized cities), 77.5%

of the participants appeared to follow a PCS model (either

PCS1 or PCS2), whereas the remaining 22.5% of partici-

pants were classified as using one of the two noncompen-

satory strategies RH or TTB. These results suggested that

the noncompensatory strategies played only a minor role

in this paradigm. Note, however, that the result does not

imply that people did not rely on the recognition cue, but

they did obviously not rely on it exclusively. The pattern

of response times and confidence judgments across items

favored the interpretation that the other cues were used as

well. The results furthermore showed that it is useful to

take individual differences in cue-sensitivity in PCS into

account, given that participants were classified in both cat-

egories (i.e., PCS1: 47.5% and PCS2: 30%).

In using natural recognition, stimuli without conclusive

criterion knowledge, a domain with high recognition va-

lidity, control of additional cue knowledge, and real (rather

than artificial) stimuli, Glöckner’s and Bröder’s (2011) ex-

periment fulfilled five of the eight ideal preconditions for-

mulated by Pachur et al. (2008) that may foster the use

of RH. In addition, the study aimed at model comparisons

rather than just refuting claims of the RH. This was also

a desideratum formulated by researchers favoring the fast

and frugal heuristics approach (Marewski, Gaissmaier, et

al., 2010; Marewski, Schooler, & Gigerenzer, 2010).

In order to derive precise model predictions, people

were provided with cue values of the decision objects in

the lab, also for the unrecognized cities. Furthermore, de-

cisions were screen-based (i.e., cue information was pre-

sented on screen) rather than memory-based. In the cur-

rent study we again provide cue values for unrecognized

objects and we will come back to this potential issue of

debate in the discussion. The second point concerning

screen-based decisions was criticized by Goldstein and

Gigerenzer (2011) as the main weakness of the study, ne-

glecting a major boundary condition of RH use. There-

fore, the current study addresses this major shortcoming

and investigated inference decisions from memory rather

than from givens. This is also important because evidence

reported by Glöckner and Hodges (2011) indicates that the

prevalence of PCS seems to be reduced in memory-based

decisions. In a similar vein, results from Söllner, Bröder,

and Hilbig (2013) suggest that usually high prevalence

rates for PCS in decisions from screen are reduced if the

presentation formats differs from the matrix-like presenta-

tion format used by Glöckner and Bröder (2011). There-

(2011), controlling for flexibility by comparing PCS with (the same) two

parameters against two heuristics that (when considered jointly) have the

same degree of flexibility. Future research might also involve more com-

prehensive model comparisons including sensitivity parameter estima-

tion for PCS on the level of participants and cross-prediction of choices

(for a similar approach see e.g., Glöckner & Pachur, 2012).

fore, the current experiment is another important step in

delineating the conditions of RH use. Using the common

paradigm introduced by Bröder and Schiffer (2003b) to

investigate memory-based decisions, we had participants

learn cue values of different natural objects (American

cities) by heart before the decision phase. Hence, partic-

ipants might later retrieve this information from memory

to reach their decisions, or they might rely solely on the

recognition cue.

4 Experiment

We investigated the use of recognition information in in-

ferences from memory. Thereby, the paradigm used in

Glöckner and Bröder (2011) was extended by adding a

learning phase in which participants acquired cue infor-

mation. In the learning phase, participants were presented

with three pieces of information about each of 16 Ameri-

can cities, approximately half of them being known and

half of them being unknown. The same stimuli as in

Glöckner and Bröder (2011) were used. Afterwards par-

ticipants decided in an incentivized task repeatedly which

of two of these American cities has more inhabitants. For

this decision they were not provided with any information

but they could potentially retrieve information from mem-

ory. However, they could also rely on recognition exclu-

sively or search cues sequentially in accordance with TTB,

ignoring some of the information (Bröder & Gaissmaier,

2007; but see also Bröder & Schiffer, 2003b; Bröder &

Schiffer, 2006).

4.1 Method

4.1.1 Participants and design

Sixty-one students of different subjects took part in the

experiment (37 female, mean age 23.8 years). The ex-

periment lasted about 50 minutes. Participants received

performance-contingent payment between 4.53 Euros and

11.83 Euros for the study. No between-subjects manipu-

lation was used but the structure of the decision task was

manipulated within subjects (see below).

4.1.2 Materials

We used the materials from Glöckner and Bröder (2011),

which consisted of 2 sets of 8 mid-size US-American

cities between 50.000 and 300.000 inhabitants which were

mainly known or mainly unknown, respectively.5 The

5The unknown cities were Hialeah, Carson City, Mobile, Tempe,

Lansing, Trenton, Topeka, Stockton; the known cities were Miami

Beach, Charleston, Oklahoma City, Buffalo, Salt Lake City, Richmond,

Albany, Orlando. Cue patterns are listed in Glöckner and Bröder (2011,

Appendix B).
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Figure 1: Learning task (left) and decision task (right).

cities were selected so that they had specific properties

concerning the cues used in this study which were: a) is

the city a state capital or not? b) is the city a diocese / does

it have a bishop or not? c) does the city have a major uni-

versity (with more than 4000 students) or not? Cities were

selected so that they represented all eight possible (i.e.,

23) cue combinations for known cities as well as for un-

known cities. The 16 times 3 (= 48) pieces of information

for the cities were learned in the learning phase. All 16

cities were compared to each other in the main experiment

resulting in 120 decision tasks.

4.1.3 Procedure

The learning phase and the decision phase were presented

to the participants as two separate experiments. Partici-

pants were first informed only about an incentivized task

to learn information about American cities. They were

informed about the decision tasks only after they had suc-

cessfully completed this learning phase. Participants were

informed that it would take several learning trials to reach

the threshold of 90% correct knowledge. Each trial con-

sisted of a learning part and a test part. In the learning part

the 16 cities were presented in random order and the par-

ticipants could ask for information about each cue value

or directly indicate the cue values. Only after all three

pieces of information for one city were indicated correctly

was the next city shown. In the test phase all cities were

presented in random order, the participants indicated each

cue value and received feedback whether the values were

correct. At the end of the test phase participants received

feedback about their learning performance. If the perfor-

mance was above 90% correct they continued with the

test phase. The learning phase was aborted after 30 min.

Specifically, participants entered the decision phase after

finishing the respective learning trial in which they crossed

the time-deadline. The learning phase was incentivized in

that participants could receive up to 5 Euros for reaching

this threshold quickly and with as few errors as possible.6

In the decision phase, participants were informed that

they should make decisions concerning which of two US-

American cities has more inhabitants and that they would

receive 10 Cent for each correct answer and lose 1 Cent for

each wrong answer. The city names were presented on the

screen without any further information and choices were

indicated by mouse-click. Participants received feedback

concerning the correctness of their choices only at the end

of the experiment. They were informed that in case there

are different US-cities with the same name, the larger one

is referred to. Finally, they were introduced to the confi-

dence measure which was presented after the decision and

they were instructed to make good decision and to pro-

ceed as fast as possible. Participants solved a warm-up

trial. If there were no more questions, participants started

working on the 120 decisions, which were presented in in-

dividually randomized orders. The presentation order of

the two cities on each screen (i.e., left / right) was also

randomized. Confidence was measured on a scale from

very uncertain (-100) to very certain (100) using a hori-

zontal scroll-bar. Decision trials were separated by blank

screen with a continue button. A pause screen announcing

a voluntary 1-minute-break was presented after half of the

tasks to reduce effects of decreasing attention.

After the choices were completed we measured partic-

ipants’ cue-usage, cue order, and perceived cue-validity.

First, participants indicated how much they relied on each

of the three cues when making their decision and how

6The instruction did not explain the incentives in more detail to the

participants since we used a complex formula that was hard to commu-

nicate. The program including all instructions is available upon request

from the authors. Abortion of the learning phase was used for three rea-

son: First, we expected that the effects of diminishing motivation after

too many failures in the learning task would change behaviour in the sub-

sequent decision task, second, participants were run in groups of 12 and

we expected strong influences on participants taking longer while others

leaving, and third we promised that the learning phase would be finished

after about 30 min.
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much they relied on whether they knew the city before on

a scale from not used (0) to very much used (100). Par-

ticipants indicated which of the four pieces of information

(3 cues plus recognition of the city) predicts the size of

US-cities best by ranking the four pices (i.e., assigning

numbers between 1 and 4). Participants were asked about

their prior knowledge about the cities on a three point scale

(1-unknown, 2-I knew the name, 3-I knew more than the

name). Finally we measured subjective estimations of cue-

validities directly by asking participants to indicate how

many of 100 US-cities with the respective property are

larger than cities without it for the three cues and recogni-

tion using a horizontal scroll-bar (scale: 50-100).

4.2 Results

4.2.1 Learning phase, manipulation check and cue

validities

Participants were successful in acquiring cue information.

The average rate of correctly reproduced cue information

in the last test phase was 90%. Most participants (61%)

reached the criterion of 90% correct answers, the others

came close to it. Also our manipulation of recognition

was efficient. For the eight “unknown cities” across partic-

ipants we found that 76% of them were indeed unknown.

For the “known cities” we found that 87% were known.

Each “unknown city” was unknown to the majority of

the participants and the reverse was true for the “known

cities”. Individuals’ explicated cue-hierarchies (according

to the ordering of the predictive power of the information)

were very heterogeneous. Most participants said that state

capital (43%) or recognition (43%) is the best predictor

whereas much less indicated diocese (2%) or university

(13%). A similar order was found in the subjective nu-

merical cue-validity ratings (in the same order with SE in

parentheses): 80 (1.8), 76 (2.0), 57 (1.1), and 75 (1.6);

and in the subjective cue-usage rating: 71 (3.8), 70 (3.7),

23 (2.7), and 60 (4.3). Participants were rather consistent

in their answers to all three measures. Order of cues corre-

lated highly negative with cue usage (Md(ρ) = −.80) and

cue validity (Md(ρ) = −.80); and the latter also correlated

highly with each other (Md(ρ) = .80).

4.2.2 Aggregated analysis

We calculated strategy predictions for RH, TTB, and the

two versions of PCS (i.e., PCS1: low sensitivity to dif-

ferences in cue validities = cue usage transformation lin-

ear; PCS2: high sensitivity = cue usage transformation

quadratic) for the 120 decision tasks concerning choices,

decision time and confidence in the same manner and with

the same parameters as in Glöckner and Bröder (2011).

PCS with two sets of parameters was used to take into

account individual differences in sensitivity to cue validi-

ties and to put PCS and the heuristic toolbox on equal

footing concerning flexibility. Details concerning PCS

and the other strategies are described in Appendix A. We

again took into account individuals’ cue hierarchies (based

on ratings of subjective cue usage) and individuals’ true

recognition of cities. The only difference was that we also

took into account the acquired cue knowledge instead of

the true cue values, in that we set all cue values that indi-

viduals were not able to correctly report in the last learning

test to 0 (i.e., no cue information). This individualization

of choices occasionally led to inconclusive comparisons

(no strategy predictions possible in 3.5% of the cases),

which were excluded from the analysis.

Choices. The two versions of PCS predicted on average

73% of the choices correctly, whereas RH and TTB pre-

dicted 71% correctly. Figure 2 plots proportion of correct

predictions for the 120 decision tasks comparing PCS1

against RH (left) and PCS2 against TTB (right). Each dot

indicates one comparison of two cities and the axis pro-

vide the proportion of participants that chose in line with

the prediction of the strategy for this task. Dots above

the 45 degree line indicate that for the respective decision

task the PCS models prediction was correct for more par-

ticipants than the RH/TTB prediction (and vice versa for

dots below the line). Note that the specific selection of the

strategy pairings is arbitrary and does not follow a spe-

cial logic except that PCS strategies should be paired with

heuristics.

Decision time. Participants followed the instruction and

made rather quick decisions (M = 3316 ms, sd = 2973

ms, Md = 2287 ms, Skew = 4.4, Kurt = 43.4). To re-

duce skewness and the influence of outliers, decision times

were log-transformed, and, to correct for learning order ef-

fects, the trial number was partialled out for further anal-

yses (see Glöckner, 2009, p. 197). To investigate at an

aggregated level whether the time predictions of the dif-

ferent strategies fit with observed decision times, we com-

pare predicted time and observed time scores (i.e., time-

residual after log-transformation and partialling out order

effects) of all 120 decision tasks, averaged across partici-

pants. Figure 3 shows that the two version of PCS1 were

much better able to predict average decision time observed

in the 120 tasks than RH and TTB.

Confidence. As in Glöckner and Bröder (2011), partic-

ipants indicated that they were not very confident in their

decisions and showed high variance, M = 14.7, sd = 47.9

(scale: −100 to 100). To analyze whether confidence pre-

dictions of the different strategies fitted to the observed

confidence measures we again compared predictions and
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Figure 2: Mean proportion of correct choice predictions for each of the 120 decision tasks (dots) plotted against each

other for the considered strategies.
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data after averaging for each of the 120 decision tasks

across participants. Again, the two versions of PCS pre-

dicted the pattern of confidence better than RH and TTB

(Figure 4).

4.2.3 Individual-level analysis

As in Glöckner and Bröder (2011), to investigate strate-

gies at an individual level, we analyzed the overall behav-

ioral data simultaneously (i.e., choices, confidence, and

response time) using a Multiple-Measure Maximum Like-

lihood (MM-ML) strategy classification method (Glöck-

ner, 2009, 2010; Jekel et al., 2010), which is described

in more detail in Appendix B. We again take into account

the full vector of behavioral observations from all choice

tasks (i.e., 120 choices, 120 response times, 120 confi-

dence ratings per participant) and compare them against

the predictions of each strategy. As can be seen in Ap-

pendix B, the (maximum) likelihood for the total data vec-

tor is calculated as product of three components. The first

component is the likelihood for observing the pattern of

choices assuming a constant application error according to

a binomial distribution as suggested by Bröder and Schif-

fer (2003a). The second and third component are likeli-

hoods that follow from regressing observed decision time

and confidence on the respective strategy predictions ac-

cording to standard maximum-likelihood regressions as-

suming normally distributed residuals. Hence, concep-

tually MM-ML integrated two correlations for response

time and confidence and a fit index for choices into one

overall measure weighting all of them equally. Doing so

by simultaneously considering choices, decision times and

confidence in MM-ML leads descriptively to a majority of

classification of PCS users (62%) and fewer users of non-

compensatory strategies (32%) (Figure 5). Note that equal

fits of RH and TTB were classified as RH/TTB meaning

that either model could fit the data equally well. There

were four persons classified as random choosers and one

person could not be classified (not reported in Figure 5).

The reliability of MM-ML strategy classification can be

evaluated by inspecting error rates and the Bayes factor.

We found that average estimated error rates for strategy

application of the strategies were between 21 and 26%.

Error rates were on average higher than in decisions from

givens (Glöckner & Bröder, 2011: 14 to 28%), which

might be explained by memory errors and has been ob-

served in memory-based experiments before (Bröder &

Schiffer, 2003b). The Bayes-factors (comparing the like-

lihood of the best and the second best strategy) were a bit

lower than in previous research (Md(BF) = 6.6) indicating

a moderate reliability of strategy classification. Adding

a global misfit-test (Moshagen & Hilbig, 2011) did not

influence the results in that the distribution of strategies

remained the same and no previous user of a systematic

strategy had to be excluded.

For robustness checks we also analyzed results using

cue-validities instead of cue-usage as cue weights in PCS1

and PCS2 (w = ((v−50)/100)1; w= ((v−50)/100)2) as done

in some other work (Glöckner & Betsch, 2012). Re-

sults concerning strategies remained qualitatively the same

(56% PCS1 & 2; 37% TTB & RH) although there were

some shifts within each category. Interestingly, strategy

classification was more reliable in this specification as in-

dicated by a higher median BF = 26.3.
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Figure 3: Mean observed decision times (y-axis) for each

of the 120 decision tasks (dots) plotted against the inter-

val scaled predictions (x-axis) of each strategy (different

plots).
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Note. Predictions of RH and TTB for each choice are derived

from the number of cues needed to differentiate between options

(range 1 to 4). The predictions of PCS are derived from the num-

ber of activation updating cycles that network needs to settle in a

coherent state (typical range 80 to 180 cycles).

In a second step, we analyzed whether results change if

we do not replace wrongly remembered cue values by 0 in

generation of model predictions but use the cue values that

people reported in the memory test. This did not change

the qualitative pattern of results for strategy classification

(54% PCS1 & 2; 37% TTB & RH) but tended to reduce

strategies ability to predict decision time, confidence as

well as choices. Hence, based on these findings, it seems

more appropriate to represent unavailable cue information

as missing values.

Third, we tested whether strategy classification de-

pended on individuals’ learning rate in the learning phase.

The results were again robust in that the relative distri-

bution of strategies remained the same (i.e., more than

60% PCS users) when excluding participants with learn-

ing rates below 70%, 80% or 90%.

Furthermore, for the conclusions to be valid it has to

be assured that none of the strategies is put at a system-

atic disadvantage in the analysis. One potential issue con-

cerns decision time predictions. Decision time will clearly

be influenced not only by the time necessary to integrate

the information. It will also depend on the time required

for retrieving cue information. That is, for the recognition

cue, it will be important how long it takes to recognize that

a city is known or not. For the other cues, decision time

will be influenced by the time it takes to activate or re-

trieve them from memory (if they are used). Both factors

are not taken into account in the implementation of the

Figure 4: Mean observed confidence ratings (y-axis) for

each of the 120 decision tasks (dots) plotted against the

interval scaled predictions (x-axis) of each strategy (dif-

ferent plots).
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Note. Predictions of RH and TTB for each choice are derived

from the validity of the discriminating cue in percent and can

range from 50 to 100. The predictions of PCS are derived from

difference in activation between option nodes in the network and

can range from −2 to 2.

strategies considered here. Hence, correlations between

model predictions and observed decision time underesti-

mate the true relation. Given that the variance for recog-

nition and cue activation can be assumed to be additive,

strategies that take into account more information will be

affected more strongly by the problem than strategies that

consider less information. For the RH, for example, recog-

nition information has to be retrieved only but for the PCS

strategies recognition information and all other cues have

to be retrieved. PCS strategies are therefore put at a disad-

vantage. Given that PCS still clearly accounted better for

decision times this influence seems to be not crucially im-

portant. To check the robustness of our findings, we still

reran the MM-ML analysis without decision time, includ-

ing choices and confidence only. The results remained the

same (60% PCS1 & PCS2, 33% RH & TTB).

Finally, we investigated the effect of dropping confi-

dence and decision time data and analyzing choices only.

We found that the majority of persons was not uniquely

classifiable to one strategy or they were classified as user

of a random strategy (52%). From the remaining partici-

pants there were 19 persons classified as RH or TTB and

10 classified as PCS.

5 Discussion

The study reported here rectified what has been criticized

as the major shortcoming of the study by Glöckner and
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Figure 5: Strategy use based on multiple measure maxi-

mum likelihood strategy classification.
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Note. Bars with labels containing multiple-strategy (e.g.,

“TTB/RH”) indicate that behavioral data were equally likely for

both strategies.

Bröder (2011) comparing the ability of RH, TTB, and PCS

to explain probabilistic inference decisions. Instead of us-

ing a screen-based design and providing cue information

during the decision process, all judgments investigated in

the current study were memory-based. Nevertheless, the

results were quite similar to the former study: The major-

ity of participants was best described by a compensatory

PCS model, whereas a minority could be classified as us-

ing RH or TTB. Still, when comparing across studies, the

prevalence of users of non-compensatory strategies was

somewhat increased (but see below) when using memory-

based decision as compared to the screen-based decisions

(see Glöckner & Bröder, 2011). Both findings resonate

with results from Glöckner and Hodges (2011) who fo-

cused on the comparison of TTB and PCS, however. In-

terestingly, even the distribution of participants over the

two versions of PCS could be replicated. As in Glöckner

and Bröder (2011), although there were considerable in-

dividual differences, more participants were classified as

users of PCS strategy with lower (i.e., PCS1) as compared

to higher (i.e., PCS2) sensitivity to differences in cue va-

lidities. Note, that this is the case although PCS2 has been

shown to more closely approximated the naïve Bayes solu-

tion (Jekel, Glöckner, Fiedler, & Bröder, 2012) that could

be considered the rational solution if cues are assumed to

be stochastically independent

In demonstrating the limited role of RH, the current re-

sults add to a growing literature delineating the narrow

boundary conditions of the noncompensatory use of RH.

However, there are still two further potentially critical as-

pects of this study which will be discussed next. After that,

we will speculate on the differences between the results of

the screen-based and the memory-based studies. Finally,

we will end with an amicable assessment of recognition in

probabilistic inferences.

The current study fulfilled one important demand by

Marewski, Gaissmaier et al. (2010) to contrast competing

models directly rather than trying to refute RH without

proposing an alternative (see also Marewski & Mehlhorn,

2011; Marewski & Schooler, 2011, for alternative ap-

proaches). The latter goal, however, was followed by

much of the previous work (e.g., Bröder & Eichler, 2006;

Newell & Fernandez, 2006; Newell & Shanks, 2004; Op-

penheimer, 2003; Pohl, 2006; Richter & Späth, 2006) not

specifying how the compensatory alternatives could be

spelled out in terms of cognitive mechanisms. Here, we

went one step further in precisely specifying a competitor,

namely PCS. Hence, in accordance with modern falsifi-

cationist philosophy, a theory should be refuted only if a

better one is available (Lakatos, 1970). The main improve-

ment of our experiment was to move from screen-based

to memory-based inferences as demanded by Goldstein

and Gigerenzer (2011). Memory retrieval appears to be

costly and thus induces an increased prevalence of frugal

decision making (Bröder & Gaissmaier, 2007; Bröder &

Schiffer, 2003b, 2006; Platzer & Bröder, 2012) and some

reduction of the prevalence of PCS (Glöckner & Hodges,

2011). Hence, the need to retrieve cue information from

memory is probably one major factor inducing frugal de-

cision making. However, as our results show, meeting this

requirement did not lead to a preponderance of noncom-

pensatory decision making, let alone RH-use. Concerning

Pachur et al.’s (2008) list of methodological desiderata to

test RH, the current study fulfilled 6 of 8, in our judgment

the most important ones. However, two potentially criti-

cal aspects remain: First, cue values were learned in the

experiment rather than being part of participants’ seman-

tic knowledge. Second, we also taught participants cue

values of unrecognized cities.

It has been argued that teaching participants cue knowl-

edge in the experiment might induce a demand to use this

information later. In addition, the situation with newly

acquired knowledge is different from situations in which

cross-linked semantic knowledge had been acquired be-

fore the experiment. To begin with the latter objection,

we conjecture that well-learned semantic knowledge (if

available) should be easier to retrieve than newly acquired

knowledge. Hence, retrieval costs should be higher for this

experiment-induced information and thus rather foster fru-

gal decision making. The first argument of demand effects

can be countered by the observation that aside from re-

search on the RH, several studies on memory-based prob-

abilistic inferences (Bröder & Gaissmaier, 2007; Bröder &

Schiffer, 2003b, 2006; Platzer & Bröder, 2012) observed a

noncompensatory TTB as the dominant decision strategy.

This speaks against the hypothesis that learning of cue in-
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formation during a study generally induces a demand ef-

fect suggesting to participants to use all pieces of informa-

tion. Hence, we see no theoretical or empirical reason why

teaching cue values during the study would render a test of

RH implausible. Furthermore, at group level Pachur et al.

(2008) had demonstrated a clear effect of additional cue

knowledge in a situation without teaching cue information

beforehand, ruling out this demand effect. However, they

did not propose an alternative model.

Goldstein and Gigerenzer (2011) also bemoaned that

many studies testing the RH (including Glöckner &

Bröder, 2011) taught participants cue values of unrecog-

nized objects. They argue: “If one has not heard of an

object, its cue values cannot be recalled from memory”

(Gigerenzer & Goldstein, 2011, p. 108). We agree with

the authors that in an absolute sense, this must be true.

However, Pachur, Todd, Gigerenzer, Schooler, and Gold-

stein (2012, p. 132) convincingly argue that if people are

confronted for the first time with objects in a lab, the kind

of “recognition” induced by this learning episode is quite

different from the recognition based on previous encoun-

ters with the object. The former is based on episodic mem-

ory (“I heard the city name in this lab”), whereas the latter

is semantic (“I knew this city name before”). Following

this argument, these objects therefore can technically still

be viewed as “unrecognized” because participants can at-

tribute the episodic recognition to the experimental con-

text. Hence, there is no inherent contradiction to retrieve

information about technically unrecognized objects that

were not part of semantic memory before entering the ex-

perimental setting. In fact, Glöckner and Bröder (2011)

argue that information about unrecognized objects may

quite often be available, notably in consumer contexts (see

their footnote 1). Other authors have found evidence for

the existence of cue knowledge for unrecognized cities as

well that is conveyed by the mere name (see Marewski

et al., 2011b, p. 367, for a discussion; Pohl, Erdfelder,

Hilbig, Liebke, & Stahlberg, 2013). The above argu-

ment of the difference between “real” (pre-experimental,

semantic) recognition and experimenter-induced recogni-

tion (e.g. Bröder & Eichler, 2006; Newell & Shanks,

2004) was used to criticize studies which used this kind

of experimenter-induced recognition to test the RH. If this

view is retained, the current study’s teaching of cue values

for unrecognized object must be considered unproblem-

atic. If however, the current study is criticized for induc-

ing “real” recognition in the experiment, thus blurring the

distinction between “recognized” and “unrecognized” ob-

jects, then the argument in turn cannot be used to discredit

the above-mentioned studies. A related objection might

be that in the test of city recognition (i.e., asking whether

participants knew the city before the study or not), people

could have confused prior knowledge and learned infor-

mation and might have erroneously identified cities as rec-

ognized although they did not know them before. Against

this objection speaks that the recognition rate observed in

the current study was even slightly lower than in the study

by Glöckner and Bröder (2011) that did not involve learn-

ing (i.e., 74% vs. 76% of the cities intended to be unknown

were indicated to be not known in the previous vs. in the

current study).

The MM-ML procedure used here demands for precise

predictions of all strategies as well as items that can dis-

criminate between the strategies. Therefore, the model

comparison requires full experimenter control over cue

knowledge. Again, we point to Experiment 3 of Pachur

et al. (2008), where an effect of additional cues was ob-

served at group level without this teaching of any cues

for unknown objects. This study did not compare mod-

els, however. In tandem, we think that both studies sug-

gest that RH is rarely, if ever, a viable model of memory-

based decisions, and that PCS is a promising alternative

for many situations. However, it is also possible that our

result is confined to situations in which participants were

taught information about unrecognized objects. This adds

another boundary condition for the use of RH.

Considering the results of the robustness checks for the

MM-ML it is apparent that the advantage of PCS models

over RH and TTB partially rests on taking into account not

only choices but also decision times and confidence. Al-

though we used standard assumptions for predicting con-

fidence and decision time for RH and TTB (Appendix

A), one might consider that the empirical validity of both

strategies might be improved by including different mech-

anism for predicting both variables. One might, for exam-

ple assume that (a) participants form choices and confi-

dence judgments based on different strategies in that they

choose based on recognition only but afterwards retrieve

more cues from memory to form confidence judgments

or (b) use their confidence in recognizing the city as con-

tinuous variable. Specifying such improved mechanisms

might be promising and allow for more efficient tests of

RH and TTB in future research. For explaining the data

in the current study we think that both alternative expla-

nations seem implausible. Given that persons made 120

choices and subsequent confidence judgments in about 15

min, the application of a second independent strategy for

determining confidence judgments after choices that in-

cludes active cue retrieval seems unlikely. Concerning the

second possibility, it seems implausible to base choices on

dichotomous recognition/no-recognition judgments only

and to use continuous confidence in recognition for sub-

sequent confidence judgements. We see no reason why

people should use less precise information in their incen-

tivized main task than they use in a less important periph-

eral task.

One promising aspect viewed from the simple heuris-

tics perspective is that, in the current experiment, the per-
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centage of alleged RH/TTB users was descriptively some-

what higher than in Glöckner and Bröder (2011). Almost

a third of the sample was classified as using some non-

compensatory strategy, compared to one fifth in the pre-

vious study. The difference between experiments was not

significant, however, χ2(df =1, n=136) = 2.12, p = .14. In

addition, it is always risky to compare across different ex-

periments because of non-randomized participant pools,

etc. Hence, we interpret the descriptive difference with

great caution. But if the increase in noncompensatory se-

quential heuristics due to memory-based search were exis-

tent, it would fit other work showing that memory retrieval

tends to increase the use of noncompensatory heuristics

like TTB (Bröder & Schiffer, 2003b; 2006; Glöckner &

Hodges, 2011). Furthermore, even in screen-based de-

cisions, Söllner et al. (2013) have recently shown that

imposing information search costs reduced the success

of PCS to explain participants’ behavior and boosted se-

quential strategies. Hence, PCS, compensatory sequen-

tial strategies, and simple heuristics like TTB and RH can

perhaps be aligned along a continuum of costs associated

with information acquisition. According to this interpre-

tation, automatic integration of multiple pieces of infor-

mation in a PCS-like fashion may be predominant in sit-

uations with easily accessible information. As shown by

Glöckner and Betsch (2008b) increasing costs of informa-

tion search seems to hinder the application of strategies

based on automatic-parallel processing. It might trigger

compensatory sequential strategies or noncompensatory

strategies. As the current study suggests, memory retrieval

per se may not be too costly if information is coded in a

convenient fashion like the binary features in the city size

task. One alternative interpretation (particularly also with

respect to the results by Söllner et al., 2013 and Glöckner

& Hodges, 2011) might be that the memory retrieval pro-

cess adds “noise” to the response time generated by the

decision process itself, therefore reducing the possibility

to identify the underlying PCS process in MM-ML.

Overall, the current study adds to the mounting evi-

dence that PCS is a valuable model to account for peo-

ples’ behavior in probabilistic inference tasks and beyond.

Besides the fact that PCS is the only prominent model

that can account for the ubiquitously observed coherence-

effect (i.e., information distortions in the decision pro-

cess to support the later on favored option) (e.g., DeKay,

Patino-Echeverri, & Fischbeck, 2009; Engel & Glöckner,

2013; Glöckner, Betsch, & Schindler, 2010; Holyoak &

Simon, 1999; Russo, Carlson, Meloy, & Yong, 2008; Si-

mon, Pham, Le, & Holyoak, 2001), as well as for find-

ings concerning arousal (Glöckner & Hochman, 2011;

Hochman, Ayal, & Glöckner, 2010), and information in-

trusion (Söllner, Bröder, Glöckner, & Betsch, in press)

the current study again demonstrates PCS’s high capac-

ity to precisely model individuals’ choices, decision times

and confidence judgments (e.g., Glöckner & Betsch, 2012;

Glöckner & Bröder, 2011; Hilbig & Pohl, 2009). Still,

further critical tests of PCS are necessary to more clearly

understand its limitations and weaknesses. As in other do-

mains, also for recognition-based judgments other com-

pensatory models based on automatic processing might be

developed (e.g., based on ACT-R or evidence accumula-

tion models) that could be tested against PCS in future re-

search.7 Furthermore, an improved version of PCS might

be tested that takes into account individual differences in

sensitivity concerning cue validity on a more fine-grained

manner by allowing the exponent of the transformation

function to vary continuously between participants (see

wv in Table A1; see also Glöckner & Betsch, 2012).

Concerning the noncompensatory use of RH, the stud-

ies reported to date point to a restricted range of situations

in which this heuristic works as a descriptive model. In our

view, too much of the debate has concerned the prevalence

of the RH (see e.g., the three special issues of Judgment

and Decision Making on this debate). Excessive attention

to the bold claim that recognition information is processes

in a noncompensatory fashion has blinded the research

community to the truly remarkable discovery by Goldstein

and Gigerenzer (2002; see also Gigerenzer & Goldstein,

1996, and Gigerenzer, Hoffrage, and Kleinbölting, 1991):

People indeed do not only rely on “objective” features

of objects as cues, but they also include meta-cognitive

knowledge about correspondences between the world and

their own cognitive states as a rational basis for deci-

sion making. Each and every properly conducted study

so far has confirmed this amazing observation, which is

the really important discovery associated with the ABC

Research Group’s work on recognition-based inference.

7We thank an anonymous reviewer for the suggestion to also con-

sider further heuristics in future research on recognition-based decision

making. One alternative might be an Equal Weight Strategy includ-

ing Recognition (R-EQW). According to R-EQW persons might count

cues in favour of each option and chose the option with the higher count

thereby considering recognition as cue with equal weight than all other

cues (and to guess in case the counts are equal). Note, however, that

our data speak against the consistent use of such a strategy. First, R-

EQW would predict equal decision time for all cue patterns and could

not account for the systematic decision time differences observed in this

study. Second, the adherence rate for R-EQW for the choices considered

in the above analysis are lower than for the other considered strategies

(p(R-EQW) = .706). Furthermore, one might assume a Weighted Addi-

tive Strategy including Recognition (R-WADD) according to which in-

dividuals deliberately calculate weighted sums of (chance corrected) cue

validities and choose the option with the higher weighted sum. Against

the application of such a strategy speak at least two aspects of our data:

the observed decision times of about 4 seconds were probably too short

to carry out such a strategy in a deliberate manner (e.g., a deliberate ap-

plication of WADD for choices between two options based on three cues

takes participants on average 20 sec, Glöckner, 2006), and the systematic

differences in decision time could not be explained by R-WADD. More

generally, PCS models, because of their responsiveness to the difference

between the options in predicting reaction time, have an advantage over

WADD models in general.
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True Brunswikians should rejoice about this remarkable

demonstration of vicarious functioning (Brunswik, 1955):

People are obviously able to exploit whatever valid in-

formation they have for ecologically rational decisions—

even if it is the distinction between their own knowledge

and their own ignorance. Given this remarkable ability,

why should they ignore other easily available and poten-

tially relevant information in the first place?
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Appendix A

Predictions of strategies were calculated in exactly the same way as in Glöckner and Bröder (2011). For completeness,

a shorted version of their appendix is reprinted in the following:

The predictions for RH were calculated by implementing a RH strategy with afterwards applying a TTB strategy,

if necessary. The recognition cue was always used as most valid cue and the following cues were ordered according

to participants’ explicitly expressed ordering of cues (as indicated by assigned numbers 1 to 4; see methods section).

For the TTB strategy, all cues including the recognition cue were ordered according to individuals cue ordering. For

both strategies time predictions were derived based on the steps necessary to differentiate (Bröder & Gaissmaier, 2007;

Glöckner, 2001). Specifically, the interval-scaled time prediction for comparisons in which the cue considered first

differentiated was 1. If the second cue had to be retrieved as well, the prediction was 2 etc. Confidence predictions were

derived from participants evaluation concerning cue-validity (i.e., participants estimations concerning how many cities

with a positive cue value are larger than cities without it; see methods section) of the differentiating cue (Gigerenzer

et al., 1991). Note, that if the first cue differentiates between cities no further information is retrieved. Therefore, the

subjective cue validity of the first cue is the only information available to assess confidence and according to Gigerenzer

et al. (1991) persons base their confidence judgment on it. If the second cue has to be retrieved and differentiates, the

validity of this cue is used as confidence estimate etc. According to this plausible prediction, we use the subjective

validity of the differentiating cue as contrast weight for predicting confidence for RH and TTB.

For the simulation of PCS we used the network model proposed by Glöckner and Betsch (2008a). Spreading activation

in the network is simulated by an iterative updating algorithm which uses a sigmoid activation function proposed by

McClelland and Rumelhart (1981):

ai(t+ 1) = ai(t) (1− decay)+

{

if inputi < 0 inputi(ai(t)− floor)

if inputi ≥ 0 inputi(ceiling − ai(t))

with

inputi(t) =
∑

j=1→n

wijaj(t).

ai(t) represents the activation of the node i at iteration t. The parameters floor and ceiling stand for the minimum

and maximum possible activation (in our model set to a constant value of -1 and +1). Inputi(t) is the activation node i
receives at iteration t, which is computed by summing up all products of activations and connection weights wij for node

i. Decay is a constant decay parameter. The model was applied without free parameters and with the standard parameters

already used in Glöckner and Bröder (2011) as listed in Table A1. Cue values for city A and B were transformed into

weights of -.01 (negative prediction) or .01 (positive prediction). A priori cue validities were computed from individuals’

expressions of cue-use. The only difference between PCS1 and PCS2 was the transformation function for cue usage.

In PCS1 cue-usage was linearly transformed (divided by 100), whereas in PCS2 the result was squared. This captured

individuals’ differences in translating their cue-usage into numbers. Note that in PCS models the influence of cues

on choices follows a monotonically increasing but concave function. Hence the marginal influence of cues decreases

which is corrected for by squaring input values. The option with the highest final activation is predicted to be chosen.

The number of iterations to find the solution is used as predictor for decision time, the absolute difference in activation

between the two options is used as predictor for confidence (Glöckner, 2010; Glöckner & Betsch, 2008a).
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Table A1: Model parameters for PCS simulations

Value/Function Description

Decay .05
Decay parameter for node activation; influences the overall activation level

of the nodes, the higher the value the lower the final activation level.

wo1−o2 −.20
Inhibitory connection between options; influences the size of coherence

shifts; the stronger the inhibitory connection the stronger the coherence

shifts.

wc−o .01/− .01
Connection between cues and options representing positive or negative cue

predictions.

wv
PCS1 : w = (v/100) vs.

PCS2 : w = (v/100)2

Links between general validity node and cues representing a priori cue

validity. We divide the cue validities v (measured as peoples cue usage on a

scale from 0 to 100) by 100. For PCS2 we take the result to the power of 2.

ceiling/floor 1/–1 Upper and lower limit for cue activations.

Stability

criterion
10−6 The network was considered having reached a stable solution if there was

no energy change in the network for 10 iterations which exceeded 10−6.

Appendix B

The Multiple Measure Maximum Likelihood (MM-ML) strategy classification method is used to analyze each partic-

ipants’ vector of choices, response times and confidences and to compare it with the predictions of each strategy as

follows:

Assume a set of decisions i (i ∈ 1 . . . I) that belong to categories j (j ∈ 1 . . . J) with nj indicating the number of

decisions in category j. The MM-ML method calculates the total likelihood Ltotal that data vector njk of choices (i.e.,

choices in line with the strategy k in decision category j), and the set of decision times xTi, and confidences xCi for

decisions i are observed if strategy k is applied:

Ltotal = p(njk, ~xT , ~xC |k, ǫk, µT , σT , RT , µC , σC , RC) =

J
∏

j=1

(

nj

njk

)

(1− ǫk)
njkǫ

(nj−njk)
k ×

I
∏

i=1

1
√

2πσ2
T

e
−

(xTi
−(µT +tTi

RT ))2

2σ2
T ×

I
∏

i=1

1
√

2πσ2
C

e
−

(xCi
−(µC+tCi

RC ))2

2σ2
C

with εk indicating a constant error rate for all categories, and tTi and tCi indicating strategy predictions for decision

times and confidences. µT and µC are estimates of the mean decision time and confidence; RT and RC are estimated

scaling constants to rescale the interval scaled predictions to the data RT and RC . σT and σC are estimates for the

standard deviations with which time and confidence vary around the predicted values. εk is constraint to be smaller than

.5, RT and RC are constraint to be none-negative.

In the current study I = 120 tasks, J = 8 categories (i.e., one combination for each possibility of distinct strategy

predictions between TTB, RH, PCS1, PCS2: one category all the same, four categories 1 vs. 3, three categories 2 vs.

2 and one category all different). Resulting likelihoods L = Ltotal are corrected for differences concerning degrees of

freedom using the Bayesian Information Criterion (BIC) (Schwarz, 1978) as follows:

BIC = −2 ln(L) + ln(Nobs)Np

with Np indicating the number of free parameters and Nobs indicating the number of independent observations. All

considered strategies have seven free parameters in the MM-ML estimation except for the random choice strategy

RAND (which has only 4). The number of categories times the number of dependent measures (Np = 8*3 = 24) is

considered as number of independent observations (see Glöckner, 2009). Note, however, that the BIC correction in this

specific study only influences how many persons are classified as RAND users.
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