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SUMMARY

Understanding farm diversity is essential to delineate recommendation domains for new technologies, but
diversity is a subjective concept, and can be described differently depending on the way it is perceived.
Historically, new technologies have been targeted primarily based on agro-ecological conditions, largely
ignoring socioeconomic conditions. Based on 273 farm households’ surveys in Ethiopia, we compare two
approaches for the delineation of farm type recommendation domains for crop and livestock technologies:
one based on expert knowledge and one based on statistical methods. The expert-based typology used
a simple discriminant key for stakeholders in the field to define four farm types based on Tropical
Livestock Unit, total cultivated surface and the ratio of these two indicators. This simple key took only
a few minutes to make inferences about the potential of adoption of crop and livestock technologies. The
PCA-HC analysis included a greater number of variables describing the farm (land use, household size,
cattle, fertilizer, off-farm work, hiring labour, production). This analysis emphasized the multi-dimensional
potential of such a statistical approach and, in principle, its usefulness to grasp the full complexity of
farming systems to identify their needs in crop and livestock technologies. A sub-sampling approach was
used to test the impact of data selection on the diversity represented in the statistical approach. Our results
show that diversity structure is significantly impacted according to the choice of a sub-sample of 15 of the
20 variables available. This paper shows the complementarity of the two approaches and demonstrates the
influence of data selection within large baseline data sets on the total diversity represented in the clusters
identified.

I N T RO D U C T I O N

In Ethiopia, many programmes have promoted crop and livestock technologies to
fully exploit the country’s biophysical potential. As Headey et al. (2014) highlighted
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Ethiopia has a long history of agricultural intensification through the adoption of technologies

[…]. Indeed, many projects have been implemented to understand the needs in
terms of agricultural technologies in Ethiopia and adoption strategies by farmers
(Feleke and Zegeye, 2006 ), but none of them has really explained why farming
systems still rely mainly on traditional technologies. Von Braun and Olofinbiyi (2007)
emphasized that Ethiopia’s extension system faced challenges in promoting modern
technologies such as improved seed, fertilizer and post-harvest technology. They
demonstrated that climate variability, lack of access to finance and conflicts were
the most important challenges. This highlights the complexity of understanding
technology adoption which must include biophysical, socio-economic and even
anthropologic dimensions. Of course, heterogeneity within a given community
is high for any of these dimensions, but typologies allow for the delineation of
relatively homogeneous groups, which are assumed to share similar needs in terms of
technologies.

Typologies have been extensively used in the past few years to understand the
diversity of farms and in particular (i) to target technologies (understanding which
farm type is most likely to adopt and benefit from a particular technology); and
(ii) to scale out technologies (where typologies contribute to the necessary but not
sufficient understanding of how representative a particular farm is of the larger
farm population). In order to embrace diversity and target different technologies to
different farms, two different approaches could be used: (i) to engage each and every
farmer in discussions about his/her opportunities, constraints and orientation; or (ii)
to apply a blanket recommendation of technologies across all farms. Whilst the first
approach is not realistic (it would require considerable resources), the second might
not increase the rate of adoption of improved technologies. This reductio ad absurdum

introduces the core concept of what the objective of a typology is ‘to allow capturing
the main features of the diversity of farming systems of a given agronomic context
without falling into the “paralysing particularism” (Perrot and Landais, 1993) that
considers each farmer individually’.

In this paper, we illustrate the two approaches mentioned by Jollivet (1965):
extracted and constructed types. Extracted types are based on data analysis without
a priori selection of discriminant variables in a ‘blind work’ process (Landais, 1996),
and is illustrated in this paper by the implementation of a statistical based typology
(PCA-HC method; a combination of Principal Component Analysis and Hierarchical
Clustering). On the other hand, constructed types are the product of a number of
assumptions regarding the context and are based on a research hypothesis and its
logical implication, and will be illustrated in this paper by the expert-based typology.

Using Ethiopia as a case study, the objective of this paper was to compare
the discriminant power of expert-based typologies and statistical-based typologies,
and to understand their comparative advantages and their complementarities in
targeting sustainable intensification technologies. Beyond the empirical exploration of
farming system diversity in Ethiopia, our paper explores the intrinsic nature of both
approaches (assumptions, temporal dimension, data selection, etc.) and its impact on
technology promotion.
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Table 1. Descriptive statistics of the variables used to build typologies and their role in the analysis.

Variables Units Mean Standard deviation Min Max

Discriminant variables
Adult equivalent (AE) AE 5.2 1.76 1 15
Total livestock unit (TLU) TLU 2.84 2.14 0 9.91
Total adult cattle Unit 2.5 1.92 0 9
Total small ruminants Unit 1.53 2.21 0 16
Area of land owned ha 1.02 1.3 0.13 10.45
Area of land cultivated ha 1.02 0.72 0.06 4.25
Percentage of land cultivated % 127.8 129.03 4.45 853.4
Percentage of land allocated to maize % 61.8 23.58 0 100
Percentage of land allocated to legume % 6.78 13.32 0 100
AE ha−1 of land cultivated AE ha−1 7.75 6.89 0.71 60.8
TLU ha−1 of land cultivated TLU ha−1 3.77 3.77 0 26.2
Nitrogen fertilizer use ha−1 of land

cultivated
KgN ha−1 34.2 34.7 0 274.2

TLU sold per TLU owned – 0.34 0.99 0 10
Percentage of income from crop % 62.1 25.5 6.63 100
Percentage of income from livestock % 14.2 18 0 90.3
Percentage of income from others % 23.7 25.8 0 92.5
Percentage of crop self-consumption % 56.9 22.3 0 100
Labour hired Binary variable 0.41 0.49 0 1
Labour sold Binary variable 0.14 0.34 0 1

Explanatory variables
Total production of maize Kg 1604 1304 0 10 700
Total production of legume Kg 569.1 774.6 0 4300
Total income (Ethiopian Birr) ETB 22 098 18 040 1287 143 708
Female headed household Binary variable 0.93 0.25 0 1

M AT E R I A L S A N D M E T H O D S

Study area and dataset description

The study area is located in the Southern Nations Nationalities and Peoples Region
(SNNPR) of Ethiopa, between 37°45′ and 38°37′ E and 6°54′ and 8°16′ N, at an
altitude between 1600 and 2100 m above sea level. It encompasses three districts:
Mesrak Badawacho, Meskan and Hawassa Zuriya. The study area is characterized
by bimodal rainfalls pattern (between 700 and 1300 mm year−1) received between
March and September, and an average annual maximum and minimum temperatures
of 27 and 13 °C, respectively. The dominant soil types are Andosols and Lixosols.
Population density is high (between 340 and 480 inhabitants km−2) and farming
systems are characterized by a high diversity of crop and livestock species (i.e. maize,
sorghum, teff, common bean, sheep, cattle, goats). In 2010, a survey was administered
to a sample of 273 farm households in the three districts of the study area to
understand technology adoption constraints in Eastern and Southern Africa. The
sample of households is built on (i) selecting districts according to maize production
importance; and (ii) membership to peasant association of different importance.

We decided to focus only on selected variables of the total dataset, some of which
were use as discriminant variables and some as explanatory variables (Table 1).
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Methodology for expert-based typology

The objective of the expert-based typology presented here was to produce a simple
tool to target technologies (i.e. understand quickly which farm type is most likely to
adopt and benefit from a particular technology), and to scale out technologies (i.e.
understand quickly what type a particular farm belongs to, without complex analysis,
to be able to transfer successes from similar farms).

Interventions proposed by CIMMYT and its partners in Southern Ethiopia
can be classified as being either (i) crop intensification technologies; (ii) livestock
intensification technologies; (iii) crop-livestock integration technologies or (iv) labour-
saving technologies. Thus, the expert-based approach purposefully identified: (1)
crop-oriented farms, (2) livestock-oriented farms, (3) mixed crop-livestock farms and
(4) small farms.

Based on previous work in the area (Duriaux, 2014), small farms were considered
to be smaller than 0.75 ha, and 0.5 ha of farmland was considered to provide enough
biomass (crop residues, weeds, browse, etc.) to feed one TLU. Accordingly, four farm
types were delineated:

– Small farms (Type 1). Selected as farms < 0.75 ha and owning < 1.5 TLU
(the livestock that could be sustained by a farm size of 0.75 ha considering a
requirement of 0.5 ha TLU−1).

– Livestock-oriented farms (Type 2). Selected as farms owning > 1.5 TLU
and having a land: livestock ratio of > 0.625 ha TLU−1 (that is 0.5 + 25% ha
TLU−1).

– Mixed crop-livestock farms (Type 3). Selected as farms owning > 1.5 TLU,
with a farm size > 0.75 ha, and with land: livestock ratio between 0.375 and 0.625
ha TLU−1 (that is a 0.5 ± 25% ha TLU−1).

– Crop-oriented farms (Type 4). Selected as farms > 0.75 ha and with a land:
livestock ratio < 0.375 ha TLU−1 (that is 0.5–25% ha TLU−1).

Small farms with small livestock herd (Type 1) were assumed to depend more
on off-farm activities than farming for their livelihoods. Such farms are expected to
benefit from the adoption of labour saving technologies that would allow them to free
more of their time for more rewarding off-farm activities. Mixed crop-livestock farms
(Type 3) were assumed to have the potential to feed their livestock the entire year with
biomass produced on-farm and to not face any feed shortage, as well as to produce
enough manure to maintain their soil fertility with minimum requirement for mineral
fertilizer. However, the total productivity of such farms could potentially be improved
through the adoption of crop-livestock integration technologies (e.g. better use of crop
residue as feed, more efficient use of manure). Farms with a low livestock density (Type
2) were assumed to not face any feed shortage, but to not produce enough manure to
maintain their soil fertility without mineral fertilizers. The productivity of such farm
could be improved through the adoption of crop intensification technologies. Finally,
farms with a high livestock density (Type 4) were assumed to produce enough manure
to maintain their soil fertility with minimum requirement for mineral fertilizer, but not
to feed their livestock the entire year with biomass produced on-farm.
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This typology is a perfect example of Landais (1998) definition of ‘constructed
types’ which ‘derived by methods which proceed from a number of assumptions as
to the nature of the object being studied’. Here, the assumption is that focussing on
TLU and cultivated land is enough to get a realistic picture of the diversity of farming
systems, according to the objective of targeting technologies.

Methodology for statistical-based typology

Here, the objective of the approach is to extract as much information as possible
from the dataset with a system perspective, in line with extracted types (Landais,
1998). By a system perspective, we mean that the crop and livestock sub-systems are
explicitly included in the dataset as well as the main flows within and through the sys-
tems (i.e. flows of agricultural production to either home consumption or markets, the
main sources of income, the use of labour). The main concern of typology delineation
in highly unstable environments (economic and environmental) is that typologies are
only a ‘snapshot’ of the diversity of farming systems, which are highly dynamic in such
environments (e.g. ‘moving targets’, Valbuena et al., 2015). Thus, variables that can
be considered ‘slow moving variables’ were used as discriminant variables, i.e. land
owned, TLU, area dedicated to crop types, herd size and composition. We considered
these variables as representing types of systems (i.e. crop, livestock or mixed farms),
and although these variables can suddenly suffer changes due to exogenous shocks,
such changes (e.g. sale or loss of the livestock herd or no crop production because
of drought) are not directly taken into account in the typology of farming systems.
Discriminant variables are mainly used as proportions or percentages to capture the
structure of the systems in terms of the sub-systems and their interactions, and to avoid
the typology being driven by farm size. Once the typology is built, ‘fast moving vari-
ables’ or functional variables can then be used to give more information of each type,
including time-dependant dimensions such as crop production levels, input use level
or income level. In our distinction between slow and quickly moving variables, we
are in line with functional and structural typologies described by Lopez-Ridaura and
Tittonell (2011).

The multivariate analysis chosen to build the typology is a classic and well-known
two-step method. In a first step, a principal component analysis (PCA) is implemented
on the discriminant variables to synthetize the diversity of the sample into few
first principal components of the PCA (data- or dimension-reduction process). In a
second step, a hierarchical clustering (HC) analysis is implemented on these synthetic
principal components. Based on multi-dimensional Euclidian distances, the algorithm
simply adds one-by-one farms according to their proximity in this hyper-plan. Both
PCA and HC were implemented under R (3.0.0, R Development Core Team, 2005)
using the ade4 package (Thioulouse et al., 1997).

Sub-sample approach to assess data selection effect on total variability tackled in PCA-HC typology.

Compared with expert-based typologies, the main advantage of PCA-HC
typologies is that it avoids subjectivity in the expert’s perception of the agronomic
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context and reveals the diversity contained in a dataset. In a data scarce environment,
data selection is quite straightforward and all data will likely be used. But in
cases where many variables are available, such as with household or panel surveys,
the issue of data selection becomes a critical one, which will impact the final
result of the typology. In many SSA contexts, there is no regular or systematic
source of data, and most of the time analyses are implemented on large surveys
conducted once or infrequently. These surveys are often very broad and include data
on many components of farming and livelihood systems, e.g. livelihood strategies,
livestock activities, crop activities, natural resource management and income sources.
Delineating a typology based on this diverse dataset will imply explicit and implicit
knowledge on the purpose of the typology, the local context and the implementer’s
background. For instance, typology implemented within the context of crop and
livestock production would emphasize all data related to those sub-components whilst
a sociologist or economist will prefer to focus on income sources and livelihood
strategies. If the explicit part can be explained and justified (data selection according
to local context or typology’s purpose), the implicit part is difficult to measure: How
strong is the influence of the implementer’s background, or his a priori perception of
the farming systems, of the data selection, and thus of the diversity contained in it?

Here, we decided to test this data selection question within the selected dataset.
Amongst the 20 quantitative variables available, we created a simple code to randomly
select 15 of them, and for each sub-sample run a PCA and compute the global inertia
in the first two PCs. Global inertia is the total diversity contained in the sample which
can be explained if we consider not solely the first PCs but all of them. We don’t aim
to contribute here to complex analytical analysis of PCA robustness as fuzzy robust
PCA (Sarbu and Pop, 2005) or robust PCA to deal with skewed data (Hubert et al.,
2009), but simply to answer the intuitive question: What is the impact of data selection
on the overall diversity represented in the first two PC of a classic PCA analysis?

R E S U LT S

Expert-based typology

Figure 1 illustrates the discriminant key of the expert-based typology. The four farm
types appear clearly according to their land and livestock endowment and livestock
density.

In order to further interpret the farming types resulting from expert knowledge,
Figure 2 shows the average value of adult ha−1, maize production, percentage of
female headed household and percentage of farmer selling labour, with significant
differences between types.

Based on the nature of expert-based typology, and its construction based on the
assumptions of technology promotion, the link between types and technologies is quite
straightforward and described below:

– Small farms (Expert type 1, ET1). Labour saving technologies: direct
seeding, use of herbicide and mechanization. These technologies will reduce the
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Figure 1. Graphic illustration of expert-based typology of 273 farm household in Southern Ethiopia (each line
represent the threshold defined on expert-based typology).

time required on the farm and maximize the time spend on more rewarding non-
farm activities.

– Livestock oriented farms (Expert type 2, ET2). Livestock intensification
technologies: genetic improvement, improved nutrition, production of fodder and
disease control.

– Mixed cop-livestock farms (Expert type 3, ET3). Crop-livestock
technologies: improve use of crop residue as feed, and improved use of manure.
These technologies can increase substantially the total productivity by a better
integration between these two sub-systems (Herrero et al., 2010).

– Crop-oriented farms (Expert type 4, ET4). Crop intensification
technologies: improved germplasms, improved fertilization and irrigation,
improved weed, pest and disease control and diversification (e.g. intercropping,
relay-cropping).

Statistical-based type description

As PCA-HC is widely used in typology construction, we will only interpret briefly
the two graphics in Figure 3 to understand the four types built in this approach. For
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Figure 2. Average value of selected variables to describe expert-based typology of 273 farm household in
Southern Ethiopia (differences between types was assessed through ANOVA tests and were significant (P < 0.001)

for all variables).

further information on the whole interpretation process, see Alvarez et al. (2014).
Here, we decided to select the first three PCs, representing a total of 44% of the
overall diversity, and which defined four farm types after consideration of the HC
analysis. Figure 3a and Figure 3b can be analysed jointly and represent the projection
of variables and farm household on the PC1–PC2 plan.

Before entering into a precise description of each type, Figure 3a and Figure 3b
already provide important information on discriminant sub-systems in Southern
Ethiopia. The vertical axis is mainly driven by livestock systems, with livestock-
oriented farms on the upper part of the graphics. The horizontal axis is more
multivariate and discriminates on the left farms that cultivate a significant proportion
of their land with legumes from which they get a major part of their income. On
the right side, farms are under land pressure, use high levels of fertilizer and get
a significant part of their income from outside. Graphical exploration of PC1–PC3
didn’t provide different information and are not represented in Figure 3. Beyond this
first visual exploration, the average value per type of discriminant and descriptive
variable (Table 2) allowed us to give a full description of these four farming systems,
and evaluate their technological needs.

https://doi.org/10.1017/S0014479716000727 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479716000727


Typologies to target technologies in Ethiopia 199

Figure 3. Graphical exploration of Principal component analysis (PCA) and hierarchical clustering (HC) for 273 farm
household in Southern Ethiopia: (a) Projection of variables on the PC1–PC2 plan; (b) Projection of farmers according

to their types on the plan PC1–PC2.

– Livestock owning farming households with crop-legume production
(Statistic Type 1, ST1). This type is characterized by significant livestock
holdings (4.5 TLU and >2 small ruminants), from which they get 29% of their
income. The area of land owned is not enough to feed livestock and household of
almost six AE, so additional land is rented or borrowed. With 2.1 t of maize and
710 kg of legume, this group displays the highest production, of which about half
is consumed within the household. More interestingly, 12% of the land is allocated
to legume production, with low fertilizer use, emphasizing the benefits of crop
rotation. Finally, income is significantly higher in this group, with a good balance
between crop and livestock derived income. For this type of farm, intensifying crop
and livestock production technologies, as well as their interaction, can improve the
efficiency of the system.
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Table 2. Main characteristics of farming systems types according to statistical typology.

Farming system types

1 2 3 4

Variable used for typology
Adult Equivalent (AE) 5.9 4.8 5.1 4.7
Total adult cattle 3.9 1 3 1.3
Total small ruminants 2.7 0.9 1.6 0.4
Land owned 1.6 1 1.3 1
Percentage of land cultivated 166.5 98 65.3 174.3
Percentage of land allocated to maize 54.5 52 76.7 63.9
Percentage of land allocated to legume 12 6.9 1.3 5.6
AE ha−1 of land cultivated 4.8 8 13.1 5.4
TLU ha−1 of land cultivated 3.7 1.8 7.2 1.6
Nitrogen fertilizer use ha−1 of land cultivated 26.5 22.3 55.4 31.4
TLU sold per TLU owned 0.5 0.5 0.2 0.1
Percentage of income from crop 62.4 39.9 56.6 89.3
Percentage of income from livestock 28.7 6.3 11.7 3.4
Percentage of income from others 8.9 53.8 31.6 7.2
Percentage of crop self-consumption 46.6 70.5 59.6 55.9

Exogenous variable
Total production of Maize∗∗∗ 2137 776 1440 1805
Total production of Legume∗∗∗ 710 347 463 700
TLU∗∗∗ 4.5 1.2 3.2 1.5
Land cultivated∗∗∗ 1.5 0.7 0.6 1.1
Total income (Ethiopian Birr)∗∗∗ 29 719 20 252 19 845 15 327

∗∗∗Indicates significant differences between means of the different types at P < 0.001, tested through ANOVA.

– Low resource endowment farming households with off-farm income
(ST2). With only 1.2 TLU, and low maize and legume production, this type
is characterized by a significant proportion of the income (54%) coming from
outside the farm. Seventy percent of the crop production is self-consumed
and the remaining 30% of production constitutes 40% of total income. With
low land availability, low livestock density and fertilization rate, this group
is not focussing on agriculture as an income generator but to secure food
availability, and relies mainly on external outcome. This farming system may
well implement labour saving technologies (e.g. herbicide use, direct seeding) that
allow them to pursue more profitable off-farm activities whilst ensuring food
security.

– Intensive maize-based farming households under land pressure
(ST3). With 3.2 TLU and 1.3 ha land owned, surprisingly this group only
cultivated 65% of land available, and then faced high land pressure. These are
maize-based systems with 77% of land allocated to maize but with almost no
legumes, but compensated for with high fertilization rate. One-third of income
is derived from outside the farm and for 57% from crop production. High
TLU ha−1 is certainly the indicator of crop-livestock interaction, which also
explains the weak level of TLU sold per TLU owned. As for type ST1, technologies
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Figure 4. Distribution of global inertia in two first principal components (PCs) for 1000 PCA runs of 15 variables
out of the 20 available. Red bar and green bar represent respectively the sample with the minimum (29.6%) and

maximum (44.2%) global inertia in two first PCs. The dotted line represents the average value of 37.4 %.

for the sustainable intensification of this group of farming systems may include:
The design of crop rotations with legumes as well as manure management and
crop residue management to improve crop-livestock integration, but also labour-
saving technologies regarding contribution of off-farm activities.

– Crop producers (ST4). With low livestock density and a significant amount
of land borrowed or rented, this group is characterized by its income source at
almost 90% from crop production. Allocating 64% of land to maize to produce
1.8 t of maize and 700 kg of legume; the 44% of production sold is not enough to
generate enough income and this group displays the lowest average total income.
In spite of 1.5 TLU, livestock is almost not exploited and only represent a small part
of the household income (3%). Technologies for the sustainable intensification of
these farming systems might be developed and implemented within the cropping
systems.

Sub-sample approach: questioning the objectivity of statistical analysis

Figure 4 displays the distribution of the global inertia of 1000 random arrays of
15 variables out of the 20 available. The global inertia ranges from 29.6 to 44.2% of
the diversity explained. To be more explicit, in the worst choice of 15 variables out
of 20 available, the two first components will contain 29.6% of the total information
on diversity in this sample. In contrast, when we select the best sample, 44.2 % of
information will be contained in the first two PCs. Note that total diversity in those
two cases are different, i.e. the percentages are not relative to the same absolute of
potential 100 % variability, but to each sample’s total variability. We assessed the
structure of this variability, whether widespread in several PCs or concentrated in the
first few (Table 3) and discussed in section 4.2.
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Table 3. Two samples amongst the 1000 draws of 15 variables out of 20 which represent the minimum and the
maximum global inertia in the two first PCs (ticks means that the variable is considered in this typology, and crosses

that this variable is not considered in this typology).

Inertia in two first PCs

Variables Maximum (44.2%) Minimum (29.6%)

Adult equivalent (AE) × √
Land owned × √
Percentage of land allocated to legume × √
TLU sold per TLU owned × √
Percentage of income from crop × √
AE ha−1 of land cultivated

√ ×
TLU ha−1 of land cultivated

√ ×
Total production of maize

√ ×
TLU

√ ×
Land cultivated

√ ×
Total adult cattle

√ √
Total small ruminants

√ √
Percentage of land cultivated

√ √
Percentage of land allocated to maize

√ √
Nitrogen fertilizer use ha−1 of land cultivated

√ √
Percentage of income from livestock

√ √
Percentage of income from others

√ √
Percentage of crop self-consumption

√ √
Total production of Legume

√ √
Total income (Ethiopian Birr)

√ √

D I S C U S S I O N

Questioning the assumed objectivity of statistical approaches

As stated by Landais (1996), statistical approaches are assumed to be ‘blind’
approaches where no a priori perception of the context should influence the operator of
the typology in determining the drivers of farming system diversity. Indeed, compared
to expert-based typology where the discriminant key is clearly based on the local
knowledge, statistical tools intend to avoid bias that could be caused by diverse factors
such as affinity to certain farmers, expert’s background and origin, amongst others.
If this is well known, the statistical tool and its objectivity is less often debated. Our
sub-sample didactic exercise pursues the objective of demonstrating the impact of
data selection, and thus questions the assumed objectivity of statistical tools. Based
on 20 variables available, we saw in Figure 4 that the selection of 15 variables can
significantly influence the structure of the diversity in the sub-sample and what
we called compactness, i.e. the amount of total inertia in the first PCs. This sub-
sample exercise mimics data selection occurring frequently in agronomic studies,
where researchers are asked to assess farming system diversity based on large surveys.
In our case-study, the best choice would have given a total inertia in the two first
component of 44.2%. Table 3 shows the five variables which have been removed in
the worst-case sub-sample, and which are critical in understanding the diversity of
farming systems in Southern Ethiopia, namely, AE per land cultivated, TLU per land
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cultivated, production of maize, TLU and land cultivated. This result also confirms
our assumptions that ratios are important in farming system descriptions, even if
numerator and denominators of the ratio are already considered in variables sampled.
Some would argue that ratios erase some information (e.g. one farmer with 100 TLU
and 100 ha would have the same value of livestock density compared to a farmer with
1 TLU and 1 ha), but our case-study shows that livestock density is itself a variable to
consider. In contrast, we can also see that AE per land is an important variable whilst
AE itself is not chosen in the best-case sub-sample.

This simple example shows that data selection and calculation of indicators
are a topic of interest closely linked to typology research. Within the context
of increased interest in scaling-out targeting technologies and increasing adoption
rates, researchers must select variables carefully. If for pragmatic reasons data
availability and quality should be prioritized, more systemic reflection should
lead the choice of selecting data to run a typology in a given context. This
data selection should include statistical considerations, i.e. by assessing how to
optimize variability in the whole sample, maybe by going one step further in
our sub-sample analysis and run cluster analysis on each of the 1000 PCA ran.
Nonetheless, we also argue that expert knowledge should be part of this data selection
process.

Comparing each typology to target technologies

Figure 5 is a contingency table for the expert and statistical typologies described
above and allows the matches and mismatches of both typologies to be seen. In order
to compare typologies, the example of 43 farmers in Expert-based Type 1 (ET1,
small farms) can be discussed. If they were no correspondence at all between the two
typologies, these 43 farmers would be spread equally between the four statistical types
(ST); whilst we see that 26 of them are actually in the ST2 (low resources endowment
farm household with off-farm activities). This clearly demonstrates similarities in
farms of these two types, from different typologies. Indeed, characterized by experts
according to their low land availability and their small herd, these criteria also
appear in the description of ST2. However, the important additional information
here is that statistical-based typology showed that those farmers have high off-farm
income, potentially a key characteristic in targeting technologies. Pursuing the same
type of reasoning with ET2 (livestock oriented farms), we can see that the 140
farmers are mainly split into types ST1 (livestock farm household with crop-legume
production) and ST3 (intensive maize-based farming systems under land pressure).
Once again, we can see that indeed they both have high livestock numbers (which
explain their classification into ET2), but display significant differences. Whilst ST1
is using legume and low level of fertilizer use, ST3 is under land pressure and uses
higher levels of fertilizer on a crop system dominated by maize. In this case, the
statistical typology based on a systems approach could help targeting more accurately
the crop or livestock technologies suitable for these farmers, mainly in terms of
manure and residue management. Figure 5, and specially number of farmers in
ET2, emphasizes the unbalanced number of farmers in expert-typology due to the
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Figure 5. Comparison of results of expert-based typology and statistical typology. Figures in each cell represent the
number of farmers belonging to the statistical type (read horizontally) and expert-type (read vertically).

nature of discriminant key and selected thresholds for each variables. The same
reflection applies to ET3 (mixed crop-livestock farms) split between ST1 and ST4
(crop producers), which differ mainly in their income sources, which are balanced
between crop and livestock for the former, and 90% from crop for the latter. If
crop-livestock technologies are promoted for these farmers, they will impact farming
systems very differently as livestock is sold in one case and used for crop in the other.
Finally, ET4 (crop oriented farms) is separated into ST1, ST2 and ST4, highlighting
that this ‘crop producer expert-type’ is quite widely defined with high intra-type
variability. Thus, beyond the incorporation of new variables such as income source
or AE in the household into the typology, we can see that thresholds themselves can
be dealt differently, as some farmers in statistical livestock type can end up in crop
producers’ type in expert typology.

Towards a complementary use of the two approaches

Beyond a dogmatic position arguing for a polarized vision of typology based on
expert local knowledge and those based on a statistical tool, we think as Pacini et al.
(2013) and Alvarez et al. (2014) do, that both constructed and extracted types can
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help in designing an integrative framework to assess diversity of farming systems at
different scales and through time. On one hand, expert knowledge is interacting very
frequently with households for technical support, to provide expertise, and to collect
data. A wide range of stakeholders are thus building knowledge capital based on their
daily on-field observations. This knowledge is based on a diachronic vision of farming
systems, where experts can also observe visually their diversity and change. On the
other hand, a statistical typology is most of the time based on data collection at a single
point in time. It only provides a ‘snapshot’ of farming system diversity, but in a more
detailed way. Indeed, in spite of their synchronic nature, the main advantage of survey
tools compared to expert knowledge is that it includes the environment of farming
systems (socio-economic consideration, communities, etc.) as well as special insights
on current global concern of agriculture (e.g. few years ago, no baseline distinguished
gender in labour distribution as it is the case currently). On the time dimension, we
thus see that if large data collection are less frequent, they also give different kind
of information which can hardly be collected on a day-to-day basis by expert in the
field. Statistical-based typology using large datasets and expert-based typology using
field-observation clearly offer complementary perceptions of farming system diversity
and its change.

In Southern Ethiopia, as a case study to assess farming system diversity, an
expert-based typology based on TLU, Land and TLU per land helped define the
main characteristics of farming systems to assess their needs in terms of agricultural
technologies. This hypothesis is currently being tested. The statistical typology clearly
showed that experts were right on selecting those three indicators to tackle diversity
of faming systems and Figure 5 illustrates that expert-based and statistical-based
typologies were partially matching, in spite of the important number of additional
variables in the latter. Nonetheless, the statistical typology emphasized the importance
of factors such as source of income, level of fertilizer used, land allocated to maize or
legume and livestock productivity. These factors can allow more accurate targeting
of certain technologies. For example, to develop technologies for legume production
or even develop fodder crop on land available and not cultivated for farmers selling
livestock products.

We can clearly see here the connection between the two approaches and the way
to move forward by combining advantages of each methods. First of all, surveys
should not be purely project-driven and collect data solely for a given project, but
should include local knowledge and on-field partners, who can add their expert-based
knowledge into the data collection process. Second, if statistical analyses highlight
new drivers of diversity into farming systems, it is crucial that on-field expert update
their expert-based typology in their day to day interaction with farmers to take into
account these new components, i.e. an active feedback loop. As an example, we saw
in our case-study that the source of income or fertilizer use should be included, and
the threshold for livestock herd size redefined. We argue that combining expert-based
and statistical based typologies in both data collection and analysis is the best way
to tackle farming system diversity; but this can only be achieved through frequent
interactions between on-field experts and researchers. The approach developed by
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Falconnier et al. (2015), where a statistical typology is used to select five key variables
and identify critical thresholds in order to build a simple decision tree to enhance
discussion with farmers and experts, is without a doubt a significant step towards a
more participatory approach of typology.

C O N C LU S I O N

In this paper, two typologies have been used as a means to target technologies in a
very diverse set of farming systems in southern Ethiopia. Our paper confirmed that
the two approaches pursue different objectives and display different perception of
diversity. In the expert-based approach, the types are ‘built’ in regards of the final
purpose of targeting specific technologies and the assumed drivers of their usefulness
and adoption. On the other side, the statistical typology pursues the objective to
‘extract’ types from important dataset, in an assumed ‘blind’ process, putatively more
objective and reproducible. In our case-study, we indeed showed that the statistical-
based typology emphasized more drivers of diversity and their complex interactions,
but expert-based typology demonstrated its usefulness to help on-field expert thanks
to a simple discriminant key. Landais (1998) argued that ‘building typologies involves
a greater or lesser proportion of heuristic phases […]’ but we argue that a well-
defined heuristic process beyond dogmatic approach is necessary to tackle farming
systems diversity and therefore optimize this diversity for its agro-ecosystemic and
socio-economic benefits.
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