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Selection principles and proofs from the
Book
Boaz Tsaban

To Adina

Abstract. I provide simplified proofs for each of the following fundamental theorems regarding
selection principles:
(1) The Quasinormal Convergence Theorem, due to the author and Zdomskyy, asserting that a certain,

important property of the space of continuous functions on a space is actually preserved by Borel
images of that space.

(2) The Scheepers Diagram Last Theorem, due to Peng, completing all provable implications in the
diagram.

(3) The Menger Game Theorem, due to Telgársky, determining when Bob has a winning strategy in the
game version of Menger’s covering property.

(4) A lower bound on the additivity of Rothberger’s covering property, due to Carlson.

The simplified proofs lead to several new results.

1 Introduction

The study of selection principles unifies notions and studies originating from dimen-
sion theory (Menger and Hurewicz), measure theory (Borel), convergence proper-
ties (Császár–Laczkovicz), and function spaces (Gerlits–Nagy and Arhangel’skiı̆ı),
notions analyzed and developed in numerous studies of later mathematicians, espe-
cially since the 1996 paper of Just, Miller, Scheepers, and Szeptycki [8]. The unified
notions include, among others, many classic types of special sets of real numbers,
local properties in function spaces, and more recent types of convergence properties.

Selective topological covering properties form the kernel of selection principles.
These covering properties are related via the Scheepers Diagram (Figure 1). This is a
diagram of covering properties and implications among them. The properties in this
diagram are obtained as follows:

For families A and B of sets, let S1(A, B) be the statement: For each sequence of
elements of the family A, we can pick one element from each sequence member, and
obtain an element of the family B. When A = B = O(X), the family of open covers of
a topological space X, we obtain Rothberger’s property (1941), the topological version
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Figure 1: The Scheepers Diagram.

of Borel’s strong measure zero. We say that a space X satisfies S1(O, O) if the assertion
S1(O(X), O(X)) holds, and similarly for the other selective properties.

The hypothesis Sfin(A, B) is obtained by replacing one by finitely many in the above
definition. The property Sfin(O, O) is, by an observation of Hurewicz, equivalent
to Menger’s basis property, a dimension-type property. The property Ufin(A, B) is
obtained by further allowing us to take the unions of the selected finite subsets –
this matters for some types of covers. For technical reasons, this property does not
consider all covers of type A, but only those that have no finite subcover.

A cover of a space is an ω-cover if no member of the cover covers the entire space,
but every finite subset of the space is covered by some member of the cover. For a
space X, Ω(X) is the family of open ω-covers of the space. A point-cofinite cover is an
infinite cover where every point of the space belongs to all but finitely many members
of the cover. �(X) is the family of open point-cofinite covers of the space X.

Applying the mentioned selection principles to the cover types O, Ω, and �, we
obtain additional important properties, such as Hurewicz’s property Ufin(O, �) [7].
We also obtain the Gerlits–Nagy γ-property S1(Ω, �) [6], characterizing the Fréchet–
Urysohn property of the function space Cp(X) of continuous real-valued functions,
with the topology of pointwise convergence: A topological space is Fréchet–Urysohn if
every point in the closure of a set is actually a limit of a sequence in the set. This duality
between the spaces X and Cp(X) also translates various tightness and convergence
properties of the space Cp(X) – discovered earlier by Arhangel’skiı̆ı, Bukovský, Sakai,
and others – to the selective covering properties Sfin(Ω, Ω), S1(�, �), and S1(Ω, Ω).
In Section 2, we provide a surprisingly simple proof of one of the most important
results of this type. While the result itself does not involve selective covering properties
explicitly, its proof does that extensively.

A topological space is Lindelöf if every open cover has a countable subcover.
For example, all sets of real numbers are Lindelöf. Since all selection principles
concern countable sequences, the theory mainly deals with Lindelöf spaces. For
Lindelöf spaces, the Scheepers Diagram is the result of a classification of all properties
thus introduced; each property is equivalent to one in the diagram [8]. It was long
open whether any additional implication could be established among the properties
in the diagram. In Section 3, we deal with the recent, surprising solution of this
problem.
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Menger’s covering property Sfin(O, O) is the oldest, most general, and most
applied property in the Scheepers Diagram. Initially, Menger conjectured his property
to coincide with σ-compactness. While this turned out false [19], the game version of
this property does provide a characterization of σ-compactness. A very transparent
proof of this deep result is presented in Section 4.

In Section 5, we consider a connection to combinatorial set theory. We show that a
nontrivial lower bound on the additivity of Rothberger’s property follows easily from
basic knowledge on selection principles.

The Book is a popular myth by Paul Erdős: A transfinite book containing the most
simple proofs for all theorems. I would like to believe that the proofs presented here
are similar to ones from the Book . . .or from some of its preliminary drafts, at any
rate.

2 The Quasinormal Convergence Theorem

By set of real numbers, or real set in short, we mean a topological space where
every open set is a countable union of clopen sets. Such are, for example, totally
disconnected subsets of the real line and, in particular, subsets of the Cantor space
{0, 1}N. In general, every perfectly normal space with any of the properties considered
in this section is a real set.

Let X be a real set. A sequence of real-valued functions f1 , f2 , . . . on X converges
quasinormally to a real-valued function f if there are positive real numbers ε1 , ε2 , . . .
converging to 0 such that for each point x ∈ X, we have

∣ fn(x) − f (x)∣ ≤ εn

for all but finitely many n. Quasinormal convergence generalizes uniform conver-
gence.

A real set X is a QN space if every sequence of continuous real-valued functions
on X that converges to 0 pointwise, converges to 0 quasinormally. Equivalently,
convergence in the space Cp(X) is quasinormal.

QN spaces were studied intensively, e.g., by Bukovský, Recław, Repický, Scheepers,
Nowik, Sakai, and Haleš ([20] and the references therein). This and other properties
of similar type are preserved by continuous images, and all experience prior to the
paper of the author and Zdomskyy [20] suggested that they are not preserved by Borel
images. Thus, the following theorem [20, Theorem 9] came as a surprise.

The Baire space N
N is quasiordered by the relation ≤∗ of eventual dominance:

f ≤∗ g if f (n) ≤ g(n) for all but finitely many n. A subset Y of the Baire space N
N

is bounded if it is bounded with respect to eventual dominance.

Theorem 2.1 (Quasinormal Convergence Theorem) The following assertions are
equivalent for real sets X:
(1) The set X is a QN space.
(2) Every Borel image of the set X in the Baire space NN is bounded.

The second property in the theorem is well known and straightforward to apply:
The most natural transformations needed in proofs regarding these notions are always
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easily seen to be Borel. Consequently, the theorem had a dramatic impact on the study
of QN spaces: First, many of the previous sophisticated arguments could be replaced
by straightforward ones. Second, many properties that were hitherto considered
separately turned out provably equivalent. Consequently, this theorem settled all
problems concerning these properties [20].

The original proof of the Quasinormal Convergence Theorem is long and involved,
and some of its parts are difficult to follow. A more natural proof was later published by
Bukovský and Šupina [4, Section 4]. Inspired by a paper of Gerlits and Nagy [6], I have
discovered the following surprisingly simple proof. All needed proof ingredients were
already available at the time the Quasinormal Convergence Theorem was established.
The following lemma provides the key to the proof.

For a space X, let PF(X) be the collection of countably infinite point-finite families
of open sets in X.

Lemma 2.2 Let X be a topological space. The following assertions are equivalent:
(1) Every Borel image of the space X in the Baire space NN is bounded.
(2) The space X satisfies S1(PF, PF).

Proof. Let F(X) (respectively, B(X)) be the family of countable closed (respec-
tively, Borel) covers of the set X, and let F�(X) (respectively, B�(X)) be the family of
infinite closed (respectively, Borel) point-cofinite covers of the set X. The properties
(1),Ufin(B, B�), and S1(B� , B�) are equivalent [16, Theorem 1]. For a familyU of open
sets, we have U ∈ PF(X) if and only if

{Uc ∶ U ∈ U} ∈ F�(X).
It follows that S1(PF, PF) = S1(F� , F�).
(1) ⇒ (2): Clearly, S1(B� , B�) implies S1(F� , F�).
(2) ⇒ (1): A theorem of Bukovský–Recław–Repický [3, Corollary 5.3] asserts that

Ufin(F, F�) = Ufin(B, B�).
The usual argument [15, Proposition 11] shows that S1(F� , F�) implies Ufin(F, F�): If
{Cn ∶ n ∈ N} ∈ F(X) and there is no finite subcover, then {⋃n

k=1 Ck ∶ n ∈ N} ∈ F�(X).
∎

A topological space Y has Arhangel’skiı̆ı’s property α1 if for every sequence s1 , s2 ,
. . . of sequences converging to the same point, there is a sequence s such that the
sets im(sn)/ im(s) are finite for all natural numbers n. This property is defined by
properties of sets (images of sequences) rather than sequences. Fix a bijection φ∶N→
N ×N. For sequences s1 , s2 , . . . , with sn = (s(n ,1) , s(n ,2) , . . . ) for each n, define

∞

⊔
n=1

sn ∶= (sφ(1) , sφ(2) , . . . ).

Since convergence of a sequence does not depend on the order of its elements, it does
not matter, for our purposes, which bijection φ is used. A sequence⊔∞n=1 sn converges
to a point p if and only if each sequence sn converges to p, and for each neighborhood
U of p, we have im(sn) ⊆ U for all but finitely many n.
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Lemma 2.3 Let Y be an α1 space. For every sequence s1 , s2 , . . . of sequences in the
space Y converging to the same point p, there are tails tn of sn , for n ∈ N, such that the
sequence ⊔∞n=1 tn converges to p.

Proof. There is a sequence s such that the sets im(sn)/ im(s) are finite for all natural
numbers n. By moving to a subsequence, we may assume that im(s) ⊆ ⋃∞n=1 im(sn).
Suppose that s = (a1 , a2 , . . . ). For each natural number n, since the sequence sn
converges to the point p, every element other than p may appear in the sequence sn
only finitely often. Thus, there is a tail tn of the sequence sn such that

im(tn) ⊆ { ak ∶ k ≥ n } ∪ {p}.

Let U be a neighborhood of p. There is a natural number N such that

im(tn) ⊆ { ak ∶ k ≥ n } ∪ {p} ⊆ U

for all natural numbers n ≥ N . Thus, the direct sum t ∶= ⊔∞n=1 tn converges to the
point p. ∎

Sakai [12, Theorem 3.7] and Bukovský–Haleš [2, Theorem 11] proved that a real set
X is a QN space if, and only if, the space Cp(X) is an α1 space. Thus, the Quasinormal
Convergence Theorem can be stated, and proved, as follows.

Theorem 2.4 The following assertions are equivalent for real sets X:
(1) The space Cp(X) is an α1 space.
(2) Every Borel image of the set X in the Baire space NN is bounded.

Proof. (2) ⇒ (1): This is the straightforward implication. For completeness, we
reproduce its proof [20, Theorem 9].

Let s1 , s2 , . . . be sequences in the space Cp(X) that converge to a function f ∈
Cp(X). For each natural number n, suppose that

sn = ( f n
1 , f n

2 , f n
3 , . . . ).

Define a Borel function Ψ∶X → N
N by

Ψ(x)(n) ∶=min{ k ∶ (∀m ≥ k) ∣ f n
m(x) − f (x)∣ ≤ 1

n
}.

Let g ∈ NN be a ≤∗-bound for the image Ψ[X]. Then the sequence
∞

⊔
n=1
( f n

g(n) , f n
g(n)+1 , f n

g(n)+2 , . . . )

converges to the function f.
(1) ⇒ (2): This is the main implication. By Lemma 2.2, it suffices to prove that the

set X satisfies S1(PF, PF). Let U1 ,U2 , . . . ∈ PF(X). By thinning out the point-finite
covers, we may assume that they are pairwise disjoint [15, Lemma 4]. For each set
U ∈ ⋃∞n=1 Un , let CU be a countable family of clopen sets with ⋃CU = U . For each
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natural number n, let

Vn ∶= ⋃
U∈Un

CU .

Every set C ∈ Vn is contained in at most finitely many sets U ∈ Un . Thus, the family
Vn is infinite and point-finite. Let sn be a bijective enumeration of the family

{ χV ∶ V ∈ Vn }.

The sequence sn is in Cp(X), and it converges to the constant function 0.
As the space Cp(X) is α1, there is for each n a tail tn of the sequence sn such that the

sequence s ∶= ⊔∞n=1 tn converges to 0. For each natural number n, pick a set Un ∈ Un
with CUn ⊆ im(tn). Then the family {Un ∶ n ∈ N} is infinite and point-finite. ∎

For a set X ⊆ {0, 1}N, Gerlits and Nagy (and, independently, Nyikoš) define a space
T(X) as follows: Let {0, 1}∗ denote the set of finite sequences of elements of the
set {0, 1}. Let X ⊆ {0, 1}N. For each point x ∈ X, let Ax ⊆ {0, 1}∗ be the set of initial
segments of the point x. Let X ∪ {0, 1}∗ be the topological space where the points
of the set {0, 1}∗ are isolated, and for each point x ∈ X, a neighborhood base of x is
given by the sets {x} ∪ B, where B is a cofinite subset of the set Ax . Let T(X) be the
one-point compactification of this space, and let∞ be the compactifying point.

Gerlits and Nagy prove that if a set X ⊆ {0, 1}N is a Siepiński set, then the space
T(X) is α1, and that if the space T(X) is α1, then the set X is a σ-set [6, Theorem 4]. The
following theorem unifies these results and improves upon them. Indeed, every Borel
image of a Siepiński set in the Baire space is bounded, and every set with bounded
Borel images in the Baire space is a σ-set ([16] and the references therein).

Theorem 2.5 Let X ⊆ {0, 1}N. The following assertions are equivalent:
(1) The space T(X) is an α1 space.
(2) Every Borel image of the set X in the Baire space NN is bounded.

Proof. For a finite sequence s ∈ {0, 1}∗, let [s] be the basic clopen subset of the
Cantor space {0, 1}N consisting of all functions extending s. Every open set in the
space {0, 1}N is a disjoint union of basic clopen sets. A sequence a1 , a2 , . . . in the set
{0, 1}∗ converges to ∞ in the space T(X) if, and only if, the set { [an] ∶ n ∈ N} is
point-finite in the space X [6]. The argument in the proof of Theorem 2.4 applies. ∎

3 The Scheepers Diagram Last Theorem

The implications in the Scheepers Diagram 1 were all rather straightforward to estab-
lish, and almost all other potential implications were ruled out by counterexamples
[8]. Only two problems remained open: Does Ufin(O, Ω) imply Sfin(�, Ω)? And
if not, does Ufin(O, �) imply Sfin(�, Ω)? [8, Problems 1 and 2]. For nearly three
decades, it was expected that the remaining two potential implications were refutable.
Only when Peng came up with an entirely new method for refuting implications
among selective covering properties [11], these problems were resolved. But not in the
expected way: Having proved thatUfin(O, Ω)does not implySfin(�, Ω), Peng tried to

https://doi.org/10.4153/S0008439523000905 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000905


484 B. Tsaban

Figure 2: The Final Scheepers Diagram.

refute the last remaining potential implication. And, he failed. His close examination
of the failure suggested a path for proving the last potential implication [11, Theorem
23]. Peng’s results establish the final form of the Scheepers Diagram (Figure 2).

Peng’s proof of the last implication is somewhat involved. The proof given below
identifies the heart of Peng’s argument, and replaces the other parts with simple,
quotable observations about selective covering properties.

Let k be a natural number. A cover of a space is a k-cover if no member of the cover
covers the entire space, but every k-element subset of the space is covered by some
member of the cover. Thus, a cover is an ω-cover if and only if it is a k-cover for all
natural numbers k. For a space X and a natural number k, let Ok(X) be the family of
open k-covers of the space.

Lemma 3.1 Let Π be a selection principle, and let A be a type of open covers. The
following assertions are equivalent:
(1) Π(A, Ω).
(2) For each natural number k, we have Π(A, Ok).

Proof. (1) ⇒ (2): Obvious.
(2) ⇒ (1): Let U1 ,U2 , . . . be a sequence in A. Split the sequence into infinitely

many disjoint sequences. For each natural number k, apply Π(A, Ok) to the kth
sequence, to obtain a k-cover Vk . Then ⋃∞k=1 Vk is an ω-cover, in accordance with
the required property Π(A, Ω). ∎

Theorem 3.2 (Peng [11, Theorem 23]) The Hurewicz property Ufin(O, �) implies
Sfin(�, Ω).

Proof. Let X be a Hurewicz space. By Lemma 3.1, it suffices to prove thatSfin(�, Ok)
holds for all natural numbers k. Fix a natural number k.

Let U1 ,U2 , . . . be a sequence in �(X). By moving to countably infinite subcovers,
we may enumerate

Un = {U n
m ∶ m ∈ N}

for each n. For each n and m, we may replace the set U n
m with the smaller set

U 1
m ∩U 2

m ∩⋯∩U n
m ,
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so that we may assume that

U 1
m ⊇ U 2

m ⊇ U 3
m ⊇ ⋯

for all natural numbers m. The refined covers Un remain in �(X).
Let g0(m) ∶= m for all m. We define, by induction, increasing functions g1 , . . . , gk ∈

N
N. Let l < k and assume that the function g l is defined. For natural numbers n, m,

and i, let

V l ,n
i ∶=

g l (i)
⋂
m=i

U n
m ,

W l ,n
m ∶= ⋃{V l ,n

i ∶ n ≤ i , g l(i) ≤ m }.

For each l and n, the sets W l ,n
m are increasing with m, and cover the space X. By the

Hurewicz property, there is an increasing function g l+1 ∈ NN such that

{W l ,n
g l+1(n) ∶ n ∈ N} ∈ �(X).

This completes the inductive construction.
We will show that

{U n
m ∶ n ∈ N, m ≤ gk(n) } ∈ Ok(X).

Let x1 , . . . , xk ∈ X. Since {W l ,n
g l+1(n)

∶ n ∈ N} ∈ �(X) for all l = 0, . . . , k − 1, there is a
natural number N with

x1 , . . . , xk ∈W l ,n
g l+1(n)

for all l = 0, . . . , k − 1 and all n ≥ N . Fix a number n0 ≥ N .
Since x1 ∈W k−1,n0

gk(n0)
, there is n1 with n0 ≤ n1 , gk−1(n1) ≤ gk(n0) and

x1 ∈ V k−1,n0
n1

=
gk−1(n1)

⋂
m=n1

U n0
m .

Since x3 ∈W k−3,n2
gk−2(n2)

, there is n3 with n2 ≤ n3 , gk−3(n3) ≤ gk−2(n2) and

x3 ∈ V k−3,n2
n3

=
gk−3(n3)

⋂
m=n3

U n2
m ⊆

gk−3(n3)

⋂
m=n3

U n0
m .

Since xk ∈W0,nk−1
g1(nk−1)

, there is nk with nk−1 ≤ nk = g0(nk) ≤ g1(nk−1) and

xk ∈ V 0,nk−1
nk

= U nk−1
nk
⊆ U n0

nk
.

It follows that x1 , . . . , xk ∈ U n0
nk

, and nk ≤ gk(n0). ∎

The proof of Theorem 3.2 establishes a stronger result. To this end, we need the
following definitions and lemma. An infinite cover of a space X is ω-groupable [9]
(respectively, k-groupable, for a natural number k) if there is a partition of the cover
into finite parts such that for each finite (respectively, k-element) set F ⊆ X and all
but finitely many parts P of the partition, there is a set U ∈ P with F ⊆ U . Let Ωgp(X)
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(respectively, Ogp
k (X)) be the family of open ω-groupable (respectively, k-groupable)

covers of the space X.

Lemma 3.3 Let Π be a selection principle, and let A be a type of open covers. The
following assertions are equivalent:
(1) Π(A, Ωgp);
(2) For each natural number k, we have Π(A, Ogp

k ).

Proof. The proof is similar to that of Lemma 3.1, once we observe that if {Un ∶ n ∈
N} is a k-groupable cover for all k, then it is ω-groupable. This follows easily from
the fact that for each countable family {Pk ∶ k ∈ N} of partitions of N into finite sets,
there is a partition P of N into finite sets that is eventually coarser than all of the given
partitions, that is, such that for each k, all but finitely many members of the partition
P contain a member of the partition Pk . ∎

Kočinac and Scheepers proved that if all finite powers of a space X are Hurewicz,
then every open ω-cover of the space is ω-groupable. Together with Peng’s Theorem
3.2, if all finite powers of a space X are Hurewicz, then the space satisfies Sfin(�, Ωgp).
The following theorem shows that the assumption on the finite powers is not needed.

In the proof, we also mention the property Sfin(�, Λgp). An open cover is large if
each point is in infinitely many members of the cover. Let Λ(X) be the family of large
open covers of the space X. An open cover U is in Λgp(X) [9] (also denoted ℷ(�),
depending on the context [13]) if there is a partition of the cover into finite parts such
that for each point x ∈ X and all but finitely many parts P of the partition, we have
x ∈ ⋃P.

Theorem 3.4 The following assertions are equivalent:
(1) Ufin(O, �).
(2) Sfin(�, Ωgp).

Proof. (1) ⇒ (2): The proof of Peng’s Theorem 3.2, as written above, shows, for a
prescribed number k, that for each k-element set F, there is a natural number N such
that for each n ≥ N , there is a member of the finite set Fn = {U n

m ∶ m ≤ gk(n) } that
contains the set F. By thinning out the point-cofinite covers, we may assume that they
are pairwise disjoint [15, Lemma 4], and consequently so are the finite sets Fn . Thus,
⋃∞n=1 Fn ∈ Ogp

k . This proves Sfin(�, Ogp
k ) for all k. Apply Lemma 3.3.

(2) ⇒ (1): Ωgp ⊆ Λgp. It is known that Sfin(�, Λgp) = Ufin(O, �) [13, Theorem 6].
For completeness, we provide a proof that Sfin(�, Λgp) implies Ufin(O, �).

Assume that the space X satisfies Sfin(�, Λgp). It suffices to prove that it satisfies
Ufin(�, �). Given a sequenceU1 ,U2 , . . . in �(X), we may (as in the proof of Theorem
3.2) assume that the covers get finer with n. Apply Sfin(�, Λgp) to obtain a cover U ∈
Λgp, with parts Pn (for n ∈ N) witnessing that.

Let F1 ⊆ U1 be a finite set refined by P1, that is, such that for each set U ∈ P1, there
is a set V ∈ F1 with U ⊆ V . The setF1 exists since the coversUn get finer as n increases.
Let n2 be minimal with Pn2 ⊆ ⋃∞n=2 Un , and let F2 ⊆ U2 be a finite set refined by Pn2 .
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Let n3 be minimal with Pn3 ⊆ ⋃∞n=3 Un , and let F3 ⊆ U3 be a finite set refined by Pn3 .
Continuing in this manner, we obtain finite sets Fn ⊆ Un for n ∈ N, with {⋃Fn ∶ n ∈
N} ∈ �(X). ∎

As mentioned in the proof, we have Ufin(O, �) = Sfin(�, Λgp). Kočinac and
Scheepers proved that Ufin(O, �) = Sfin(Ω, Λgp) = Sfin(Λ, Λgp) [9, Theorem 14].
However, Ufin(O, �) ≠ Sfin(Ω, Ωgp): The latter property is equivalent to satisfying
Ufin(O, �) in all finite powers [9, Theorem 16], a property strictly stronger than
Ufin(O, �) [8, Theorem 2.12].

4 When Bob has a winning strategy in the Menger game

Menger [10] conjectured that his property Sfin(O, O) implies σ-compactness. While
his conjecture turned out false ([19] and the references therein), a closely related
assertion is true. The Menger game [7], Gfin(O, O), is the game associated with
Menger’s property Sfin(O, O). It is played on a topological space X, and has an inning
per each natural number n. In each inning, Alice picks an open cover Un of the space,
and Bob chooses a finite set Fn ⊆ Un . Bob wins if⋃∞n=1 Fn is a cover of the space, and
otherwise Alice wins. Telgársky [17] proved that if Bob has a winning strategy in the
Menger game played on a metric space, then the space is σ-compact.

Scheepers [14, Theorem 1] provided a direct proof of Telgársky’s theorem, using the
notion of H-closed sets. We will eliminate the notion of H-closed sets and the closure
operations from Scheepers’s proof, and obtain a more transparent proof.

A subset K of a topological space X is relatively compact if every open cover U of
the entire space X has a finite subcover of the set K. A subset K of a regular space is
relatively compact if and only if its closure is compact.

Lemma 4.1 Let κ be a cardinal number. If a regular space X is a union of at most κ
relatively compact sets, then it is the union of at most κ compact sets.

Proof. If X = ⋃α<κ Kα , then X = ⋃α<κ Kα . ∎

For a basis B for the topology of a space X, let OB(X) be the family of subsets of
B that cover the space X.

Lemma 4.2 Let X be a topological space with a basis B, and let σ be a function on the
family OB(X) such that for each cover U ∈ OB(X), σ(U) is a finite subset of U. Then
the set

K ∶= ⋂
U∈OB(X)

⋃ σ(U)

is relatively compact.

Proof. Every open cover is refined by a cover U ∈ OB(X) which, in turn, has the
finite subcover σ(U). ∎

If Bob has a winning strategy in the Menger game played on X, then the space X
is Menger and, in particular, Lindelöf. If X is, in addition, metric, then the space is
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regular and second countable. On the other hand, Urysohn’s Metrization Theorem
asserts that every second countable regular space is metrizable.

Theorem 4.3 (Telgársky) Let X be a metric space. If Bob has a winning strategy in the
Menger game Gfin(O, O) played on X, then the space X is σ-compact.

Proof. We follow the steps of Scheepers’s proof [14, Theorem 1], removing what is
not necessary.

The space X is regular and second countable. Let σ be a winning strategy for Bob.
Fix a countable base B for the topology of the space X. Let N∗ be the set of finite
sequences of natural numbers. We consider all possible games where Alice chooses
her covers from the family OB(X).

Since the base B is countable, the family { σ(U) ∶ U ∈ OB } (the possible first
responds of Bob) is countable, too. Choose elements U1 ,U2 , . . . ∈ OB with

{ σ(Un) ∶ n ∈ N} = { σ(U) ∶ U ∈ OB }.

By induction, for a given natural number n and each sequence s = (s1 , . . . , sn) ∈ Nn ,
the family

{ σ(Us1 ,Us1 ,s2 , . . . ,Us1 , . . . ,sn ,U) ∶ U ∈ OB }

is countable. Choose elements Us1 , . . . ,sn ,1 ,Us1 , . . . ,sn ,2 , . . . ∈ OB with

{ σ(Us1 , . . . ,Us1 , . . . ,sn ,Us1 , . . . ,sn ,m) ∶ m ∈ N} = { σ(Us1 , . . . ,Us1 , . . . ,sn ,U) ∶ U ∈ OB }.

This completes our inductive construction.
By Lemma 4.2, for each sequence s = (s1 , . . . , sn) ∈ N∗, the set

Ks ∶=
∞

⋂
m=1
⋃ σ(Us1 , . . . ,Us1 , . . . ,sn ,Us1 , . . . ,sn ,m)

is relatively compact. By Lemma 4.1, it remains to see that X = ⋃s∈N∗ Ks .
Assume that some element x ∈ X is not in ⋃s∈N∗ Ks .

(1) Since x ∉ K(), there is m1 with x ∉ ⋃ σ(Um1).
(2) Since x ∉ Km1 , there is m2 with x ∉ ⋃ σ(Um1 ,Um1 ,m2).
(3) Since x ∉ Km1 ,m2 , there is m3 with x ∉ ⋃ σ(Um1 ,Um1 ,m2 ,Um1 ,m2 ,m3).
(4) Etc.
Then the play

Um1 , σ(Um1),Um1 ,m2 , σ(Um1 ,Um1 ,m2),Um1 ,m2 ,m3 , σ(Um1 ,Um1 ,m2 ,Um1 ,m2 ,m3), . . .

is lost by Bob; a contradiction. ∎

Let α be an ordinal number. The transfinite Menger game Gα
fin(O, O) is defined as

the ordinary Menger game, with the only difference that now there is an inning per
each ordinal number β < α. Clearly, if α1 < α2 and Bob has a winning strategy in the
α1-Menger game, then Bob has a winning strategy in the α2-Menger game: He can use
a winning strategy in the first α1 innings, and then play arbitrarily. Thus, the following
theorems are more general than Theorem 4.3.
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The weight of a topological space is the minimal cardinality of a base for its
topology.

Theorem 4.4 Suppose that X is a regular topological space of weight κ, and λ ≤ κ. If
Bob has a winning strategy in the game Gλ

fin(O, O) played on X, then the space X is a
union of at most κ<λ compact sets.

Proof. The proof is identical to that of Theorem 4.3, only that here we begin with
a base of cardinality κ. Here, the sequences s range over the set of sequences in κ of
length smaller than λ. ∎

Corollary 4.5 Let X be a regular topological space of weight κ. If Bob has a winning
strategy in the Menger gameGfin(O, O), then the space X is a union of at mostκ compact
sets.

For spaces of uncountable weight κ, the converse of Corollary 4.5 is false: The
discrete space of cardinality κ has weight κ, and it is a union of κ compact sets
(singletons). This space is not Lindelöf, and thus not Menger, so Bob has no winning
strategy in the Menger game played on this space.

5 The additivity of Rothberger’s property

Let add(N) be the minimal cardinality of a family F ⊆ NN such that there is no
function S∶N→ [N]<∞ with ∣S(n)∣ ≤ n for all n, such that for each function f ∈ F,
we have f (n) ∈ S(n) for all but finitely many n.

The notation add(N) is explained by a result of Bartoszyński and Judah [1,
Theorem 2.11]: The cardinal number add(N) is the minimal cardinality of a family
of Lebesgue null sets of real numbers whose union is not Lebesgue null. In general,
the additivity of a property is the minimum cardinality of a family of sets satisfying
the property, whose union does not. The following theorem is attributed to Carlson
by Bartoszyński and Judah [1, Theorem 2.9].

Theorem 5.1 (Carlson) Let κ < add(N). If a Lindelöf space is a union of at most κ
spaces satisfying S1(O, O), then the space X satisfies S1(O, O). That is, for Lindelöf
spaces, add(N) ≤ add(S1(O, O)).

This theorem is an easy consequence of a simple, basic fact concerning selection
principles. We need the following lemmata.

Let A and B be types of open covers. A topological space X satisfies Sn(A, B) if for
all U1 ,U2 , . . . ∈ A(X), there are finite sets F1 ⊆ U1 ,F2 ⊆ U2 , . . . such that ∣Fn ∣ ≤ n for
all n, and ⋃∞n=1 Fn ∈ B(X).

Garcia-Ferreira and Tamariz-Mascarua [5, Lemma 3.12] established the following
observation in the case A = O.

Lemma 5.2 [19, Theorem A.1] Let A be a type of countable covers such that every pair
of covers of type A has a joint refinement of type A. Then Sn(A, O) = S1(A, O).
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Lemma 5.3 (Folklore) If a space X satisfies S1(A, O), then for each sequence U1 ,U2 ,
. . . in O(X), there are elements U1 ∈ U1 , U2 ∈ U2 , . . . such that for each point x ∈ X,
we have x ∈ Un for infinitely many n.

Proof. As usual, we split the sequence of open covers to infinitely many disjoint
sequences, and apply the property S1(A, O) to each subsequence separately. ∎

Theorem 5.4 Let A be a type of countable covers such that every pair of covers of type
A has a joint refinement of type A. Then add(N) ≤ add(S1(A, O)).

Proof. Let κ < add(N) and X = ⋃α<κ Xα , where each space Xα satisfies S1(A, O).
By Lemma 5.2, it suffices to show that the space X satisfies Sn(A, O).

Let Un = {U n
m ∶ m ∈ N} ∈ A(X), for n ∈ N. For each ordinal number α < κ, as the

space Xα satisfiesS1(A, O), there is a function fα ∈ NN such that for each point x ∈ Xα ,
we have

x ∈ U n
fα(n)

for infinitely many n.
There is a function S∶N→ [N]<∞ with ∣S(n)∣ ≤ n for all n, such that for each α < κ,

we have

fα(n) ∈ S(n)

for all but finitely many n. Then ⋃∞n=1{U n
m ∶ m ∈ S(n) } ∈ O(X). ∎

Judging by an extensive survey on the topic [18], the result in the second item below
seems to be new.

Corollary 5.5 (1) For Lindelöf spaces, add(N) ≤ add(S1(O, O)).
(2) add(N) ≤ add(S1(�, O)).

Proof. (1) Since the spaces are Lindelöf, we may restrict attention to countable
covers, and the assumptions of Theorem 5.4 hold.

(2) A countably infinite subset of a point-cofinite cover is also a point-cofinite
cover. Thus, we may restrict attention to countable point-cofinite covers. It is well
known that every pair of point-cofinite covers has a joint refinement that is a point-
cofinite cover. Indeed, letU andV be countable point-cofinite covers. Enumerate them
U = {Un ∶ n ∈ N} and V = {Vn ∶ n ∈ N}. Then {Un ∩ Vn ∶ n ∈ N} ∈ �(X). Theorem
5.4 applies. ∎

We can extract additional information from this proof method. A topological
space X satisfies Un(�, �) [19] if for all U1 ,U2 , . . . ∈ �(X), there are finite sets F1 ⊆
U1 ,F2 ⊆ U2 , . . . such that ∣Fn ∣ ≤ n for all n, and {⋃Fn ∶ n ∈ N} ∈ �(X). This property
is strictly inbetween S1(�, �) and Ufin(O, �) [19, Theorems 3.3 and 3.8].

Theorem 5.6 add(N) ≤ add(Un(�, �)).
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Proof. Let κ < add(N) and X = ⋃α<κ Xα , where each space Xα satisfies Un(�, �).
It suffices to show that the space X satisfies Un2(�, �), where the cardinality of the
nth selected finite set is at most n2 [19, Lemma 3.2].

Let Un = {U n
m ∶ m ∈ N} ∈ �(X), for n ∈ N. For each α < κ, as the space Xα satisfies

Un(�, �), there is a function Sα ∶N→∏n[N]≤n such that for each point x ∈ Xα , we
have

x ∈ ⋃
m∈Sα(n)

U n
m

for infinitely many n.
There is a function S∶N→∏n[N]≤n with ∣S(n)∣ ≤ n for all n, such that for each

α < κ, we have

Sα(n) ∈ S(n)

for all but finitely many n. For each natural number n, let Fn ∶= ⋃ S(n). Then ∣Fn ∣ ≤ n2

for all n, and {⋃m∈Fn U n
m ∶ n ∈ N} ∈ �(X). ∎
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