## SOLUTIONS OF HOMOGENEOUS ELLIPTIC EQUATIONS

BY<br>E. DUBINSKY $\left({ }^{1}\right)$ AND T. HUSAIN $\left({ }^{2}\right)$

We consider an elliptic partial differential equation with constant coefficients and zero on the right hand side. It is well known [1] that every solution of such an equation can be approximated uniformly on each compact set by a sum of products of polynomials and exponential functions which satisfy the equation. Furthermore, if one assumes that the polynomial operator is homogeneous, then the approximation can be made with polynomials alone. It is our purpose to show, in the latter case, when the number of variables is two, that each solution can be written as an infinite series in certain specific polynomials. Our method is to factor the polynomial and build up the solution in terms of solutions of first degree equations.

We shall denote by $P=P\left(s_{1}, \ldots, s_{n}\right)$ a polynomial in $n$ complex variables. The corresponding partial differential equation is

$$
P\left(i \frac{\partial}{\partial x}\right) u=P\left(i \frac{\partial}{\partial x_{1}}, \ldots, i \frac{\partial}{\partial x_{n}}\right) u=0 .
$$

We shall always assume that the polynomial is elliptic which means that the solution $u$ is real analytic. For simplicity we consider only global solutions although it is not hard to see how our results can be generalized to the case of local solutions. Thus the functions $u$ in this paper, will always be infinitely differentiable, complex valued functions on $\mathbf{R}^{n}$.

We say that a polynomial $P$ of degree $m$ is homogeneous if $P\left(\lambda s_{1}, \ldots, \lambda s_{n}\right)=$ $\lambda^{m} P\left(s_{1}, \ldots, s_{n}\right)$ for all complex numbers $\lambda$. If $P$ is any polynomial of degree $m$, we can always write $P=P_{0}+P_{1}$ where $P_{0}$ is homogeneous of degree $m$ and the degree of $P_{1}$ is strictly less than $m$. We call $P_{0}$ the principal part of $P$. An important characterization of ellipticity is the following [1]:

The polynomial $P$ is elliptic if and only if its principal part $P_{0}$ has the property that for any $\sigma \in \mathbf{R}^{n}, P_{0}(\sigma)=0$ if and only if $\sigma=0$.

If $\lambda$ is a complex number, its conjugate will be denoted $\bar{\lambda}$ and $i$ in the sequel will always stand for $\sqrt{-1}$.

Proposition 1. Let $P, Q$ be polynomials. Then the product, $P Q$ is elliptic if and only if both $P$ and $Q$ are.

Proof. Let $P_{0}, Q_{0}$ be the principal parts of $P, Q$ respectively. Then $P_{0} Q_{0}$ is the
Received by the editors April 10, 1969.
${ }^{(1)}$ The first author would like to express his thanks to McMaster University for providing the opportunity to do this research.
$\left.{ }^{( }{ }^{2}\right)$ This work was supported by the National Research Council of Canada.
principal part of $P Q$. Then if $P Q$ is elliptic and $P_{0}(\sigma)=0$ for $\sigma \in \mathbf{R}^{n}$, then $P_{0}(\sigma) Q_{0}(\sigma)=0$ so $\sigma=0$. Thus $P$ is elliptic, and similarly, $Q$ is elliptic.

Conversely if $P$ and $Q$ are elliptic and $P_{0}(\sigma) Q_{0}(\sigma)=0$, then either $P_{0}(\sigma)=0$ or $Q_{0}(\sigma)=0$ so $\sigma=0$. Thus $P Q$ is elliptic.

Proposition 2. If $P\left(s_{1}, s_{2}\right)$ is a homogeneous polynomial of degree $m$, then $P$ can be factored into linear factors of the form, $\alpha s_{1}+\beta s_{2}$.

Proof. Let $\lambda$ be any complex number with $P(1, \lambda)=0$. Then

$$
P\left(s_{1}, \lambda s_{1}\right)=s_{1}^{m} P(1, \lambda)=0 .
$$

Thus $s_{2}-\lambda s_{1}$ is a factor and the rest follows by induction.
Proposition 3. If $P\left(s_{1}, s_{2}\right)=\alpha s_{1}+\beta s_{2}$, then $P$ is elliptic if and only if $\alpha, \beta$ are real linearly independent.

Proof. Let $\alpha=\alpha_{1}+i \alpha_{2}, \beta=\beta_{1}+i \beta_{2}$ where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are real. $P$ is elliptic if and only if the following system of equations has no non-trivial solution:

$$
\begin{aligned}
& \alpha_{1} \sigma_{1}+\beta_{1} \sigma_{2}=0 \\
& \alpha_{2} \sigma_{1}+\beta_{2} \sigma_{2}=0
\end{aligned}
$$

But this is equivalent to the fact that $\left(\alpha_{1}, \alpha_{2}\right),\left(\beta_{1}, \beta_{2}\right)$ are linearly independent.
Let $A: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ be an invertible linear transformation whose matrix with respect to the usual basis is ( $a_{k j}$ ) and all $a_{k j}$ are real. Let $A^{T}=\left(a_{k j}^{T}\right), a_{k j}^{T}=a_{j k}$, be the transpose of $A$. We wish to apply such a transformation to a polynomial. The next result describes the effect on the solution of the corresponding partial differential equation.

Proposition 4. Let $P, Q$ be polynomials with $Q=P \circ A^{T}$. Then $Q(i \partial / \partial x) u=0$ if and only if $P(i \partial / \partial x)(u \circ A)=0$.

Proof. Let $v=u \circ A$, and suppose that $P(i \partial / \partial x) v=0$. Since

$$
\frac{\partial v}{\partial x_{j}}(x)=\sum_{k=1}^{n} a_{k j} \frac{\partial u}{\partial x_{k}}(A(x))=\sum_{k=1}^{n} a_{j k}^{T} \frac{\partial u}{\partial x_{k}}(A(x))
$$

then

$$
\left(i \frac{\partial}{\partial x}\right) v(x)=A^{T}\left(i \frac{\partial}{\partial x}\right) u(A(x))
$$

and

$$
0=P\left(i \frac{\partial}{\partial x}\right) v(x)=P \circ A^{T}\left(i \frac{\partial}{\partial x}\right) u(A(x))=Q\left(i \frac{\partial}{\partial x}\right) u(A(x)) .
$$

Since this is true for all $x$ and $A$ is invertible, it follows that $Q(i \partial / \partial x) u(x)=0$ for all $x$, i.e. $Q(i \partial / \partial x) u=0$.

To prove the converse, one applies the above argument to $A^{-1}$.

Proposition 5. Let $P\left(s_{1}, s_{2}\right)=\alpha s_{1}+\beta s_{2}$ be elliptic. Then there exists an invertible real linear transformation, $A$ such that $P \circ A^{T}$ is the polynomial $s_{1}+i s_{2}$.

Proof. It suffices to let $A^{T}$ be the matrix which transforms the vectors $\left(\alpha_{1}, \beta_{1}\right)$, $\left(\alpha_{2}, \beta_{2}\right)$ into the vectors $(1,0)$ and $(0,1)$. This is always possible since by Proposition 3 and our assumption of ellipticity, the two vectors are linearly independent. Thus we will have,

$$
\begin{aligned}
& P \circ A^{T}\left(s_{1}, s_{2}\right)=\left(\alpha_{1}+i \alpha_{2}\right)\left(a_{11} s_{1}+a_{21} s_{2}\right)+\left(\beta_{1}+i \beta_{2}\right)\left(a_{12} s_{1}+a_{22} s_{2}\right) \\
&=\left(a_{11} \alpha_{1}+a_{12} \beta_{1}\right) s_{1}+\left(a_{21} \alpha_{1}+a_{22} \beta_{1}\right) s_{2} \\
&=s_{1}+i s_{2} \\
&+i\left[\left(a_{11} \alpha_{2}+a_{12} \beta_{2}\right) s_{1}+\left(a_{21} \alpha_{2}+a_{22} \beta_{2}\right) s_{2}\right]
\end{aligned}
$$

Theorem 1. Let $P\left(s_{1}, s_{2}\right)=\left(\alpha s_{1}+\beta s_{2}\right)^{k}$ be elliptic. Let $d=\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}$ where $\alpha=\alpha_{1}+i \alpha_{2}, \beta=\beta_{1}+i \beta_{2}$, and let $\gamma=1 / d\left(\beta_{1}-i \alpha_{1}\right), \delta=1 / d\left(\beta_{2}-i \alpha_{2}\right)$. Then $P u=0$ if and only if

$$
\begin{equation*}
u\left(x_{1}, x_{2}\right)=\sum_{j=0}^{k-1}\left(\bar{\delta} x_{1}-\bar{\gamma} x_{2}\right)^{j} \sum_{n=0}^{\infty} a_{n}^{j}\left(\delta x_{1}-\gamma x_{2}\right)^{n} \tag{1}
\end{equation*}
$$

where each $\left\{a_{n}^{j}\right\}, j=0, \ldots, k-1$, is an infinite sequence of complex numbers satisfying,

$$
\lim _{n \rightarrow \infty}\left|a_{n}^{j}\right|^{1 / n}=0
$$

Proof. First we assume that $\alpha=1, \beta=i$. Then (1) becomes

$$
u\left(x_{1}, x_{2}\right)=\sum_{j=0}^{k-1}\left(x_{1}-i x_{2}\right)^{j} \sum_{n=0}^{\infty} a_{n}^{j}\left(x_{1}+i x_{2}\right)^{n} .
$$

Let $Q\left(s_{1}, s_{2}\right)=s_{1}+i s_{2}$, so that $P=Q^{k}$ and $Q(i \partial / \partial x) u=i \partial u / \partial x_{1}-\partial u / \partial x_{2}$. Thus $Q(i \partial / \partial x) u=0$ is the Cauchy-Riemann equation, so if we let

$$
f_{j}\left(x_{1}, x_{2}\right)=\sum_{n=0}^{\infty} a_{n}^{j}\left(x_{1}+i x_{2}\right)^{n}
$$

then $Q(i \partial / \partial x) f_{j}=0$. Also, $Q(i \partial / \partial x)\left(x_{1}-i x_{2}\right)^{j}=2 i j\left(x_{1}-i x_{2}\right)^{j-1}$. Further, if $g$ is any $C^{\infty}$-function and $f$ is analytic, then
so

$$
\begin{aligned}
& Q(g f)=g Q f+f Q g=f Q g \\
& P(g f)=Q^{k}(g f)=f Q^{k} g
\end{aligned}
$$

But if $g\left(x_{1}, x_{2}\right)=\left(x_{1}-i x_{2}\right)^{j}$ with $j<k$ then $Q^{k} g=0$ and hence, $P u=0$ if $u$ has the given form.

For the converse, we proceed by induction on $k$. For $k=1$, the conclusion follows from the power series expansion of entire functions. Suppose the result is true for $k$ and let $Q^{k+1} u=0$. Then $Q^{k}(Q u)=0$ so we have, by assumption,

$$
Q u\left(x_{1}, x_{2}\right)=\sum_{j=0}^{k-1}\left(x_{1}-i x_{2}\right)^{j} \sum_{n=0}^{\infty} a_{n}^{j}\left(x_{1}+i x_{2}\right)^{n}=f\left(x_{1}, x_{2}\right) .
$$

Now let

$$
u^{0}\left(x_{1}, x_{2}\right)=-\sum_{j=1}^{k} \frac{i}{2 j}\left(x_{1}-i x_{2}\right)^{j} \sum_{n=0}^{\infty} a_{n}^{j-1}\left(x_{1}+i x_{2}\right)^{n} .
$$

Then employing the above relations,

$$
\begin{aligned}
Q u^{0}\left(x_{1}, x_{2}\right) & =-\sum_{j=1}^{k} \frac{i}{2 j} Q\left(x_{1}-i x_{2}\right)^{j} \sum_{n=0}^{\infty} a_{n}^{j-1}\left(x_{1}+i x_{2}\right)^{n} \\
& =\sum_{j=1}^{k}\left(x_{1}-i x_{2}\right)^{j-1} \sum_{n=0}^{\infty} a_{n}^{j-1}\left(x_{1}+i x_{2}\right)^{n}=f\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Thus we can conclude that $u=u^{0}+u^{1}$ where $Q u^{1}=0$, that is

$$
u^{1}\left(x_{1}, x_{2}\right)=\sum_{n=0}^{\infty} b_{n}\left(x_{1}+i x_{2}\right)^{n} .
$$

Adding the expressions for $u^{0}$ and $u^{1}$, one obtains the desired expression for $u$.
Finally we apply Propositions 4 and 5 to obtain (1). To see this, we compute,

$$
A^{T}=\left(\begin{array}{rr}
\frac{\beta_{2}}{d} & -\frac{\alpha_{2}}{d} \\
-\frac{\beta_{1}}{d} & \frac{\alpha_{1}}{d}
\end{array}\right)
$$

So by Proposition 4, we see that $x_{1}+i x_{2}$ must be replaced by

$$
\frac{1}{d}\left(\beta_{2} x_{1}-\beta_{1} x_{2}-i \alpha_{2} x_{1}+i \alpha_{1} x_{2}\right)=\delta x_{1}-\gamma x_{2}
$$

and similarly for the terms involving $x_{1}-i x_{2}$.
Lemma 1. Let $P_{1}(s)=s_{1}+i s_{2}, P_{2}(s)=\alpha s_{1}+\beta s_{2}$ where $(\alpha, \beta),(1, i)$ are linearly independent in $\mathbf{C}^{2}$. Let $k_{1}$ be a non-negative integer. Let $f$ be a solution of $P_{2} f=0$. Then there exists a solution $g$ of $P_{2} g=0$ with $P_{1}^{k_{1}} g=f$.

Proof. Applying Theorem 1, we can write

$$
f\left(x_{1}, x_{2}\right)=\sum_{n=0}^{\infty} a_{n}\left(\delta x_{1}-\gamma x_{2}\right)^{n}, \lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=0
$$

where $\delta$ and $\gamma$ are defined in Theorem 1. First we observe that $i \delta+\gamma \neq 0$. For if $i \delta+\gamma=0$, then $(\alpha, \beta)=(\alpha, i \alpha)=\alpha(1, i)$, which is contrary to our assumption. Furthermore, since $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=0$, it is easy to see that

$$
\lim _{n \rightarrow \infty}\left|a_{n-k_{1}}\right|^{1 / n}\left|\frac{\left(n-k_{1}\right)!}{n!}\right|^{1 / n}=0
$$

So we may define

$$
g\left(x_{1}, x_{2}\right)=(i \delta+\gamma)^{-k_{1}} \sum_{n=k_{1}}^{\infty} a_{n-k_{1}} \frac{\left(n-k_{1}\right)!}{n!}\left(\delta x_{1}-\gamma x_{2}\right)^{n},
$$

and conclude from Theorem 1 that $P_{2} g=0$. Also,

$$
P_{1}^{k_{1}} g=\sum_{n=k_{1}}^{\infty} a_{n-k_{1}}\left(\delta x_{1}-\gamma x_{2}\right)^{n-k_{1}}=f .
$$

Lemma 2. In the context of Lemma 1 , let $w$ be a solution of $P_{2}^{k_{2}} w=0$ for some nonnegative integer $k_{2} \leq k_{1}$. Then there exists a solution $v$ of $P_{2}^{k_{2}} v=0$ such that $P_{1}^{k_{1} v} v=w$.

Proof. Applying Theorem 1, we can write

$$
w=\sum_{j=0}^{k_{2}-1}\left(\bar{\delta} x_{1}-\bar{\gamma} x_{2}\right)^{)} f_{j},
$$

where $P_{2} f_{j}=0$. If $v$ has the form

$$
v=\sum_{j=0}^{k_{2}-1}\left(\bar{\delta} x_{1}-\bar{\gamma} x_{2}\right)^{j} g_{j}
$$

where $P_{2} g_{j}=0$, then it follows by Theorem 1 that $P_{2}^{k_{2}} v=0$. Thus we need only determine the functions, $g_{0}, \ldots, g_{k_{2}-1}$. This we do by utilizing the condition that $P_{1}^{k_{1}} v=w$ must hold. Thus we must have

$$
\begin{aligned}
P_{1}^{k_{1} v} & =\sum_{\mu=0}^{k_{1}} \sum_{j=\mu}^{k_{2}-1}\binom{k_{1}}{\mu} \frac{j!}{(j-\mu)!}(i \bar{\delta}+\bar{\gamma})^{\mu}\left(\bar{\delta} x_{1}-\bar{\gamma} x_{2}\right)^{j-\mu} P_{1}^{k_{1}-\mu} g_{j} \\
& =\sum_{j=0}^{k_{2}-1}\left(\bar{\delta} x_{1}-\bar{\gamma} x_{2}\right)^{j} f_{j},
\end{aligned}
$$

where $P_{1}^{0} g_{j}=g_{j}$. Rearranging terms and equating coefficients of $\left(\bar{\delta} x_{1}-\bar{\gamma} x_{2}\right)^{j}$ on both sides of this equation, we obtain the system of equations:

$$
\begin{gathered}
P_{1}^{k_{1}} g_{k_{2}-1}=f_{k_{2}-1}, \\
P_{1}^{k_{1}} g_{k_{2}-v}+\sum_{\mu=1}^{\min \left(v-1, k_{1}\right)} C_{\mu, v} P_{1}^{k_{1}-\mu} g_{k_{2}-v+\mu}=f_{k_{2}-v}, \quad v=2, \ldots, k_{2},
\end{gathered}
$$

where the $C_{\mu, \nu}$ are complex numbers. Now the first equation can be solved for $g_{k_{2}-1}$ by Lemma 1. Substituting this result in the second equation with $\nu=2$, we may apply Lemma 1 again and solve for $g_{k_{2}-2}$. Repeating this process, we obtain the desired $g_{0}, \ldots, g_{k_{2}-1}$.

Lemma 3. Let $P_{v}(s)=\left(\alpha^{\nu} S_{1}+\beta^{v} s_{2}\right), \nu=1, \ldots, r$ and assume that the pairs $\left(\alpha^{\nu}, \beta^{v}\right)$, $\left(\alpha^{\mu}, \beta^{u}\right), \nu \neq \mu$ are linearly independent in $\mathbf{C}^{2}$. Let $P=P_{1}^{k_{1}} \ldots P_{r}^{k_{r}}$ and suppose $u$ is a solution of $P u=0$. Then we can write $u=u_{1}+\cdots+u_{r}$ where $P_{v}{ }^{k} u_{\nu}=0, \nu=1, \ldots, r$.

Proof. Without loss of generality, we may assume that $k_{1} \geq k_{2} \geq \cdots \geq k_{r}$, since $P$ is invariant under a permutation of its factors. We use induction on $r$. The result is
trivial for $r=1$, so we assume that it holds for $r-1$. Without loss of generality, we may assume that $\left(\alpha^{1}, \beta^{1}\right)=(1, i)$. Now since $P u=0$, it follows that $P_{2}^{k_{2}} \ldots P_{r}^{k_{r}}\left(P_{1}^{k_{1}} u\right)=0$. So by our induction hypothesis, we can write

$$
P_{1}^{k_{1} u}=w_{2}+\cdots+w_{r}, \text { where } P_{v}^{k_{v}} w_{v}=0, v=2, \ldots, r
$$

Then by Lemma 2, we have for each $\nu=2, \ldots, r$, a solution $u_{v}$ of $P_{v}^{k} \nu u_{v}=0$ such that $P_{1}^{k} u_{v}=w_{v}$. Now if we write $u_{1}=u-\left(u_{2}+\cdots+u_{r}\right)$, then $u=u_{1}+u_{2}+\cdots+u_{r}$ where $P_{v}^{k} \nu_{v}=0$ for $\nu=2, \ldots, r$, and
$P_{1}^{k_{1}} u_{1}=P_{1}^{k_{1}} u-\left(P_{1}^{k_{1}} u_{2}+\cdots+P_{1}^{k_{1}} u_{r}\right)=\left(w_{2}+\cdots+w_{r}\right)-\left(w_{2}+\cdots+w_{r}\right)=0$.
Theorem 2. Let $P$ be a homogeneous elliptic polynomial in two variables. Let $r$ be the number of distinct linear factors of $P$ and let their corresponding multiplicities be $k_{1}, \ldots, k_{r}$, arranged in decreasing order. Then there are complex numbers $\gamma^{1}, \ldots, \gamma^{r}$, $\delta^{1}, \ldots, \delta^{r}$ such that $P(i \partial / \partial x) u=0$ if and only if

$$
\begin{equation*}
u\left(x_{1}, x_{2}\right)=\sum_{v=1}^{r} \sum_{j=0}^{k_{v}-1}\left(\bar{\delta}^{v} x_{1}-\bar{\gamma}^{v} x_{2}\right)^{j} \sum_{n=0}^{\infty} a_{n}^{j, v}\left(\delta^{v} x_{1}-\gamma^{v} x_{2}\right)^{n} \tag{2}
\end{equation*}
$$

where each sequence $\left\{a_{n}^{j, v}\right\}$ satisfies $\lim _{n \rightarrow \infty}\left|a_{n}^{j, \nu}\right|^{1 / n}=0$.
Proof. By hypothesis,

$$
P\left(s_{1}, s_{2}\right)=\prod_{v=1}^{r}\left(a^{v} s_{1}+\beta^{v} s_{2}\right)^{k_{v}}=\prod_{v=1}^{r} P_{v}\left(s_{1}, s_{2}\right) \text {, say. }
$$

By Proposition 1 each $P_{\nu}$ is elliptic. Then we obtain $\gamma^{\nu}, \delta^{\nu}$ from $\alpha^{v}, \beta^{\nu}$ as in Theorem 1 and write all solutions of $P_{\nu} u=0$ from Theorem 1. Finally, we apply Lemma 3 to obtain all solutions of $P u=0$ in the form of (2).

It can be shown from Theorem 2 that if one equips the space of solutions of a homogeneous elliptic equation in two variables with the compact open topology, then this space has a Schauder basis and is in fact isomorphic to the space of entire functions. The details will be presented in a subsequent paper.

## Reference

1. L. Hormander, Linear partial differential operators, Springer, 1963.

Tulane University,
New Orleans, Louisiana
McMaster University,
Hamilton, Ontario

