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SOLUTIONS OF HOMOGENEOUS ELLIPTIC EQUATIONS 
BY 

E. DUBINSKYC1) AND T. HUSAIN(2) 

We consider an elliptic partial differential equation with constant coefficients and 
zero on the right hand side. It is well known [1] that every solution of such an 
equation can be approximated uniformly on each compact set by a sum of products 
of polynomials and exponential functions which satisfy the equation. Furthermore, 
if one assumes that the polynomial operator is homogeneous, then the approxima­
tion can be made with polynomials alone. It is our purpose to show, in the latter 
case, when the number of variables is two, that each solution can be written as an 
infinite series in certain specific polynomials. Our method is to factor the poly­
nomial and build up the solution in terms of solutions of first degree equations. 

We shall denote by P=P(su.. .,sn) a. polynomial in n complex variables. The 
corresponding partial differential equation is 

i'r>-i'l <w}'°-
We shall always assume that the polynomial is elliptic which means that the solution 
u is real analytic. For simplicity we consider only global solutions although it is not 
hard to see how our results can be generalized to the case of local solutions. Thus 
the functions u in this paper, will always be infinitely differentiable, complex valued 
functions on Rn. 

We say that a polynomial P of degree m is homogeneous if P(A^l5..., A,sn) = 
XmP(sl9..., sn) for all complex numbers A. If P is any polynomial of degree m, 
we can always write P=P0+P1 where P0 is homogeneous of degree m and the 
degree of Pi is strictly less than m. We call P0 the principal part of P. An important 
characterization of ellipticity is the following [1]: 

The polynomial P is elliptic if and only if its principal part P0 has the property 
that for any a e Rn, P0(a) = 0 if and only ifa = 0. 

If A is a complex number, its conjugate will be denoted A and / in the sequel will 
always stand for \ / — 1-

PROPOSITION 1. Let P, Q be polynomials. Then the product, PQ is elliptic if and 
only if both P and Q are. 

Proof. Let P0, Q0 be the principal parts of P, Q respectively. Then P0 Q0 is the 
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100 E. DUBINSKY AND T. HUSAIN [March 

principal part of PQ. Then if PQ is elliptic and JP0((7) = 0 for (jeRn , then 
PO((J)QQ(<J) = 0 SO CJ=0. Thus P is elliptic, and similarly, Q is elliptic. 

Conversely if P and Q are elliptic and i>
0(

cr)6o(CT)=0, then either Po(a) = 0 or 
ôoO)=0 so (7=0. Thus PQ is elliptic. 

PROPOSITION 2. IfP(su s2) is a homogeneous polynomial of degree m, then P can 
be factored into linear factors of the form, asx+ps2. 

Proof. Let À be any complex number with P( l , A) = 0. Then 

P(sl9 \sx) = tfP(l, A) = 0. 

Thus s2-~ Xs± is a factor and the rest follows by induction. 

PROPOSITION 3. IfP(sl9 s2) = as1+f$s2, then P is elliptic if and only if a, j8 are real 
linearly independent. 

Proof. Let a=a1 + ia2, j3=/?i + //?2 where al9 a29 /3l5 p2 are real. P is elliptic if and 
only if the following system of equations has no non-trivial solution : 

But this is equivalent to the fact that (au a2), (fil9 /?2) are linearly independent. 
Let A : Cn -> Cn be an invertible linear transformation whose matrix with respect 

to the usual basis is (akj) and all akj are real. Let AT = (alJ)9 akj = ajk, be the trans­
pose of A. We wish to apply such a transformation to a polynomial. The next result 
describes the effect on the solution of the corresponding partial differential 
equation. 

PROPOSITION 4. Let P, Q be polynomials with Q=PoAT. Then Q(i d/dx)u = 0 
if and only ifP(i d/dx)(u ° A) = 0. 

Proof. Let v = u ° A, and suppose that P(i djdx)v=0. Since 

57 (*) = 2 *fc/ 57 0*(*)) = 2 «* 57 (̂ (*))> 

then 

(i±)v(X) = A^)u(A(X)) 

and 

0 - p ( / | ) r ( x ) - P o ^ ( / | ) H ( ^ ) ) . ô ( / | ) « ( ^ ) ) . 

Since this is true for all x and 4̂ is invertible, it follows that Q(i d/dx)u(x)=0 for all 
x, i.e. Q(id/dx)u=0. 

To prove the converse, one applies the above argument to A"1. 
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PROPOSITION 5. Let P(su s2) — a ^ + f e be elliptic. Then there exists an invertible 
real linear transformation, A such thatP ° AT is the polynomial sx + is2. 

Proof. It suffices to let AT be the matrix which transforms the vectors (al9 ft), 
(a2>ft) into the vectors (1,0) and (0,1). This is always possible since by Pro­
position 3 and our assumption of ellipticity, the two vectors are linearly inde­
pendent. Thus we will have, 

P o AT(sl9 s2) = («! + ia2){a11s1+a21s2) 4- (ft + *ft)(tf 12^1+«22^2) 

= («liai+«12ft>l + (^21«l+«22ft>2 

+ * [(« n«2+a12p2)s± + (a21a2+a22p2)s2] 
= sx + is2 

THEOREM 1. Let P(sl9s2) = (as1+ps2)
k be elliptic. Let d=a1p2-a2f}1 where 

a = a1 + ia29p=p1 + /ft, and lety=l / J(ft - ia±)9 8 = 1 /d(fl2 - ia2). Then Pu=0 if and 
only if 

k-l _ 00 

(1) u(xl9x2) = 2 (tei-YXitf 2 à,
n{px1-YX2)

n
9 

j = 0 n = 0 

where each {a3
n}, j=0,..., k — 1, is an infinite sequence of complex numbers satisfying, 

lim \a{\lln = 0. 
n -* 00 

Proof. First we assume that a= 1, /?=/. Then (1) becomes 

w(*i>*2) = 2 (xx-ix2y 2 4(^i+/x2)n. 
y=o n=o 

Let ô f e , ^2)=J1 + &2, so that P = g f c and Q(i d/dx)u=i du/dx^du/dx* Thus 
g(/ d/dx)u=0 is the Cauchy-Riemann equation, so if we let 

fj(x1,X2)= 2 *n(*l + '*2)W, 
n = 0 

then Q(idldx)fj = 0. Also, Q(i d/dx)(x1 — ix2y = 2ij(x1 — ix2)
i~1. Further, if gis any 

C00-function and/ is analytic, then 

<Kgf) = gQf+fQg=fQg 
so 

But if g(xl9 x2) = (x1-ix2y with j<k then ofcg = 0 and hence, Pu = 0 if u has the 
given form. 

For the converse, we proceed by induction on k. For k=l9 the conclusion 
follows from the power series expansion of entire functions. Suppose the result is 
true for k and let Qk + 1u=0. Then Qk(Qu)=0 so we have, by assumption, 

k-l 00 

Qu(xl9x2) = 2 (xi-ix^ 2 ^n(xi + ix2)
n = f(xl9x2). 

y=0 n=0 
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Now let 

k j co 

u°(x1,x2) = - 2 =-.(xi-£xa)' 2 air1(x1 + ix2)\ 
j = l^J n = 0 

Then employing the above relations, 

Qu°(x1,x2) = - f i-.Qixi-ixJ' 2 4 _ 1 f e + /x2)n 

fc oo 

= 2 O l - ' - ^ y - 1 2 ûn"1(^l + ^2)n = /(*l,*2). 
; = 1 n = 0 

Thus we can conclude that w==w° + w1 where Q^^O, that is 

OO 

t ^ O i , ^ ) = 2 bn(xi + ix2)
n. 

n = 0 

Adding the expressions for u° and w1, one obtains the desired expression for u. 
Finally we apply Propositions 4 and 5 to obtain (1). To see this, we compute, 

AT = 

So by Proposition 4, we see that xx + ix2 must be replaced by 

-j(fo*i — PIX2 — ia2xx + iaxx2) — &X1 — yX2 

and similarly for the terms involving x± ix2. 

LEMMA 1. Let P1(s) = s1 + is29 P2(s) = as1+fls2 where (a, j8), (1, /) are linearly inde­
pendent in C2. Let kx he a non-negative integer. Let f be a solution ofP2f=0. Then 
there exists a solution g ofP2g=0 with Pï1g=f. 

Proof. Applying Theorem 1, we can write 

CO 

f(xux2) = 2 tfn(â*i-y*2)
n> lim |tfn|

1/n = 0, 
n = 0 n-*co 

where 8 and y are defined in Theorem 1. First we observe that /S + y^O. For if 
zS + y = 0, then (a, P) = (a,ia) = a(l,i), which is contrary to our assumption. 
Furthermore, since lim |#n |1 / n=0, it is easy to see that 

ft 
d 

ft 
d 

0=2 

d 

d 

lim lo.-fc,!1'»! 
(n-kùl l/n 

0. 
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So we may define 

n=fci n\ 

and conclude from Theorem 1 that P2g=0. Also, 

Hxg = 2 an.kl(Bx1-yx2)
n-ki=f. 

n = k± 

LEMMA 2. In the context of Lemma 1, let w be a solution ofP2
C2w=0for some non-

negative integer k2<k1. Then there exists a solution v ofP2w = 0 such that P\w = w. 

Proof. Applying Theorem 1, we can write 

k2-l 

; = 0 

where P2fj=0. If v has the form 

/ C 2 - 1 

y = o 

where P2gj=0, then it follows by Theorem 1 that P%w = 0. Thus we need only 
determine the functions, g0, ---9gk2-i- This we do by utilizing the condition that 
PiW = w must hold. Thus we must have 

/Cl / C 2 - 1 /hr \ j) 

u = o j=u \p/ \J-"H>)\ 

k2-l 

= 2 (^1-7^2)%, 
y=o 

where Pigj—gj. Rearranging terms and equating coefficients of (8x1—yx2)
j on both 

sides of this equation, we obtain the system of equations: 

Pl^-gkz-l — A 2 - I 5 

min(v-l.fci) 
•* l1^'fc2-v"i" 2* ^uMl1 £k2-v + u ~ A2-V5 v ~ 2 , . . . , K2, 

» = 1 

where the CUtV are complex numbers. Now the first equation can be solved for 
gk2-! by Lemma 1. Substituting this result in the second equation with v — 2, we 
may apply Lemma 1 again and solve for gk2-2. Repeating this process, we obtain 
the desired g0,...,gk2-1. 

LEMMA 3. Let Pv(s) = (avs1+pvs2), v= 1 , . . . , r and assume that the pairs (av, pv), 
(au, /?w), v^fji are linearly independent in C2. Let P=P^.. .P!fr and suppose u is a 
solution ofPu = 0. Then we can write u = u±-\ \-ur where P^uv=0, v= 1 , . . . , r. 

Proof. Without loss of generality, we may assume that kx > k2 > • • • > kr, since P 
is invariant under a permutation of its factors. We use induction on r. The result is 
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trivial for r = 1, so we assume that it holds for r — 1. Without loss of generality, we may 
assume that (a1, ]81) = (1, i). Now since Pu=0, it follows that P&.. .Pr

fc<P£iw) = 0. 
So by our induction hypothesis, we can write 

p^iii = w2-\ h w„ where P]^wv = 0, v = 2 , . . . , r. 
Then by Lemma 2, we have for each v=2,..., r, a solution wv of Pvvwv = 0 such that 
Pïiwv = wv. Now if we write u1 = u—(u2-] hwr), then u=ux + u2-\ \-ur where 
P£vwv = 0 for v=2, . . . , r, and 

pfiMl = Plw-{Piw2+ • • • +PÏ*wr) = (w2+ • • • +w r)-(w2+ -. • +wr) = 0. 

THEOREM 2. LeJ P be a homogeneous elliptic polynomial in two variables. Let r be 
the number of distinct linear factors ofP and let their corresponding multiplicities be 
kl9..., kr, arranged in decreasing order. Then there are complex numbers y1 , . . . , / , 
81 , . . . , hr such thatPQ d/dx)u=0 if and only if 

(2) u(xl9 x2) = 2 UVI ^i-yvx2y t ^v(Sv*i-yv*2)n 

v = i y = o n = 0 

where each sequence {akv} satisfies limn_>oo |a£'v|1/n = 0. 

Proof. By hypothesis, 

P(si, Sid = U (fSi+Fs^ = n Pv(*, s2), say. 
v = l v = l 

By Proposition 1 each Pv is elliptic. Then we obtain yv, 8V from av, jSv as in Theorem 
1 and write all solutions of Pvu=0 from Theorem 1. Finally, we apply Lemma 3 to 
obtain all solutions of Pu = 0 in the form of (2). 

It can be shown from Theorem 2 that if one equips the space of solutions of a 
homogeneous elliptic equation in two variables with the compact open topology, 
then this space has a Schauder basis and is in fact isomorphic to the space of entire 
functions. The details will be presented in a subsequent paper. 
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