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THE FOURIER TRANSFORMS OF SMOOTH 
MEASURES ON HYPERSURFACES OF R" + 1 

BERNARD MARSHALL 

1. Introduction. The Fourier transform of the surface measure on the 
unit sphere in R" , as is well-known, equals the Bessel function 

(2-nfn + mU\î\)W\ v = (n- l)/2. 

Its behaviour at infinity is described by an asymptotic expansion 

+ o(ifr",+2"2). 
The purpose of this paper is to obtain such an expression for surfaces 2 
other than the unit sphere. If the surface 2 is a sufficiently smooth 
compact «-surface in R" + 1 with strictly positive Gaussian curvature 
everywhere then with only minor changes in the main term, such an 
asymptotic expansion exists. This result was proved by E. Hlawka in [3]. A 
similar result concerned with the minimal smoothness of 2 was later 
obtained by C. Herz [2]. 

Our focus therefore is on surfaces with vanishing curvature. In this case 
there are the estimates of W. Littman in [4]. He showed that if k of the 
principal curvatures of 2 are bounded away from zero then 

= \L \£,<£\ I — / 0-iZ-x Wm\ = Le-'^d^x') si c ( i + |£| ykn. 

More delicate estimates are obtained in [6], [7] and [8]. Their results 
show that for 2 convex and C the interior of 2, the radial maximal 
function 

U(0 = sup +n + 2)/2\£c{rtF) | 
0<r<oo 

is an LP function on the unit sphere Sn for some p depending on 2. In 
particular Svensson proved that if 2 is smooth, convex and has no tangent 
of infinite order then U is in If if and only if 

L ,2 K(x){2~p)/2dx < oo 

Received February 21, 1984 and in revised form October 26, 1984. This research was 
supported by NSERC Grant U0074. 

328 

https://doi.org/10.4153/CJM-1986-016-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-016-7


HYPERSURFACES OF R" + ] 329 

where K(X) is the Gaussian curvature at x e 2. 
Our goal in studying d[x is to prove If estimates for solutions of certain 

hyperbolic equations. To obtain the best estimates it is essential to be able 
to isolate the dominant term in the asymptotic expansion of dfi. It will 
be seen in [5] that estimates on simply the radial maximal function do not 
yield the best range of LP spaces. Our results apply to both convex and 
nonconvex surfaces but we assume that the curvature vanishes in a 
relatively simple way. 

Consider a point x0 on the surface 2 such that the curvature at x0 is 
zero. We will assume that after some translation and orthogonal change of 
coordinates the surface near JC0 is of the form x = (y,f(y)) where y e R" 
and fis a smooth real-valued function such that/(0) = 0 and V/(0) = 0. 
We will assume that fis of the form 

f(y) = P(y) + h(y). 

Rn is the orthogonal direct sum of subspaces Vx, . . . , Vs. Let 771? . . . , TTS be 
the corresponding orthogonal projections. P is of the form 

s 

P(y) = 2 Pjivjy) 
7 = 1 

where each of the polynomials P is a homogeneous function of 
n. = dim V- variables, and P is nondegenerate in the sense that for 
every j \ 

det d2Pj{y) = 0 

only when m-y = 0. Here d2Pj is the matrix of second order derivatives of 
Pj. Fix an orthogonal system of coordinates so that 

P(y) = Px{yx,.. . ,yj) + P2{yM-X,. . . ,yJ2) + . .. + Ps(.. . ,y„). 

If Pm is homogeneous of degree km define 

k) = km ifjm-i < j ^ j m Oo = °Js = n) 

and 

n 

a = ( a b . . . , an) = (\/k\, . . . , \/k'n), \a\ = 2 «,. 
7 = 1 

Also assume that h(y) contains only higher order terms; that is, 

D»*w-(f)*...(J.)\, ) .o 
if y8 ^ B where 

B = {ft: for every y = 1,. . . , s nfî = 0 or |TT.J8| ^ k-. 
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330 BERNARD MARSHALL 

Also for some j , |TT-/}| > kj). 

We will describe a critical point x0 satisfying all these conditions as being 
of type a, and fis a function of type a. 

I f / i s a function of type a then the Gaussian curvatures of the surfaces 
>>„ + ! = f(y) a n d ^ + 1 = P(y) vanish at the same points because 

r = {.y:det d2f(y) = 0} = {jrdet d2P(y) = 0}. 

A surface will be called type a if every point x' of the surface is of type 
a = a(x') for some a and 

a = min{ \a(x') \:x' e 2} > 0. 

A surface is of positive type if such a constant a exists. 
If the Gaussian curvature does not vanish then every point is of type 

(Vi, . . . , Vi) and a = nil. 
If 2 ^ A:j ^ . . . kn + x are even positive integers and 

2 = {>>:/' + .. .+>fr| = 1} 
then 

w + l 

7 = 2 

The function 

/ ( ^ b ^ ) = y\ ~ y\y\ 

is of type (V3, V̂ ) but 

/ ( j h ^ ) = y\ + ^1^2 

is not. 
Define 

^ ' ( 0 = {*' G 2 : the tangent at x' is perpendicular to £}. 

THEOREM 1. Suppose that 2 is a compact convex n-dimensional C°° 
submanifold ofRn of type a, that do is surface area on 2, g e C°°(2), tfft J 
dju = gdo. Suppose that for every £, A'{Q is a finite set. Then there exists a 
constant C depending only on 2 and g such that 

\âML)\ S C(l + HI)"" for alU e R"+1 . 

For eac/ï £ G R" + , £/ze wnz/w /?a r/ o / 

comes from the points in A'(£). 

Let K(X') be the absolute Gaussian curvature at x'. The principal part of 
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x'^A'(Ç) ( * (* ' ) ) 

where C0(x') is constant in the components of the set {x' e 2:K(X') T̂  0}. 
Suppose that after a translation and an orthogonal change of coordinates 
in R" the point xf on 2 is mapped into the origin in R" and the 
normal vector u at x' that points in the direction of £ is mapped into 
(0, — 1) e R" X R. The surface is now given by an equation yn + \ = f(y) 
where y e R". Define v to be the number of positive eigenvalues of the 
matrix d2f(0) minus the number of negative eigenvalues. Then 

C0(JC') = (27r)n/2el™/4. 

For example, if 2 is the unit sphere A\!£) contains two points, £/|£| and 
— £/|£|. The corresponding values of v are n and — n respectively. 
Therefore 

M) = (2<ir)n/2{el™/4e-m + e~l™/4e^} 

= W / 2 c o s ( | £ | - ^ ) . 

I f / i s of type a then the restrictions imposed on the higher order terms 
imply that the curvatures off and P vanish at the same points. This means 
that 

r = {y:dttd2f(y) = 0} 

is the union of a finite number of linear subspaces Tj, . . . , Tr The 
subspaces Tm are the orthogonal complements of the spaces Vj such that 
kj > 2. If Tm and Vj are orthogonal complements then define 

rm = rij/ikj — 1) where «• = dim Vj. 

Let 

T = min{rij/(kj — 1): R is not convex}. 

If every P. is convex then set T = oo. The parameter r gives an indication 
of the type of inflection points present on the surface. For example, if 
2 = ^i = • • • = kw 

km = max{kj\kj is odd} 

and 

f(y) = ±fi ± . . . ±fn« kn > 2 
then T = \l(km — 1). Also let «* = min{«y:fcy > 2}. 

THEOREM 2. Suppose that 2 w a compact n-dimensional C°° submanifold 
of Rn of positive type, that do is surface area on 2, g e C°°(2), tfrtd 
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d\x = gdo. Assume also that for every £ the set A'(è) is a finite set, 
and T > 1. 

If n* > \ then there exists a function h*(£) such that 

MO = \i\~"nAè) + />*«) 

where 

r~" L=r ^ ^ = C/-"(" + 1)/2 for all r â 1. 

If n* = 1 then the L norm of h* is replaced by the weak L norm: 

ar{£:/" + 1)/2M£)l >\}^C/\ \>0 

where or is the uniform probability measure on {\£\ = r}. 

THEOREM 3. Let 2 and d\i be as in Theorem 2, except that 0 < r = 1. 
Then for every p < r, 

'-" L M Ô M Ê ë Cr~(n+P)n for all r g 1 

The weaker results in Theorem 3 are caused by the inflection points 
(T ^ 1). 

If 2 is orientable t h e n ^ © is closely related to the Gauss map, which 
maps each point x' e 2 to its outward unit normal vector. In fact, A\£) is 
the inverse image of the point set {£, — £}. Therefore 

equals the surface area of 2 . As a result, by the Cauchy-Schwarz 
inequality, for all r â 1 

"f ̂ rM)di ^ CVArea of 2 ^ C. 

COROLLARY. If 2 and d\i are as in Theorem 2 or 3 then there exists a 
constant C such that 

r~" / a _ r \M& W =§ Cr-"'2 forr^X. 

Since the main t e r m ^ Q is singular where the curvature K(X') vanishes, 
Theorem 1 is not a consequence of Theorems 2 or 3. The estimate 
of Theorem 1 is appropriate in directions £ where the curvature K(JC') is 
zero but in the other directions the decay rate of d\i is C|^|_A7/ . 

These estimates are useful in applications. Previously, in describing the 
behaviour of solutions of hyperbolic partial differential equations one 
used estimates of the form 

\â%ay\ tk c\èra 
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as, for example, in [1]. The point of Theorems 2, 3 and their corollary, 
however, is that from the point of view of spherical averages the decay 
rate of d\i is like C^l""7 . In this sense the decay of d\i is the same 
whether or not the curvature of 2 vanishes. This can be seen similarly in 
the results of [6], [7] and [8]. In the LP estimates for wave equations, dju 
is placed into another oscillatory integral and estimated. Since polar 
coordinates and integration by parts in the radial direction are used, the 
natural way to approximate d\i is in terms of averages over spheres, as in 
Theorems 2 and 3. 

I thank C. Herz and W. Strauss for discussions on parts of this 
research. 

2. Summary. The three theorems will be proven together. This section 
contains an outline of the whole proof. 

The first step is to reduce d/x(£) to an integral on R". Fix £0
 G R" 

The main part of dju(fo) comes from the points of A'(£0). If g is a 
C°° function on 2 that is supported away from ^4'(£o) t n e n ^M^o) c a n ^ e 

put in the form 

MSo) = j [ e-ix'\(x')d^x') = fZ^ e-'^%Ç>, s)ds 

where £Q = £c/l£ol anc* g(£o> s) *s a ^°° function of s whose derivatives 
depend smoothly on £Q. Therefore in this case 

\éii(èo) I = CN(l + |£0I ) ~ N for every N g= 0. 

As a result, by using a C°° partition of unity on 2, we may assume that g is 
supported in a small neighborhood of a fixed point x0 e A\^Q). The set 
Af(£0) is finite by assumption. 

Make a translation and an orthogonal change of coordinates so that 
x0 = (0, 0) and £0 = (0, — 1) e R" X R. The surface near x0 is of the 
form x = (y,f(y)) where y e R" and/(j>) e R. Assume that g is sup­
ported in this small neighborhood of x0. Suppose also that £ = R(6, — 1) 
where 0 e R", R ^ 0. R is not quite the modulus of £ but \H\/R -> 1 as 
|0| —> 0. Now dju(£) becomes 

(i) fa® = X <-~'v W V K * ' ) = X- e~iR*y>&y)<ty 
where g is a C°° function supported in a neighborhood of the origin and 

f{y) = 9 • y - f(y). 
/ i f a function of type a, as described in the introduction. 

If VP-(y) = 0 for some point y such that iTjy ¥= 0 then by the 
homogeneity VR(y) = 0 on a ray in K. This means that 

det d2P(y) = 0 

on this ray. Therefore since det d P(y) = 0 implies m-y = 0, the gradient 
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VP.(y) can vanish only when try = 0. Hence 

IVJçooi ^ CWjy\
kr\ 

Also if fi G 5 then either | V . / | = 0 or 

|Vy / | ^ CM k^l*/ ' - 1 where Vy = ^V. 

Thus for y in a sufficiently small neighborhood of the origin 

(2) \Vjh(y)\ ^ V2\VjP(y)\ j=l,...,s. 

Suppose that ./„,_, <j <jm. Then 

\Dfyhiy) | g C|j>| k„, A " 2 ê C|>>| |det J2Pm(.y) |. 

Use the formula expressing a determinant as a sum over permutations. It 
follows that 

s 

|det d2h{y) | ^ CW" IT Idet d2Pm(y) f" ^ Cb|"|det d2P(y) \. 
m = 1 

Similarly, 

|det d2f(y) - det d2P(y) | ^ C | j | |det d2P(y) |. 

So for |_y| small enough, 

(3) |det d2f(y) - det d2P(y) | ^ V4|det d2P(y) |. 

We will assume that the support of g is so small that both (2) and (3) hold, 
and also the estimates of Lemmas 1 and 2 in Section 3 are true. 

In estimating the oscillatory integral 

it is natural to first look at the part of R" where there is a great deal of 
cancellation; that is, the set of points y such that |V«p(j) | is large. In 
Section 3 we prove a number of results in a set E\9 where |V<JP(J>) | is 
large. The corresponding results where |V<p| is small will be proven in 
Sections 4 and 5. 

Let 

a = (al9...9an) = (\lk\, . . . , \lk'n\ 

n 

M = 2 k|, and 
7 = 1 

(0) = 2 M|V(^-ï). 
7 = 1 

Also let b = max{# _ 1 , (6)}. 
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Constants C1? . . . , Cs will be chosen so that whenever y is not in the 
set 

£ , = {y:\<njy\^Cpxlki,j= \,...,s) 

then 

Vf(y) £ {w:kyw| ^ lb(kr^kJ,j = 1,. . . , , } . 

By assumption, if VP}(y) = 0 then j ^ = y2 = . . . = j>7- = 0 and Vi^ is 
homogeneous of degree (kx — 1). Therefore there exists a positive constant 
Ci such that 

|VP,O0| ^ Q d ^ l 2 + . . . + \yj]\
2f^l)/2 = C\\<nxy\k^-\ 

Define Vj = irj^J. Thus, for example, 

V , / ( J ) = (D,f(y),..., DjJ(y), 0 , . . . , 0). 

Since |V,/i(>0 | ^ VitfP^y) | then 

(4) \V]f(y)\^V2qWJy\krK 

Define C' similarly for ally = 2 , . . . , s, by considering each Vm separately. 
Now if 

Vf(y) G {wil^wl ^ 2b<kJ-l)/kJ,j = 1, . . . ,5} 

then 

np.b{krX)/kJ ^ viqk^-" 1 . 

Hence 

(5) |77yj| ê 2nbukj/Viq for y = 1,. . . , J. 

Therefore define 

c7 = 4w/q, 7 = 1, . . . ,* . 

This shows that in fact y e Ex. Because 

k / | ^ ft**/-1*'*/ for7 = 1 , . . . , * 

then iiy £ Ex, 

V<p(y) = 0 - Vf(y) £ {w:\Wjl ̂  b^kr])/kJJ = 1, . . . , 5} . 

Therefore outside Ex the oscillation is large in the sense that 

(V<p(y)) ^b = m*x{R-\(0)}. 

A C°° function ^0 with compact support can be chosen so that 
\p0 approximates the characteristic function of Ex in the following 
way: \p0(y) = 1 for y e E]9 \^0(y) = 0 for>> £ 2EU and for every multi-
index /?, 
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\D%(y)\^ Cpb-a-p. 

ESTIMATE 1. For every N > 0, there exists a constant CN > 0 such 
that 

(6) |/,| = \f e-
iR«y\i - Uy))s(y)dy\ 

^ CNR~M(\ + R(6))~N. 

As in the case of E], a set of E2 of the form 

E2 = {y:\„jy\£qvje\U(kJ-»,j= l...,s) 

can be chosen so that E2 contains all the points y where 

k,-V/O0| ^ 2 k / | for ally = 1 , . . . ,* . 

If ^2 is a function approximating the characteristic function of E2 then we 
will prove the following. 

ESTIMATE 2. For every N > 0 J/zere exists CN > 0 swc/z that 

\i2\ = \f e-
iR«»X\ -Hy))s(y)dy\ 

^ cNR~M 2 (*M|V(*r •>)-". 
7=1 

Estimate 2 will be used to prove Theorem 1. 

We will show that Estimate 1 is of the right type for Theorems 2 and 3; 
that is 

(7) l$m\ix{e)\de ^ cR-(n+V)/2. 

To prove this it is necessary to estimate 

Xis. CR~Mv + R<^rNdo. 
if 

t = ( / ? ' - " ' « „ . . . , / ? i _ a - ^ ) 

then 

</> = R(6) and dt = R"~Md8. 

Therefore 

= CR-" JR„ (i + (t) yNdt = c*~" 
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if TV > n. Since n è (n 4- l)/2, this completes the proof of (7). 
Suppose that (0) ^ R~K The measure of 

F = {0:<0> S 7T 1 } 

is bounded by CR'"' -". Since the measure of Ex is less than CR~^a\ 

\MQ S |J,| + I / e - ' ^ A w j)g( j )Jy ^ C J R " 

and 

/ , 
lF | ^ ( 0 I ^ â CRM-nCR-M = CR~n ^ CR_ (" + 1)/2. 

This shows that we may assume that (0) > R~ . 
This leaves only the integral over 2EX : 

(8) 7'i = jL, e~m*y)Uy)g(y)ày-
This is the set where |V<p| is small. It is natural at this point to consider the 
points 

z <= A(0) = {z:V<p(z) = 0}; 

That is, the points where V/(z) = 0. 
Define, for j = 1, . . . , s, 

' îr/ | , / (*>_1) if kj > 2 
8,(0) 

The set of all 0 such that 

(0)x,kJ if *. = 2. 

n «.<») - o 
.7 = 1 

is a set of measure zero. In fact it is a union of linear subspaces. From the 
point of view of Theorems 1, 2 and 3 this set is not important and we may 
assume that 115 ^ 0. Also let 

Bp) = 8J6) if j m _ x <j^jm j = 1 , . . . , «; m = 1 , . . . , s. 

Consider z e A(0). Let Q'(z) be the matrix 

where d2f(z) is the matrix of second derivatives off. Notice that since the 
determinants of the first and second fundamental forms of the surface 
yn + \ =f(y) equal 

( l + 2 (Djf{z)f) and 
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(det</ 2 / (z))( l + 2 (Djf(z))2) 

respectively, then the absolute value of det Q\z) equals one half the 
absolute Gaussian curvature at (z,f(z) ). 

Since Q is symmetric there is an orthogonal matrix Uz such 
that UZQ'UZ is diagonal. Let \p be an even C°° function on R such that 
i/O) = 1 if \y\ ^ 1 and x^(y) = 0 if \y\ ^ 2. Define 

4(y) = ^yx/8\(0))...^yn/8>n(0)) 

and 

Uy) = 4(u*(y - z)/c0)g(y) 
where C0 is the constant in Lemma 2 of Section 3. Thus \pz is supported in 
a small neighborhood of z. 

If 

*̂ = ô£ - 2 ẑ 

then the integral I\ in (8) can be split into parts: 

7i = / ^ ' ^ { ^ + 2 tz}dy s /* + 2 72. 

Define 

(9) 7, = g(z)e~'R^ jR„ e''RQ^(Uzy)dy 

where Q = <2(j) = / ô ' ( ^ -
Suppose that either S is convex or T > 1 we will prove the following 

estimates: 

g hx{R, 6) (10) |/*| = / e-'R^dy 

and for each z <E A (6), 

\JZ - L\ = h2(R, 6) 

where 

(11) jFc(h\ + h2)d6 g CR-{n + ])/2 

and Fc = {6:(0) ^ R~]}. If T g 1 and p < T the estimate in (11) is 
replaced by 

12) J r (A, + A2)d» ë < yr ( ' ! + * ( ' ) / 2 for all tf ^ 1. 
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The integrals I* and Iz will be approximated in Sections 4 and 5 
respectively. 

It is clear that the main part of d\i(g) should come from the points 
z G A because 

V<p(z) = V/(z) - 0 = 0. 

Geometrically, this means that the tangent at (z,f(z) ) is perpendicular to 
£ = R(0, — 1). The rather poor estimate in (12) shows that the integral I* 
can also be important. The gradient |V<p(j>) | can be very small without 
ever equalling zero. For example, if f(y) = y3 and 0 > 0 then 

\V<p(y)\ > 0 for all>\ 

Equivalently, the graph o f /has no tangents perpendicular to (0, — 1) for 
0 > 0. On the other hand if 0 < 0 there are two such tangents. 

All that remains of the proof at this point is to show that the expression 
Jz in (9) is equivalent to the main t e r m ^ Q given in the introduction. At 
the end of Section 5 we will show that 

M)- 2 /, 
z<EA(0) 

= h3(R, 0) 

where h3 satisfies (11) or (12). 

3. The regions of large oscillation. 

The proof of Estimate 1. Define 

= 2 \yjt 

Since P is homogeneous in the first jx variables then 

iD»,lWl.|(i.)\..(j.)V)| 

for every multi-index /?. Since the higher order derivatives of <p are 
independent of 0 and the terms of h are dominated by P then 

(13) \D^y)\ ^ C\\y\\{-afi I P 2 j € R». 

Define cone-like regions W-, j = 1,. . . , s by 

^={>,e £f:||^|| â^lbll}. 

Let {T)7: = 1,. . . , s} be a C°° partition of unity on E\ subordinate to 
the covering {Wj} with the homogeneity property: 
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Vj(y) = r,j(ta%,...,fy„) y e E\,t>0. 

For example, {?) } could be defined on ||j>|| = 1 and then extended by 
homogeneity. If / = | |^ | |_ 1 then 

i i ( ^ „ . . . , / a
% ) i i = i. 

Thus 

(14) \D\(y)\ ^ Cp\\y\\-a'p for all jB. 

It follows from the estimate of \p0 i
n Section 2, that ^0 also satisfies (14). 

Therefore 

(15) | i A ( l - t0)r,jg)(y) I ^ C^\y\\-"-fi for all 0. 

The integration by parts will involve operators 

Tjg = V, • { (fyp)g/|V^|2}, j=l,...,s. 

As in the construction of E]9 for y e E\, 

\V^(y)\^ C\vjy\
kr} = C l k ^ H 1 - 1 ^ . 

The function Tjy is supported in a set where the component m^y is large. 
Therefore 

(16) |v,*ooi ^ c|lv|l(*;_1)/*> = c i b l l ' - 1 ^ y G ^ , 

It follows from (15) and (16) that 

(17) |7}((1 - ^)Tïyg)(jOI ^ max J . ^ L l 2 = C\\y\r] 

and in general, 

(i8) \TJ\(\ -*0tysxjoi ^ciwr"1. 
Let 

gy
# = (1 - ^ tyg . 

The integration by parts formula that we will use is 

where JÎ is the outward unit normal vector on the boundary of B. This 
formula can be derived by applying the divergence theorem to the 
function 
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F = gfe-'^jvWjd2. 

Let £2 = E\. Because of the cut-off function (1 — \p0) and the fact that g 
is compactly supported, there will be no boundary term in the integration. 
Integrate by parts N times to get 

(20) J e-iR*g*dy = (iRyN j e~iR"^(gf)dy. 

By (18), 

li iR<P# 'gj'dy g CR~ ( "dy 

^CR~N jW]\Wjy\\-
Ndy. 

Fix j = 1. The cross-section of Wx for a fixed 77xy = t has area 

c I I kuvl *,/*,. 
7>7i 

ck^l &ila|-/i 

Therefore if U = {z e R^:6a ' ^ |z| ^ 1}, 

CR J ba> 
\-N)-\ dr CR-Nb\a\-N 

\i 
if N > |a|. After summing over j = 1, . . . , 5, then this shows that 

^ e~lR\\ - t0)gdy\ ^ CR~M(RbrN 

^ CR~ | a |(l + R(6)yN 

for every N > 0. This proves Estimate 1. 

Proof of Estimate 2. The calculation for Estimate 2 is virtually the same 
except that b is replaced by 

k/ |V(*y-». 

As a result 

1/ cR-M(R\vje\kJ,<kr»)-N-
Summing over j = 1 , . . . , 5 completes the proof. 

«T '^O - ^-njgdy 

We will finish this section with a number of simple estimates for the 
function/. Since P is a direct sum of homogeneous polynomials, d P can 
be diagonalized by a direct sum of orthogonal matrices. Therefore, 

Uz(d
2P(z) )U'Z = A 
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where Uz is orthogonal, A is diagonal, and the eigenvalues Xj(z) are 
arranged so that X(z) is homogeneous of degree kj — 2. Note that 

\\fi) I ê Cky.z|^'"2 C > 0. 

Let &'{0\j = 1, . . . , « , be defined as in Section 2. Also write / ~ j if 
there exists an m such thatym_f < / ^ j m 9 j m - \ <j = yw; that is, /' and y 
are associated to the same subspace Vm. 

LEMMA 1. Suppose that f is a function of type a. Then there exists a 
constant C0 > 0 such that if \y\ = C0 then 

(i) \D,DJf(y)\ =i C|A,(.y)l ifi~j 
(ii) \D,Djf(v)\ S % | X , 0 ) | ifi + i 

(iii) \DjDjDPfiy) | ^ C|X,0) I M " ™ 1 - - - WsyrhAl ifi ~ j . 

Proof. Ify„_, < ; ^jm,jm_x < i ^ j m then 

IAZ}/(>0 I ^ I A - ^ / C J ) I + \Dty(y)\ 

This proves (i). For (ii) notice that DtDP = 0 whenever i -/- y. Therefore, 
as before, 

\DPjfiy) | ^ Cbl Wmy\k~-2 ^ C\y\ \\,<y) |. 

Clearly, for |_y| sufficiently small (ii) holds. 
Estimate (iii) is also clear: 

mDjDPfiy) | ^ C k ^ | * « - V i > T M l 1 • • • M ~ M ' | . 

LEMMA 2. Le/ z <= R", 0 = V/(z). TTzm? is a constant C0 > 0 //z#/ w so 
sra#// that for all 

y e { j : | ^ | ^ C08/fl),y = 1 , . . . ,s) = W 

the following are true 
(i) \f(y + z) -f{z) - Vf(z)y - V2y'd'P(z)y\ ^ %\y'd2P(z)y\ 

(ii) \Vf(y + z) - V/(z) - d2P(z)y\ ^ Vi\d2P(z)y\ 
(iii) If e is any unit vector in Vpfor some j = \,. . . ,s then 

| (e • V)N+2f(y + z) | Si C\Sji6)\kJ-2-N. 

Proof The estimate (iii) of Lemma 1 can be improved slightly to show 
that 

\DtDjDPfiz) | ^ C\\(z) | (ô\(8) ) - W . . . (8'n(8) )~M 

because \Xt(z) | ^ C if fc; = 2. Therefore 

\DlD)D^f(z)yly/\ ^ C\Xt(z)\ JJ b ^ r ^ ' | ^ . | 
m=\ l$m(0)] 

^ CC0M\\{z) | byj-|. 
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Similarly, 

\DiDjDh{z)yiy/\ Si CC0\\,(z) \ \y^. 

Since the roles of i and j can be reversed this shows that the expression in 
the left hand of (i) is less than 

n 

CC0 VlX ĵf \y,\ Vl^jf \yj\ ^ CC0 2 Wj{z) I \yfi. 

Suppose thatym_, <j ^ j m . Because |Xy-(z) | ^ |7rmz|^"2, 

2 Ityz) | \yf ^ C\y'd2P(z)y\. 
j 

As a result the left hand side of (i) is less than 

CC0\y
td2P(z)y\ ^ V4\y

td2P(z)y\ 

for C0 sufficiently small. The proofs of (ii) and (iii) are similar. 

4. The reduction to A (9). The purpose of this section is to prove 
estimates (11) and (12) for hv This will take care of the integral 

/* = / e-iR«y)My)dy. 

The support of \p* is contained in the region 

Q = R" - U {y + z-\njUzy\ ^ %(0),j = 1, . . . ,s). 

The problems of this section are those associated with inflection points. 
We will estimate I* by integrating by parts using 

Tg = V • {VcpglVcpP2}. 

This will require in particular an estimate for the minimum value of V<p in 
£2. This minimum occurs either on the boundary or in the interior of £2. For 
\y\ sufficiently large, |V<p(j>) | ^ C and on the boundary of 

{y + z : | V | ^%j(6),j = \,...,s}, 

\v<r(y) I = W(y) - v/(z) | is Vi\d2P{z)y\ 

because of Lemma 2(ii). Since/is of type a this minimum can be replaced 
by 

(21) | V , 0 ) | iï C\d2P(z)y\ 

^ C min{ \vjO\{kJ~2)/lkJ~^S{9):j = 1, . . . ,s}. 
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Let p(6) denote the distance from 9 to V/(T): 

p(8) = dist(0, V / ( r ) ) = inf{ \e - Vf(y) |: det d2f(y) = 0}. 

Since 

p(0) = min{ \irj0\\j = 1, . . . , s\ kj > 2} 

the expression in (21) can be bounded below by Cp(0). Hence 

\V^y) | ^ Cp(0). 

Now consider the interior of fi. If |V<p| has a minimum at y0 then by 
differentiating, 

d 

That is, 

A ( ^ O ) V < P ( ^ O ) = 0. 

d2f(yo){0 ~ V/(^0) } = 0. 

Since ^0 « A\ 6 - Vf(y0) ^ 0. Hence 

det d2f(y0) = 0. 

This shows that y0 <E T. Therefore |V<p(̂ y) | â p(0) at any minimum 
in £2. 

It follows from the definition of ip* in Section 2 that 

|Mk(;y) I ^ C^K») r * • • • W ) )~A 

and */•* satisfies the same estimate. 
Now, since |V«p(j>) | ^ Q>(#) for all jy G Œ, and since 

p(6) ^ min{fi/fl):y = l , . . . , j } , 

then 

c c c 
(22) | i (y*) ( .y) I = ,_ , 2N r fiV7 i \W/ : s T ^ = / //3\ \2AT 

(inf|Vv| )z (inf|Vv| ) (mm Sj) (p(0) ) 
This estimate can be improved if the curvature vanishes only at the origin. 
Integration by parts N times using T shows that 

(23) | / J ^ CR~N\f e~iR*TN(^)(y)dy 

In the set F = [0:p(0) > R~h, \6\ ^ 1} 

(24) JF 17,(0) \d0 ^ CNRNR2hN for all R è 1. 

As a result, if 6 < !/2 then by choosing TV large enough we see that 

)F\h(0)\dO ^ CR-(n + ])/2. 

^ CR-Np~2N. 

i 
As mentioned in the introduction T is the union of linear subspaces 
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r i 5 . . . , Tr Consider a fixed surface Tm, and let 

Wm = {0:dist(0, T) = dist(0, T J }. 

Since all points 0 are in such a region if suffices to fix Tm and Wnv and to 
consider only 6 e Wm. 

The part of the region F in W] is sketched in Figure 1. Estimates similar 
to (24) will eventually also be obtained in the regions F], . . . , FN. 

0-plane 

/ _ 

-K z; 
z i 

x ̂ 

x: 

Figure 1 
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If p1 â Vi\irfi\ and Wjviy) | ê pY then 

Wjy\ =i C0pi/ikr]\ 

Choose a C°° function 7](y) in Rnj such that ri(y) = 1 if \y\ â 1 and 
TJO) = 0 if bl ^ 2. Let 

G, = {y G ^ : | V | ^ C o P ^ - ^ } 

and 

lip) = v(y/coP
y/ikJ-l)). 

If py < Vi\irjO\9 Gj and i\j will be different. The fact that det d2Pj(y) 
vanishes only at the origin in V means that VP is locally one-to-one from 
V onto itself. Therefore VP is locally one-to-one from Rn to R". Because 

|det d2f(y) - det d2P(y) | ^ V4|det d2P(jO I 

then V/is also locally one-to-one. If dim V > 1 then VPy is one-to-one on 
Vj because the unit sphere in V- is connected. Suppose for the moment that 
dim V > 1. Then for each 0 and j there exists a unique w- in K- such 
that 

Also 

ck/|1/(^_1) ^ ky| ^ ck/|1/(^_1). 

Since VP is homogeneous of degree k• — 1, there exists a set 

Gy = (^ G ^ ' wj > c\y\ lwyl a n d 

such that if 

I (VjfXy) I ^ PT 

then j ; e Gj. Let 7]y be a C°° function on Vj such that 17,0) = 1 i n Gj and TJ-
is supported in a set like G- but with c and C replaced by Vic and 2C. 
Suppose also that 

\D\(y) | ^ C ^ " 7 ^ 1 for all ft y e R" 

If dim ^ = 1 and &• is even then VP is still one-to-one and onto and the 
above construction of G and 77 can be used. If kj is odd then 

V ( w , ) = w / 

has either two solutions or no solutions in Vj, depending on the sign of IT p. 
In this case define Gj to be the union of the two sets corresponding to the 
two solutions of the equations 
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Vjf(Wj) = ±77 / . 

E2 = {-V:")J; e G, for; = 1 , . . . , s) and 

h(y) = IJI(WIJ) . . . vs(^sy)-

In this definition each Vj is identified with R"J in a natural way. 

' Cp"Jy/(kJ~X) if PY ^ Vi\vjB\ 

CpHJyWjB\-lkJ-2)/lkrl) if pY ^ Vik/| 

â Cp"/7(max{pY, 1^1 } )-<*y-2>/(*,-i>. 

I f ^ = 0 ^ < = T J t h e n 

i£2i ^ cp̂ f n p-^-w,-!)] / nwr^2^"1»]. 
This estimate is used to bound part of /*: 

\G,\ ^ 

(25) ! / < -i«<p. e " % * , # ^ C|£2|. 

From the construction of E2 it follows that if y is in the support of 
(1 — \p2) then 

|V<p( j ) I ^ Cp\ 

The estimates for 77 also show that 

Therefore an integration by parts as in (23) shows that 

(26) 1/ ~iR% e-tK*(l - W*dy ^ CR-"\j e-lR*TN((l - *2W*)dy N 

^ CR~Np~~2yN. 

The estimates (25) and (26) will be combined to estimate I* in a set 

F = {6:R~B ^ p(0) ^ R~b}. 

Hence if y ^ 1, 

fF \h(9) \d0 ^ CR R-bnj + ybnj(kj-2)/(kj-\) 

+ CR ( n R-B»j+2yNB\. 
V ^ m 

If 2yB < 1 then the second term can be made less than CR (" + 1)/2 by 
taking TV sufficiently large. Let 
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nyb + Z, ybrij - ybrij _ I = b(ax + ya2) 

m J 

where 

a, = n — dim T and o2 = dim Tm + 2 —• 
JCmkJ ~ l 

Then if 2yB < 1, 

(27) jf |/#(0) |</0 S C^-Ma,+ya2) + c^-Ci + i ) ^ 

If /? > Z?(aj + o2/2B) then y can be chosen so that 

2yB < 1 and p < b(o] + yo2). 

The problem now is to split the set { \0\ ^ 1} into sets of the form F in 
such a way that the decay rate b(ox + yo2) in (27) is as large as possible. 
Let 

Fj = [0:R~bJ-' ^ p(0) ^ fl"-*;} for y = 1, . . . , JV. 

From the simple estimate, |/*(0) | = C it follows that 

\I*(0)\dO ^ CR~{n + X)/1 

if b} = (n + l)/2. It is necessary to maximize 

ft/a, + a 2 /2^_ 1 ) 

for a sequence Z>! â 62 = • • • = ^ + i s u c r i t n a t 6yy+i < 1//2- ^ ^v+i < 1//2 

then (24) shows that |/*(0) | is appropriately bounded in the region 

(p(0) â /? -*"} . 

Consider the function 

p 2xp 

L 

g(x) 
(aj + o2/2x) (2xo] + o2) 

If & , = ( « + l)/2 we want to show that for N sufficiently large 
g (b{) < Vi. As N increases gN(bl) approaches the positive fixed point of 
the function g. This fixed point is 

2p - o2 

x 2a j 

Therefore for g^(/?]) < Vi we must have 

2p -

2a, 
< Vi. 

This is equivalent to 
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V2 

E2 
^ support of \pz 

1 ' Z 

1 • z' 

E2 

Figure 2 

p < %(a, + a2) = Viln + 2 —^— ) ^ %(* + T J . 
-C J ~ 

Hence if b- = gjl(bx) for y = 2, . . . , N + 1 then we have split Wm into 
sets F- such that 

L \h(O)\d0 ^ CR~P + C#~ (" + 1)/2. 

If T0 = min{rw:m = 1, . . . , t) > 1 then we can choose p = (n + l)/2 
and 

m = 1 m 

If T0 ^ 1 then for any/? < (n + T 0 ) /2 

X,^, | /*(»)l^^ C/T' * è 1. 
The only estimate that remains for /* is in the case where 2 is convex. 

In this case the only points where |V<p(_y) | = 0 are the points of A'(6), and 
there are only two such points. These points are roughly antipodal. Thus 
in a neighborhood of y = 0 there can only be one such point. Since there 
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are no inflection points the problems associated with I* do not arise. The 
modifications for the simpler convex case therefore more naturally fit at 
the end of the next section. Similarly, for subspaces Tm associated with 
convex polynomials P, the problem illustrated in Figure 2 does not arise. 
Therefore we need only be concerned with the distance to those subspaces 
associated with the nonconvex polynomials. This gives the estimates for 
the integral of I* with the parameter T defined as in the introduction. 

5. The points of stationary phase. In this section we estimate the 
integrals 

where z e A (6). Fix z e A(0). Since z is fixed the dependence on z will 
often be suppressed; for example, Q(y) = y\Q\z) )y. All the constants C, 
except those identified by Cz or c#(z) are independent of z. 

Since z is fixed the coordinate system will be chosen so that d P(z) is 
diagonal. As in Lemmas 1 and 2 we will suppose that the eigenvalues {À }̂ 
are arranged so that X is homogeneous of degree kj. 

Let ri be a C°° partition of unity on the unit sphere such that for some 
constant Cj > 0 

[ l ifl^l ^2Cx\y\ 
1 [Oifbjl ë Cx\y\j = 1,. . . ,«. 

Define 

rif(y) = Vj(y/\y\ ) and v*(y) = vfiVWJy^ . . . , V\K\y„). 

Then T)*(y) = 1 in the pair of cones defined by 

n 

{.y:|X,.| \yt\
2 §ï (2C,)2 2 l\l \y,\2} 

i= 1 

and T\*(y) = 0 in the set 

{.y:|X,.| \yf ta c] 2 |\.| \y,\2}. 

Also it follows from differentiating that 

IZA/OOI S Cfi\y\-W and 

\D^f{y) | ^ Ĉ IAf" .. . \£«|*(2 |\-l b,|2)~l/?|/2. 

However if |/8| ¥= 0 then 

2 |\.| b,|2 â C|Ay| \yfi 

in the support of D^tf. Therefore 
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(28) \D^(y)\^c(h\"\...hH\\-^ 

We will use this partition of unity on R" to split up Iz. Define 

LJ = / e-'R^+z\f{y)Uy + z)dy. 

Now Iz = L, + . . . + Ln. Consider a fixed j between 1 and n. For 
simplicity 

We begin by integrating by parts M times using the formula 

where T (TJ) = D.(TJ/ZW) and 7L is they-th component of the outward unit 
normal vector to 8S2. Except at the origin r)(y) = T)*(y)^z(y + z) is a C°° 
function with compact support. A natural choice for Q therefore is 

0 = { \y\ ^ e} = R" - B, 

Integrating M times gives 

We will show that as e approaches zero the boundary terms in (29) 
disappear. 

For € sufficiently small, |V<p| ^ Cze because det d2<p(z) ¥= 0. Therefore 

IT7(T,)| ^ c i v ^ r 2 m ê cz<-2m. 

j [ J =§ Cze~2m~]\dBe\ =i C/-^2m^\ 
Hence the boundary terms in (29) go to zero as e —» 0 if m < (n — 7)12. 
Therefore 

(30) LJ = {JRY h e~lR*TJ 
M(v)dy 

if M < nil. 
To integrate further it is necessary to obtain better estimates for T-. It 

follows from the definitions that 
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(31) |I>f(T,)|H/>JV^)l = W~" 
By Lemma 2, 

(32) | V , 0 + z) - d2P(z)y\ ^ V2\d2P(z)y\ 

and 

(33) \D^(y + z)\*k C|X/z) | (8ft) ) 2 ~ N . 

By (32), in the support of TJ, 

(34) \V<p(y + z) | g *i|</2P(z)y| è Vi|A/zty|. 

It follows from (31), (33), and (34) that 

(35) |7f(„)| ^ C 2 J ^ ( « ; < t f ) ) ^ ^ g C\\fN\yf2N. 

Let 

5/ i | ) (^) 

£=o |X/^/ 

where 

2x-(w + 2)/2« f det J 2 / (z) | 

Ide t d2P(z)J 

Note that 

(36) \DjQ(y) - Xjyj\ ^ Viltyztyl 

for z sufficiently small. The following estimates are all for |0| ^ e0 where < 
is so small that (36) holds. Then just as in (30) 

(37) L*(z) s h„e-'R^ + Q^\(y)dy 

= (iR)~M X ' ^'7?Wz) + Ô ( > , ) 1 5f (r,)cfy. 

As in (35), the estimate 

\D^(y + z)- D^Q(y + z)\£ C\X;\ (Op) ) 2 ' N 

from Lemma 2 leads to 

yj 

8p) 

(38) |S;v(r,)- 770OI ^ C\\fN\yj\ 

The estimate 

N[„\-2N yj 

«;<») 
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(39) \<p(y + z) - <p(z) - Q(y) \ ^ C\\jyj\ 
yj 

of Lemma 2 will also be useful. Let 

Q#(y) = <p(z) + Q(y). 

Using (35), (38), and (39) it follows that the difference between the 
integrands in (30) and (39) is less than 

(40) \e-iR*T? ~ e-lRQ#S»\ ^ \e~lR* - e~lRQ*\ \T»\ + | r f - sf | 

^ C(R\\} \y^)\j\\^N\yf1N + C\XfN\yj\ 
~2N yj 

Let B€ again be the ball of radius e about z. When \y\ is sufficiently small 
the second term in (40) is the larger. Thus 

- A / - 1 

0 as e -» 0 

7^ _ e-WJ*Ls»dy 
J D,<p J 

1M-\ 

a «-1-2A/ 

~ * M + 1 s ; i x / l
M + 1 

if M < (n — l) /2. This gives us an improvement to (30): 

(41) L, - Z*= ( i t f ) - " lim ( e-
iR*T? - e~'rQ*S™dy 

J J € _ ^ Q JBC
€ J J 

if M < (n + l)/2. Now let £/(z) be the set of points y in the support of 
17 = T]y* ẑ such that 

\y,\ ̂  \RXj(z) rv\ 

In this region U(z), the second term of (40) is the larger. Since the support 
of j] is contained in a set of the form 

{y.\\\\yf ^ C|X,| | y\2 for / = ! , . . . , « } 

then 

(42) \(iR) M e~iR*TM _ e - t f G V ^ i 

Œ 

/ 
yt/(z) 

' j o IM 

7 

M W -2M n/1 
M, 

o ^ / 

where 

https://doi.org/10.4153/CJM-1986-016-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-016-7


354 BERNARD MARSHALL 

If 

then 

M, 

M* 

min{ y 1^1^1,5;}. 

min{V|X^8;:/ = l , . . . , n } 

A/, ^ m i n { ^ À ^ | , M*}. 

If K = |A, . . . A„r" then the integral in (42) is less than 

(43) 
:(R\Xj\ ) - % \ * [\*V 

8'jK
m 

CR-(n+\)/2 

j 0 
x w - l i , . il — 2Af • 

Œ - ( , + l)/2 

= .J/2 * " ^ x y l '/2 
K , / 2 M . 

To approximate the part of (41) over the set U(zf we integrate three 
more times. After one integration the boundary terms will be 

(iR) -M-\ 

S CR 
.„_, iA;r(i?ix.i)",/2 

ix,<*i\.ir*i2A/+1«;^ 
çR-{n+\)/2 £R-(n+\)/2 

;n/: 
'min|/?\r 
0 dy, 

VJ'2\\ t'A 
K

1/2M* 

Similarly after the second and third integrations 

(iR) - À / - 1 / I -
JdU\ 

Œ - ( « + l ) / 2 K - l / 2 M -

For the integral in (41) we chose M so that (n — l) /2 ^ M < (AI + l)/2. 
In the region outside £/ the first term of (40) dominates. Therefore 

(44) | JuC{e~'R^+3 - e-'RQ*Sf+2} 

C\Xj i(n + l)/2-2(A/ + 3) fg'. 

RM+\]/2M* /X-» ̂ " >" + 2-2(A/ + 3 W 

g c« -(n + l ) / 2 K - l / 2 ZM: 

since n + 2 - 2(M + 3) S - 3 . 
The calculations from (42) to (44) combine to show that 
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(45) \fR„[e-'R*-e-,R,2*]V*4>zdy ^ CR'n%Ry>hM~K 

In a similar way it is possible to replace 

UJ) = >K(y\ ~ *i)/Q8'.(0)) • • • K U, - *„)/QWMy) 
by 

*?(y) = W (Ji - 2,)/Coô',W ) • • • «K ( ^ - z„)'C<p„(8) )g(z)-

Observe that 

| ^ ( j 0 - tf{y) | S Clĵ -l/fi; 

and in general 

\D^z-^)\ ^ C\yrm\ypSj. 

It follows therefore that 

|s(T,;^)-5(r,/f)|ëc^|\7.r>l N\„\-2N 

With this estimate instead of (40) the integrations proceed as before to 
show that 

IX ^ CR~n/2(KRyVlM~]. (46) \JRne-1^ 7i?Wz - tf)dy 

Since 2 y* = 1, then combining (45) and (46) and summing over 
j = 1,. . . , « gives the result that 

(47) |/z - Iz\ ^ C«"w / 2(ic^)"%M* ]. 

The expression in (47) is clearly less than C(RnK)~h when R/2M* ^ 1. 
For the case R/2M* ^ 1 is necessary to re-examine the proof. The term 
|yy/8y'| in (42), after integrating leads to a factor ^ " ^ M ^ 1 in (43). If instead 
we had used |>>;/8.-| = 1 then the expression in (43) would be C(R"K)

 2. 
With the same change in the other calculations we get 

\JZ - Iz\ ^ C(RnK)-Vl. 

Therefore 

(48) \IZ\ ^ C ( J R \ ) _ 1 / 2 ( 1 + RM\)~l/2 

where 

M\ = min{ |\.| (8f0
2:/ = 1 , . . - , * } . 

To complete the proof of (10) and (11) it is now necessary to examine 
the integrability of 

h2(6) = 2 (K(z)yU2(MJ-x 
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in a small neighborhood of the origin: { \0\ ^ e0}. 
Since/ is of type a 

(K(Z) ) â C I I \irfi\a' ij(kj-2)/(kj-\) 

|X(z) | \8'{6) \2 will be a minimum in some direction j = m where 
km > 2: 

|X / ( z ) | | ô / 'W | 2 èCk m ^ - / ( ^ - 1 ) . 

Therefore 

h2(6) ^ cwjr^2^-^ n Mr»A-2v2(*y-'). 

This is integrable over each subspace V., j ¥= m, because 

rijikj ~ lyUkj - 1) < n}. 

If j = m then the exponent of \7Fm6\ is 

_ *m _ n
myi

m ~ 2) 

2(km - 1) 2(*m - 1) • 

When nm ¥^ 1 this is greater than — nm and so h2(0) is integrable. When 
nm = 1' h2(6) contains a factor of \irm0\~ , which is not integrable. In this 
case however the Gaussian curvature vanishes on the orthogonal comple­
ment of Vnv which is a subspace of dimension n — 1. Therefore 

- " - ! < i . 
km 1 &w 1 

Although h2(6) is not integrable, it is of weak type L1 on { \0\ ^ e0}: 

(49) |{|A2(0)| > 0 1 = C//. 

Now we must show that 2 Jz approximates the main term</(£). From 
the definition of / , in (9) 

X- ^"'"^^^^fc^-W^ = X- -̂̂ ^^^ f̂-(y)dy 

where A = 2UzQlfz is a diagonal matrix with eigenvalues 
{X',, . . . , \'n}. 2Qf was modified so that the absolute value of its 
determinant is the absolute Gaussian curvature K(Z). Thus 

-iRviz) TT / jM,y 
J - o o 

y2 = g(z)^-/IJ^> I I / JRW /2Hy/&p) )dy 

https://doi.org/10.4153/CJM-1986-016-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-016-7


HYPERSURFACES OF R"+1 357 

= g(z)e~iR^z)2n/2(RnK)-Vl 

" f°° 2 

n J _œ ^z(sgn ̂  Ky(R\y (ty2yV2)dy-x 
.7 = 1 

A simple integration by parts shows that since \p = 1 near the origin then 
the integrals equal 

(50) I I / _ e~l{sgnXJ)y dy + 0 ( ( 1 + RMlyVl). 
.7 = 1 ° ° 

The values of the Fresnel integrals at infinity are 

J - c o S i n ( ^ ) ^ = J _ T O ™S(x2)dx = Y ^ . 

If v is the number of positive eigenvalues of d f(z) minus the number of 
negative eigenvalues then the integrals in (50) equal 

nfVf + .^WfH' 12 ivir/4 

J--

This shows that 

(51) \JZ - g(z)e-lR(f(z\27T)n/2(RnKyV2ei^/4\ 

^ C(RnK)~v\\ + RM\yy\ 

Also R can be replaced by (R V 1 + \0\2) with the same error. 
The error on the right hand side of (51) is acceptable because it is the 

same as that of (48). If xf = (z,f(z)) is a point on the surface where 
the tangent is perpendicular to £ = R(6, — 1) then g(z) = g(_x')> 

R V l 4- \6\2 = |£| and R<p(z) = R(z 0 - f(z) ) = x' • £ 

Therefore 

2 §(z)e-''^z)(2^)w/2(«vTTW)"n/Vw/4ic"1/2 

= 2 g(jc>-,v-*(2</2i«r',/Vjc')",/v,'/4 = wnllM\ 
x'eA'(O) 

This completes the proofs of Theorems 2 and 3, except when 2 is 
convex. 

Suppose that 2 is convex and consider the region \y\ ^ C|j>|. In the 
calculations of this section we used the fact that 

\V<p(y 4- z ) | ^ Vi|X<z)y.| 1̂ 1 S CM 
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in the support of \pz. This gave the estimate in (35) for T. Since 2 is convex 
there are exactly two points where the tangents are perpendicular to 
£ = R(0, — 1) and these points are far apart. Therefore in this case we 
estimate the whole integral 

/', = / e-,R^\(y)g(y)dy 

rather than splitting it into parts as was done in Sections 4 and 5. Since 
\V<p(y + z) | increases away from the origin we use 

|V<p(y + z) | è C min( |X/Z)JJ.|, |A/z)«;{0) I ) lj ;| § C\y\ 

in the support of \p0. Now the integral from \R\j\ ~Vl to Sj in (44) is the same 
as before but to it we must add an integral 

if 5; è |Myr1/2. If S; ^ |^Ayr1/2 then the integral in (44) does not occur and 
so the estimate in (43) alone suffices. A similar modification to (43) has no 
effect on the estimate. Therefore the calculations proceed as in (48) 

(52) \I\| ^ C(RnK)~v\\ + RM\)~X/1. 

This proves Theorem 2 and 3 when 2 is convex. 
Now consider Theorem 1. As in (52) 

(53) \I',\ = I / e-iR«y)${y)gdy 

g cr^nMI"^"2"2"'"1). 
. 7 = 1 

If 8/0) â /T1 '*./for ally then 

S 

(54) |/$| g CR~"n I I Rn>{kr^llk, = CR~W . 

On the other hand the support of ^3 is contained in the rectangular set 

E3 = {y:\y/\ ?k 8/9),j = \,...,n). 

US/6) ^ R~Uki for ally then 

S 

(55) \I'3\ ^ C|£3| i C l I («X»))^ ^ C # H a | . 
7 = 1 

The general case is a combination of these two extremes. The set E3 can 
be written as the Cartesian product E3 = E'3 X £3' where £"3 is a 
rectangular solid with sides of length ôj(0) ^ R~x/k> and £3 has sides of 
length Ô;(0) < tf~1//cv. Now 

C(RK)~n/1 
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'3 - /« , { / * ' " * '"** ' } * ' • 
Integrate by parts to get an estimate similar to (53) for the inner integral. 
The constant obtained will depend continuously onj / ' , since it depends on 
the derivatives off and g. Then a calculation similar to (55) completes the 
proof that 

\r3\ ^ CR~la]. 

Note that the restriction on the higher order terms off (and <p) plays a role 
in this step. This proves Theorem 1. 
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