PRIME IDEALS IN REGULAR SELF-INJECTIVE RINGS

K. R. GOODEARL

1. Introduction. Although the notion of the maximal quotient ring of a nonsingular ring has been around for some time, not much is known about its structure in general beyond the important theorems of Johnson and Utumi $[\mathbf{4} ; \mathbf{1 1}]$ that it is von Neumann regular and self-injective. The purpose of this paper is to study the structure of such a regular, self-injective ring R by looking at its prime ideals. Initially, we show that the primes of R separate into two types, called "essential" and "closed", and that for any prime P, the two-sided ideals in the ring R / P are linearly ordered. In the case of a closed prime P, this result is strengthened to the effect that the two-sided ideals in R / P are well-ordered. We consider the Krull dimension of R in the case when R is a prime ring, and prove that this dimension is almost always at least one less than the global dimension. Finally, R is shown to be a direct product (possibly infinite) of prime rings if and only if it has enough minimal two-sided ideals.

Note. We assume throughout this paper that R is an associative ring with unit, that R is von Neumann regular, and that R is injective as a right module over itself. The term "prime ideal" is used in its standard two-sided sense, to refer to a proper two-sided ideal P such that R / P is a prime ring, i.e., such that in the ring R / P, products of nonzero two-sided ideals are nonzero. For alternative characterizations of prime ideals, see [7, pp. 54, 55]. As advance warning, we mention that throughout most of sections 3 and 4 it is assumed that R is a prime ring. Finally, unless otherwise noted, all modules used in this paper are unital right R-modules.
2. General primes. This section is concerned with the classification of prime ideals into essential primes and closed primes, and with some other results about arbitrary primes. Here and elsewhere in this paper, we use the notions of essential, singular, and closed submodules, and of the closure of a submodule: the reader is referred to [2] for the definitions and basic properties. Due to our assumption that R is regular, we know that the module R_{R} is nonsingular [2, Proposition 3, p. 70].

If a prime ideal P of R is essential as a right ideal of R, then we shall call P an essential prime. At the other extreme, when P is closed as a right ideal, we shall call P a closed prime. After disposing of one preliminary result, we show that all primes in R fall into one or the other of these cases.

Received April 7, 1972 and in revised form, May 19, 1972.

Lemma 1. Let H be a two-sided ideal of R which is closed as a right ideal. If K is the left annihilator of H in R, then $R=H \oplus K$.

Proof. Since R is a semiprime ring, K is also the right annihilator of H [7, p. 111], from which it follows easily that $(R / K)_{R}$ is nonsingular. Thus H_{R} and K_{R} are each closed in R_{R}, hence they both are injective. Inasmuch as $H \cap K=(H \cap K)^{2} \leqq K H=0$, we obtain $R=H \oplus K \oplus I$ for some right ideal I. If $I \neq 0$, then since $I \neq K$ we obtain $I H \neq 0$ and $I \cap H \neq 0$, which is a contradiction.

Proposition 2. Any prime ideal P in R is either an essential prime or a closed prime.

Proof. Letting H be the closure of P in R and K the left annihilator of H in R, we obtain $R=H \oplus K$ from Lemma 1 . Since $H K=0 \leqq P$, we must have either $H \leqq P$ or $K \leqq P$. If $H \leqq P$, then $P=H$ and P is a closed prime, while if $K \leqq P$, then $K=0$ and $H=R$, whence P is an essential prime.

At this point we can give a criterion for 0 to be a prime ideal, i.e., for R to be a prime ring.

Proposition 3. R is a prime ring if and only if it is indecomposable as a ring.
Proof. Necessity is clear, for all prime rings are indecomposable. Conversely, assuming that R is indecomposable, we infer from Lemma 1 that all nonzero two-sided ideals of R are essential as right ideals. Inasmuch as R_{R} is nonsingular, it follows that R is prime.

We next turn to showing that the two-sided ideals above some fixed prime are linearly ordered, i.e., that the two-sided ideals in any factor of R by a prime ideal are linearly ordered. We proceed via two lemmas, which are proved somewhat more generally than needed here in order to make them usable in later sections. The following terminology is used in the first lemma: A module A is subisomorphic to a module B provided A is isomorphic to a submodule of B. Also, the following observation is used: Due to the regularity of R, any finitely generated right ideal of R is a direct summand of R, and hence is projective and injective.

Lemma 4. Let A be a right ideal of R, and let $x \in R$. Then $x \in R A$ if and only if $x R$ is subisomorphic to a finite direct sum of copies of A.

Proof. If $x \in R A$, then $x \in r_{1} A+\ldots+r_{n} A$ for some elements $r_{i} \in R$. Letting B be the direct sum of n copies of A, there is an epimorphism of B onto $r_{1} A+\ldots+r_{n} A$. Since $x R$ is projective, it follows that $x R$ is subisomorphic to B.

Conversely, assume that $x R$ is subisomorphic to $A_{1} \oplus \ldots \oplus A_{n}$, where each $A_{i}=A$. Inasmuch as $x R$ is injective, there must exist an epimorphism

$$
f: A_{1} \oplus \ldots \oplus A_{n} \rightarrow x R
$$

From the injectivity of R_{R}, we infer that each of the maps

$$
A_{i} \rightarrow A_{1} \oplus \ldots \oplus A_{n} \rightarrow x R
$$

is given by left multiplication by some $r_{i} \in R$. Thus there exist elements $a_{i} \in A$ such that $x=f\left(a_{1}, \ldots, a_{n}\right)=r_{1} a_{1}+\ldots+r_{n} a_{n}$.

We have already observed that every finitely generated right ideal of R is nonsingular, projective, and injective. According to [10, Theorem 2.7], we also have that all finitely generated nonsingular modules are projective and injective. Thus, for ease of terminology, we shall state results in terms of nonsingular injective modules whenever possible.

Lemma 5. Let P be any prime ideal in R. Given nonsingular injective modules A and B, there exist decompositions $A=A_{1} \oplus A_{2}$ and $B=B_{1} \oplus B_{2}$ such that
(a) $A_{1} \cong B_{1}$;
(b) either $A_{2}=A_{2} P$ or $B_{2}=B_{2} P$.

Proof. Let \mathscr{A} denote the collection of all pairs (C, D), where $C \leqq A, D \leqq B$, and $C \cong D$. We say that a family $\left\{\left(C_{i}, D_{i}\right)\right\} \subset \mathscr{A}$ is independent whenever $\left\{C_{i}\right\}$ is an independent family of submodules of A and $\left\{D_{i}\right\}$ is an independent family of submodules of B. Choosing a maximal independent family $\left\{\left(C_{i}, D_{i}\right)\right\} \subset \mathscr{A}$, we obtain decompositions $A=A_{1} \oplus A_{2}$ and $B=B_{1} \oplus B_{2}$ such that A_{1} is an injective hull for $\oplus C_{i}$ and B_{1} is an injective hull for $\oplus D_{i}$. Inasmuch as $C_{i} \cong D_{i}$ for all i, we obtain $A_{1} \cong B_{1}$. In view of the maximality of $\left\{\left(C_{i}, D_{i}\right)\right\}$, we note that it is not possible for any nonzero submodule of A_{2} to be subisomorphic to B_{2}.

Suppose that $A_{2} \neq A_{2} P$ and $B_{2} \neq B_{2} P$. Choosing some $a \in A_{2} \backslash A_{2} P$, we see that $a R$ is finitely generated and nonsingular, hence projective. Thus $a R \cong e R$ for some idempotent $e \in R$, and since $a \notin A_{2} P$, we infer that $e \notin P$. Likewise, choosing $b \in B_{2} \backslash B_{2} P$, there must be an idempotent $f \in R \backslash P$ such that $b R \cong f R$. Inasmuch as P is prime, eRf $\not \subset P$, whence erf $\neq 0$ for some $r \in R$. The projectivity of $\operatorname{erf} R$ ensures that erf R is subisomorphic to $f R$, hence $a R$ has a nonzero submodule which is subisomorphic to $b R$. This is a contradiction.

Theorem 6. If P is any prime ideal in R, then the two-sided ideals in the ring R / P are linearly ordered.

Proof. If not, then we can choose two-sided ideals H and K in R, both containing P, along with elements $x \in H \backslash K$ and $y \in K \backslash H$. According to Lemma 5, there exist decompositions $x R=A_{1} \oplus A_{2}$ and $y R=B_{1} \oplus B_{2}$ such that $A_{1} \cong B_{1}$ and either $A_{2}=A_{2} P$ or $B_{2}=B_{2} P$, say $A_{2}=A_{2} P$. Now A_{1} is subisomorphic to K and $A_{2} \leqq P \leqq K$, whence $x R$ is subisomorphic to $K \oplus K$. According to Lemma 4 we must have $x \in K$, which is impossible.

Corollary 7. If P is any prime ideal in R, then every proper two-sided ideal in R which contains P is also prime.

Proof. Let Q be a proper two-sided ideal containing P, and let H and K be any two-sided ideals which properly contain Q. In view of Theorem 6, we may assume that $H \leqq K$, whence $H=H^{2} \leqq H K$ and so $H K$ 本 Q.
3. Closed primes. The simplest non-artinian example of a regular, selfinjective ring is the ring of all linear transformations on an infinite-dimensional vector space, and it has long been known that the two-sided ideals in such a ring can be labelled by infinite cardinals in an order-preserving fashion [3, Theorem 5, p. 258]. Recalling that such a ring is also prime, and taking Theorem 6 into account, we ask whether the two-sided ideals in any factor of R by a prime ideal must be well-ordered. This may be false for essential primes (examples will be constructed in a sequel to this paper), but for closed primes the main theorem of this section provides an affirmative answer:

Theorem 8. If P is a closed prime ideal in R, then the two-sided ideals in the ring R / P are well-ordered.

We postpone the proof of Theorem 8 in order to develop some intermediate results. First we make an easy normalization: Since there is a ring decomposition $R=P \times K$ (Lemma 1), we see that R / P is a regular, right self-injective ring, hence we may assume (without loss of generality) that $P=0$. This assumption that R is a prime ring will be in force until Theorem 8 is proved. Second, we construct a two-sided ideal $H(\alpha)$ corresponding to each infinite cardinal α. Finally, we show that these ideals $H(\alpha)$ exhaust the nonzero twosided ideals of R.

In view of the assumption that R is a prime ring, Lemma 5 takes on the following strengthened form:

Lemma 5'. Given any nonsingular injective modules A and B, either A is subisomorphic to B or B is subisomorphic to A.

For any infinite cardinal α, we define

$$
H(\alpha)=\{0\} \cup\{x \in R \mid x R \nsubseteq E[\alpha(x R)]\}
$$

Here we are using $E[M]$ to denote the injective hull of a module M, and αA to denote the direct sum of α copies of a module A. Note that $H(\alpha) \subset H(\beta)$ whenever $\alpha \leqq \beta$: for if $x \in R \backslash H(\beta)$, then

$$
x R \cong E[\beta(x R)]=E[\alpha \beta(x R)] \cong E[\alpha(E[\beta(x R)])] \cong E[\alpha(x R)]
$$

and so $x \notin H(\alpha)$.
Theorem 9 (Bumby [1]). Any two injective modules which are subisomorphic to each other must be isomorphic.

Lemma 10. Let B be a nonsingular injective module, α any cardinal. If B has a nonzero submodule C such that $C \cong E[\alpha C]$, then $B \cong E[\alpha B]$.

Proof. We obviously may assume that $\alpha>1$. Set $\mathscr{A}=\{A \leqq B \mid A \cong E[\alpha A]\}$, and expand $\{C\}$ to a maximal independent family $\left\{A_{i}\right\} \subset \mathscr{A}$. We have $B=E\left[\oplus A_{i}\right] \oplus D$ for some D, and the maximality of $\left\{A_{i}\right\}$ implies that D has no nonzero submodules which belong to \mathscr{A}. Inasmuch as C is a nonzero submodule of $E\left[\oplus A_{i}\right]$ which belongs to \mathscr{A}, it follows that $E\left[\oplus A_{i}\right]$ cannot be subisomorphic to D. According to Lemma $5^{\prime}, D$ must thus be subisomorphic to $E\left[\oplus A_{i}\right]$, whence B is subisomorphic to $2 E\left[\oplus A_{i}\right]$. Since $\alpha>1$ we infer that $A_{i} \cong 2 A_{i}$ for all i, hence $E\left[\oplus A_{i}\right] \cong 2 E\left[\oplus A_{i}\right]$. Thus B is subisomorphic to $E\left[\oplus A_{i}\right]$, hence in view of Theorem 9 we obtain $B \cong E\left[\oplus A_{i}\right]$, from which we conclude that $B \cong E[\alpha B]$.

Lemma 11. Let A be a nonsingular injective module which is isomorphic to a proper submodule of itself. Then $A \cong 2 A \cong E\left[\boldsymbol{\aleph}_{0} A\right]$.

Proof. There exists a monomorphism $g: A \rightarrow A$ which is not epic. Since $g A$ is isomorphic to A and so is injective, we obtain $A=g A \oplus B$ for some nonzero B, and then $g^{n} A=g^{n+1} A \oplus g^{n} B$ for all positive integers n. Now $\left\{g B, g^{2} B, \ldots\right\}$ is a countably infinite independent sequence of pairwise isomorphic submodules of A, hence the submodule $G=\oplus g^{n} B$ satisfies $G \cong 2 G \cong \aleph_{0} G$. The module A contains an injective hull C for G, and we see that $C \cong 2 C \cong E\left[\boldsymbol{\aleph}_{0} C\right]$, hence from Lemma 10 we obtain $A \cong 2 A \cong E\left[\boldsymbol{\aleph}_{0} A\right]$.

Given any nonzero nonsingular injective module A, it follows easily from Lemma 11 that $A \cong 2 A$ if and only if $A \cong E\left[\aleph_{0} A\right]$. Therefore

$$
H\left(\boldsymbol{\aleph}_{0}\right)=\{0\} \cup\{x \in R \mid x R \nsupseteq 2(x R)\}
$$

The next lemma, and some of the ideas used in the proof of Proposition 13, are due to Professor Kaplansky (unpublished), and the author is grateful for his permission to include them here. The notation used in Lemma 12 is as follows: $(f, g): K \oplus L \rightarrow M$ is the unique map induced by maps $f: K \rightarrow M$ and $g: L \rightarrow M$.

Lemma 12 (Kaplansky). Let $(f, g): K \oplus L \rightarrow M$.
(a) Given any map $h: K \rightarrow L$, then $(f+g h, g)$ maps $K \oplus L$ into M, and $\operatorname{ker}(f+g h, g) \cong \operatorname{ker}(f, g)$.
(b) If g is an isomorphism of L onto M, then $\operatorname{ker}(f, g) \cong K$.

Proof. (a) Let $p: K \oplus L \rightarrow K$ denote the natural projection, $j: L \rightarrow K \oplus L$ the natural injection. Checking that $(f+g h, g)(1-j h p)=(f, g)$, we infer that $1-j h p$ maps $\operatorname{ker}(f, g)$ into $\operatorname{ker}(f+g h, g)$. Likewise, $1+j h p$ maps $\operatorname{ker}(f+g h, g)$ into $\operatorname{ker}(f, g)$. Inasmuch as

$$
(1-j h p)(1+j h p)=(1+j h p)(1-j h p)=1
$$

we conclude that $\operatorname{ker}(f, g) \cong \operatorname{ker}(f+g h, g)$.
(b) Setting $h=-g^{-1} f$, we see that $f+g h=0$, hence $\operatorname{ker}(f+g h, g) \cong K$. According to (a), $K \cong \operatorname{ker}(f, \mathrm{~g})$.

Before stating Proposition 13, we make an observation which can be formu-
lated as saying that any homomorphism $f: A \rightarrow B$ between nonsingular injective modules must split. Namely, the nonsingularity of B implies that $\operatorname{ker} f$ is closed in A; thus $\operatorname{ker} f$ is injective and so is a direct summand of A.

Proposition 13. Let A, B, C be nonsingular injective modules such that $A \nVdash 2 A$. If $A \oplus B \cong A \oplus C$, then $B \cong C$.

Proof. Letting $(f, g): A \oplus B \rightarrow A$ denote the composition of the isomorphism $A \oplus B \rightarrow A \oplus C$ with the projection $A \oplus C \rightarrow A$, we note that (f, g) is an epimorphism and that $\operatorname{ker}(f, g) \cong C$.

Setting $A_{1}=\operatorname{ker} f$, we have $A=A_{1} \oplus A_{2}$ for some A_{2}. Inasmuch as $f A_{2}$ is isomorphic to A_{2} and so is injective, we also get $A=f A_{2} \oplus A_{3}$ for some A_{3}. Letting $k: B \rightarrow A_{3}$ denote the composition of $g: B \rightarrow A$ with the projection $A=f A_{2} \oplus A_{3} \rightarrow A_{3}$, and setting $B_{1}=$ ker k, we obtain $B=B_{1} \oplus B_{2}$ for some B_{2}. The surjectivity of (f, g) implies that $A=f A+g B=f A_{2}+g B$, from which we infer that k is surjective. It follows that $B_{2} \cong A_{3}$ and that $A=f A_{2}+g B_{2}$.

We now have $A=A_{1} \oplus A_{2}$ and

$$
A=f A_{2} \oplus A_{3} \cong A_{2} \oplus B_{2}
$$

According to Lemma 5^{\prime}, either A_{1} is subisomorphic to B_{2}, or vice versa. If A_{1} is isomorphic to a proper submodule of B_{2}, then $A_{1} \oplus A_{2}$ is isomorphic to a proper submodule of $A_{2} \oplus B_{2}$, i.e., A is isomorphic to a proper submodule of itself. This is impossible by Lemma 11, and the same contradiction arises if B_{2} is isomorphic to a proper submodule of A_{1}, hence the only possibility is $A_{1} \cong B_{2}$.

Letting $h: A \rightarrow B$ denote the composition of the projection $A=A_{1} \oplus A_{2} \rightarrow$ A_{1}, the isomorphism $A_{1} \rightarrow B_{2}$, and the inclusion $B_{2} \rightarrow B$, we see that $(f+g h) A=(f+g h) A_{1}+(f+g h) A_{2}=g h A_{1}+f A_{2}=g B_{2}+f A_{2}=A$. Setting $K=\operatorname{ker}(f+g h)$, we have $A=K \oplus L$ for some L, and since $f+g h$ is surjective it follows that the restriction of $f+g h$ to L is an isomorphism. We now have a map $(f+g h, g): K \oplus L \oplus B=A \oplus B \rightarrow A$, and the restriction of $(f+g h, g)$ to L is an isomorphism of L onto A, hence from Lemma 12 we obtain $\operatorname{ker}(f+g h, g) \cong K \oplus B$. On the other hand, Lemma 12 also says that $\operatorname{ker}(f+g h, g) \cong \operatorname{ker}(f, g) \cong C$, whence $K \oplus B \cong C$.

Thus B is subisomorphic to C. By symmetry, C is also subisomorphic to B. hence $B \cong C$ by Theorem 9 .

Proposition 14. For any infinite cardinal $\alpha, H(\alpha)$ is a two-sided ideal of R.
Proof. Case I: $\alpha=\mathbf{\aleph}_{0}$. If $H(\alpha)$ is not a two-sided ideal, then there exist $x, y \in H(\alpha)$ and $z \in(R x R+R y R) \backslash H(\alpha)$. According to Theorem 6 we may assume that $R x R \leqq R y R$, hence $z \in R y R$. Note that $z \neq 0$ and $y \neq 0$. Now $z R \cong 2(z R)$, and from Lemma 4 we see that $z R$ is subisomorphic to $n(y R)$ for some positive integer n, whence Lemma 10 yields $n(y R) \cong 2 n(y R)$. However, $y R \nsupseteq 2(y R)$, so by inducting on Proposition 13 we reach the contradiction $0 \cong n(y R)$.

Case II: $\alpha>\boldsymbol{\aleph}_{0}$. Given $x, y \in H(\alpha)$ and $z \in R x R+R y R$, we must show that $z \in H(\alpha)$. According to Theorem 6 we may assume that $R x R \leqq R y R$, hence $z \in R y R$. If $y \in H\left(\boldsymbol{\aleph}_{0}\right)$, then $z \in H\left(\boldsymbol{\aleph}_{0}\right) \subset H(\alpha)$ by Case I, hence we need only consider the possibility $y \notin H\left(\mathbf{\aleph}_{0}\right)$. Thus $y \neq 0$ and $y R \cong 2(y R)$. Inasmuch as $z R$ is subisomorphic to $n(y R)$ for some positive integer n (Lemma 4), we infer from $y R \cong 2(y R)$ that $z R$ is also subisomorphic to $y R$. Since $y R \nVdash E[\alpha(y R)]$, Lemma 10 says that either $z=0$ or else $z R \nVdash E[\alpha(z R)]$, whence $z \in H(\alpha)$.

Proposition 15. Any nonzero two-sided ideal H of R must be equal to $H(\alpha)$ for some infinite cardinal α.

Proof. If δ is an infinite cardinal strictly larger than the cardinality of R, then no right ideal of R can contain an independent family of δ nonzero right ideals. Thus $x R \nsupseteq E[\delta(x R)]$ for all nonzero $x \in R$, whence $H(\delta)=R$. Since $H \leqq H(\delta)$, there must be a smallest infinite cardinal α for which $H \leqq H(\alpha)$, and we of course claim that $H=H(\alpha)$.

Suppose on the contrary that there exists a $y \in H(\alpha) \backslash H$. Choosing a nonzero $x \in H$, we see from Lemma 4 that $y R$ cannot be subisomorphic to any finite direct sum of copies of $x R$. In particular, $y R$ is not subisomorphic to $x R$, so by Lemma $5^{\prime}, x R$ must be subisomorphic to $y R$. Choosing a maximal independent family $\left\{A_{i}\right\}$ from those submodules of $y R$ which are isomorphic to $x R$, we get $y R=E\left[\oplus A_{i}\right] \oplus B$ for some B. The maximality of $\left\{A_{i}\right\}$ ensures that $x R$ cannot be subisomorphic to B, hence by Lemma $5^{\prime}, B$ must be subisomorphic to $x R$. Letting τ denote the cardinality of the set $\left\{A_{i}\right\}$, we see that $E[\tau(x R)]$ is subisomorphic to $y R$, while $y R$ is subisomorphic to $E[(\tau+1)(x R)]$. Inasmuch as $y R$ is not subisomorphic to any finite direct sum of copies of $x R, \tau$ must be infinite. Thus $\tau=\tau+1$, and with the help of Theorem 9 we conclude that $y R \cong E[\tau(x R)]$.

We now have an infinite cardinal τ, and we infer that $y R \cong E[\tau(y R)]$. Inasmuch as $y R \not \approx E[\alpha(y R)]$, we obtain $\tau<\alpha$, and thus $H \neq H(\tau)$. Choosing a $z \in H \backslash H(\tau)$, we have $z R \cong E[\tau(z R)]$. Inasmuch as $x R \nsupseteq y R \cong E[\tau(x R)]$, we see from Lemma 10 that $z R$ cannot be subisomorphic to $x R$. Thus $x R$ must be subisomorphic to $z R$ (Lemma 5^{\prime}), whence $E[\tau(x R)]$ is subisomorphic to $E[\tau(z R)]$. We infer from this that $y R$ is subisomorphic to $z R$, from which it follows via Lemma 4 that $y \in H$, which is a contradiction.

Theorem 8 is now essentially proved. For, given any nonempty collection of nonzero two-sided ideals of R, there must be a smallest infinite cardinal α for which $H(\alpha)$ belongs to the collection, and then $H(\alpha)$ is the smallest ideal in the collection. Any other nonempty collection of two-sided ideals must contain 0 , which is then the smallest ideal in the collection.

In view of Theorem 8, the referee has asked how far a prime, regular, right self-injective ring R can be from a full linear ring, i.e., the ring of all linear transformations on a vector space over a division ring. Using [6, Theorem 4.3],
it is not hard to see that R is isomorphic to a full linear ring if and only if R has a minimal right ideal. In general, one might conjecture that R is isomorphic to a factor ring of a full linear ring. This fails, however, because of [8, Corollary to Theorem 3], which says that a factor of a full linear ring by a nontrivial twosided ideal cannot be right self-injective. The only other possibility in sight seems to be that R might be isomorphic to the maximal right quotient ring of a factor of a full linear ring, but we see no clues to the probability of this.

With the help of Theorem 8, we can offer some information towards a query of Professor Kaplansky as to whether a prime regular ring must be primitive [5, p. 2]: In the self-injective case, the answer is yes.

Corollary 16. R is prime if and only if it is primitive.

Proof. Inasmuch as all primitive rings are prime, we need only consider the case when R is prime. The collection \mathscr{P} of primitive ideals of R is nonempty (since \mathscr{P} contains all the maximal two-sided ideals), hence by Theorem $8 \mathscr{P}$ has a smallest element P. It is well-known that the Jacobson radical of a regular ring is 0 , hence $\cap \mathscr{P}=0$ and thus $P=0$. Therefore 0 is a primitive ideal of R.
4. Krull dimension. From commutative ring theory, we borrow verbatim the concept of the Krull dimension of R : K.dim. $(R)=$ the supremum of the lengths of all chains of prime ideals in R. The purpose of this section is to develop an inequality relating the Krull dimension of R to the global dimension in the case when R is a prime ring.

Theorem 17. If R is a prime ring, but not artinian, then $1+\mathrm{K} . \operatorname{dim} .(R) \leqq$ r.gl.dim. (R).

Proof. Since r.gl.dim. $(R)>0$, it suffices to consider the case when K.dim. $(R)>0$. Given any positive integer $n \leqq$ K.dim. (R), we shall prove that r.gl.dim. $(R) \geqq n+1$.

The inequality $\mathrm{K} . \operatorname{dim} .(R) \geqq n$ implies that R must contain a chain of $n+1$ prime ideals; since these ideals are all proper, R must have at least $n+2$ distinct two-sided ideals. (Note that we can extract no more information from the Krull dimension than the number of two-sided ideals: for according to Corollary 7 and Theorem 8 , K.dim. (R) is just the number of nontrivial twosided ideals in R.) According to Proposition 15, there must exist $n+1$ infinite cardinals $\alpha_{0}<\alpha_{1}<\ldots<\alpha_{n}$ such that the ideals $H\left(\alpha_{i}\right)$ are all distinct. We must have $\alpha_{n-1} \geqq \mathbf{\aleph}_{n-1}$, hence $1 \notin H\left(\boldsymbol{\aleph}_{n-1}\right)$ and so $R \cong E\left[\boldsymbol{\aleph}_{n-1} R\right]$. Thus R contains an independent family $\left\{A_{j} \mid j \in J\right\}$ of $\boldsymbol{\aleph}_{n-1}$ nonzero principal right ideals.

For each $j \in J, A_{j}$ is injective, $\oplus_{k \neq j} A_{k}$ has an injective hull E_{j} contained in R, and $A_{j} \cap E_{j}=0$, hence we obtain a module decomposition $R=A_{j} \oplus E_{j} \oplus B_{j}$. If e_{j} is the idempotent corresponding to the first factor
in this decomposition, then $e_{j} R=A_{j}$ and $e_{j} A_{k}=0$ for all $k \neq j$. Collecting all the e_{j}, we obtain a set of $\mathbf{\aleph}_{n-1}$ orthogonal idempotents.

According to [9, Propositions 7 and 5], R must now contain a set of "nice" idempotents [9, p. 641] whose cardinality is 2 to the power $\boldsymbol{\aleph}_{n-1}$. Noting that a subset of a set of nice idempotents is also nice, we infer that R has a set N of nice idempotents of cardinality $\boldsymbol{\aleph}_{n}$. Letting I denote the right ideal generated by N, we see from [9, Theorem A] that the projective dimension of I is exactly n. Therefore r.gl.dim. $(R) \geqq n+1$.

In general, the inequality just proved can neither be strengthened nor be changed to equality, as the following two examples show.

First, let F be the field with two elements, V a vector space over F of dimension $\boldsymbol{\aleph}_{0}$, and R the ring of all linear transformations on V (written on the left). Inasmuch as V is a nonsingular injective F-module, [2, Lemma G, p. 69] says that R is a regular, right self-injective ring. According to [3, Theorem 5, p. 258], R has exactly one nontrivial two-sided ideal, from which we infer that R is prime, and then, using Corollary 7, that K.dim. $(R)=1$. Assuming the continuum hypothesis, [9, Remark 3.6] shows that r.gl.dim. $(R)=2$, hence $1+\mathrm{K} . \operatorname{dim} .(R)=\operatorname{r.gl.dim} .(R)$.

The second example is somewhat more involved, but does not use the continuum hypothesis. Given any positive integer n, choose a vector space V of dimension $\boldsymbol{\aleph}_{n}$ and let P denote the ring of all linear transformations on V (written on the left). As in the example above, P is a regular, right self-injective ring. This time, [3, Theorem 5, p. 258] says that P has exactly $n+1$ nontrivial two-sided ideals, arranged in a chain. We again infer that P is prime, and now that K.dim. $(P)=n+1$. As in the proof of Theorem 17, we obtain $P \cong E\left[\boldsymbol{\aleph}_{n} P\right]$, hence there is a monomorphism $\boldsymbol{\aleph}_{n} P \rightarrow P$.

The ring P obviously has exactly one maximal two-sided ideal M, and $Q=P / M$ is a simple, regular ring. The regularity of P implies that ${ }_{P} Q$ is flat, hence we obtain a monomorphism

$$
\left(\boldsymbol{\aleph}_{n} P\right) \oplus_{P} Q \rightarrow P \oplus_{P} Q,
$$

i.e., a monomorphism $\boldsymbol{\aleph}_{n} Q \rightarrow Q$.

Finally, define R to be the maximal right quotient ring of Q. The regularity of Q implies that Q is a nonsingular ring [2, Proposition 3, p. 70], hence [2, Theorems 1 and $2, \mathrm{p}$. 69] says that R is a regular, right self-injective ring. The intersection of Q with any nonzero two-sided ideal I of R yields a nonzero two-sided ideal $I \cap Q$ of Q; since Q is simple, we get $I \cap Q=Q$ and then $I=R$. Therefore R is a simple ring, whence R is prime and $\mathrm{K} . \operatorname{dim} .(R)=0$.

As in the passage from P to Q, we obtain a monomorphism $\mathbf{\aleph}_{n} R \rightarrow R$, hence $E\left[\boldsymbol{\aleph}_{n} R\right]$ is subisomorphic to R. Inasmuch as R is subisomorphic to $E\left[\boldsymbol{\aleph}_{n} R\right]$, we obtain from Theorem 9 that $R \cong E\left[\boldsymbol{\aleph}_{n} R\right]$. Therefore $H\left(\boldsymbol{\aleph}_{n}\right)<R$. Proceeding as in the proof of Theorem 17, we obtain

$$
\operatorname{r.gl.dim} .(R) \geqq n+2>1+\operatorname{K.dim} .(R) .
$$

This example also shows that the $H(\alpha)$'s need not be either distinct or nonzero: since R is simple and $H\left(\boldsymbol{\aleph}_{n}\right)<R$, we see that $H\left(\boldsymbol{\aleph}_{0}\right), H\left(\boldsymbol{\aleph}_{1}\right), \ldots, H\left(\mathbf{\aleph}_{n}\right)$ are all zero.
5. Direct product decompositions. This section is devoted to characterizing when R is a direct product of prime rings. In view of Proposition 3 and Corollary 16, we obtain at the same time characterizations of when R is a direct product of either indecomposable or primitive rings.

Theorem 18. R is isomorphic to a direct product of prime rings if and only if every nonzero two-sided ideal of R contains a minimal two-sided ideal.

Proof. Assume that $R=\Pi R_{i}$, where each R_{i} is a prime ring. According to Theorem 8, the two-sided ideals in any R_{i} are well-ordered, hence every nonzero two-sided ideal in R_{i} contains a minimal two-sided ideal. It follows easily that the same property is satisfied in R.

Now suppose that the given condition on two-sided ideals holds, and let $\left\{M_{i}\right\}$ be a maximal independent family of minimal two-sided ideals. Setting K_{i} equal to the left annihilator of M_{i}, we obtain

$$
\left(\oplus M_{i}\right) \cap\left(\cap K_{i}\right)=\left[\left(\oplus M_{i}\right) \cap\left(\cap K_{i}\right)\right]^{2} \leqq\left(\cap K_{i}\right)\left(\oplus M_{i}\right)=0
$$

Then from the maximality of $\left\{M_{i}\right\}$ we infer that $\cap K_{i}$ contains no minimal two-sided ideals, whence $\cap K_{i}=0$. Thus we obtain an injective ring homomorphism

$$
\phi: R \rightarrow P=\Pi\left(R / K_{i}\right)
$$

induced by the natural maps $\phi_{i}: R \rightarrow R / K_{i}$.
In order to show that R / K_{i} is a prime ring, consider any two-sided ideals I and J in R which properly contain K_{i}. Inasmuch as $I M_{i} \neq 0$ and $J M_{i} \neq 0$, it follows from the minimality of M_{i} that $I M_{i}=J M_{i}=M_{i}$, hence $M_{i} \leqq I \cap J$. Thus $M_{i}=M_{i}{ }^{3} \leqq I J M_{i}$, from which we conclude that $I J M_{i} \neq 0$ and $I J \neq K_{i}$ 。

Next, we show that ϕR is an essential right (ϕR)-submodule of P. Given any nonzero $p \in P$, we have $p_{j} \neq 0$ for some j, i.e., $p_{j}=\phi_{j} x$ for some $x \in R \backslash K_{j}$. Then $x y \neq 0$ for some $y \in M_{j}$, and since $M_{j} \cap K_{j}=\left(M_{j} \cap K_{j}\right)^{2} \leqq K_{j} M_{j}=0$, we get $x y \notin K_{j}$. Therefore $[p(\phi y)]_{j}=\phi_{j}(x y) \neq 0$, hence $p(\phi y) \neq 0$. Note also that $[p(\phi y)]_{j}=[\phi(x y)]_{j}$. For any $i \neq j, y \in K_{i}$ because

$$
y M_{i} \leqq M_{j} \cap M_{i}=0
$$

whence

$$
[p(\phi y)]_{i}=p_{i}\left(\phi_{i} y\right)=0=\left(\phi_{i} x\right)\left(\phi_{i} y\right)=[\phi(x y)]_{i} .
$$

Therefore $p(\phi y)=\phi(x y)$, so that $p(\phi y)$ is a nonzero element of ϕR.
Inasmuch as ϕR is isomorphic to R and so is a right self-injective ring, the module $(\phi R)_{\phi R}$ cannot have any proper essential extensions. Thus $\phi R=P$ and $R \cong P$.

References

1. R. T. Bumby, Modules which are isomorphic to submodules of each other, Arch. Math. 16 (1965), 184-185.
2. C. Faith, Lectures on injective modules and quotient rings, Springer-Verlag Lecture Notes, No. 49.
3. N. Jacobson, Lectures in abstract algebra, Vol. II (Van Nostrand, Princeton, 1953).
4. R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-895.
5. I. Kaplansky, Algebraic and analytic aspects of operator algebras, Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics, No. 1.
6. J. Lambek, On the structure of semi-prime rings and their rings of quotients, Can. J. Math. 13 (1961), 392-417.
7. _L_Lectures on rings and modules (Blaisdell, Waltham, 1966).
8. B. L. Osofsky, Cyclic injective modules of full linear rings, Proc. Amer. Math. Soc. 17 (1966), 247-253.
9. Homological dimension and cardinality, Trans. Amer. Math. Soc. 151 (1970), 641-649.
10. F. L. Sandomierski, Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225-230.
11. Y. Utumi, On quotient rings, Osaka J. Math. 8 (1956), 1-18.

University of Chicago, Chicago, Illinois;
University of Utah, Salt Lake City, Utah

