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THE FOURIER TRANSFORMS OF SMOOTH
MEASURES ON HYPERSURFACES OF R" !

BERNARD MARSHALL

1. Introduction. The Fourier transform of the surface measure on the
unit sphere in R"H, as is well-known, equals the Bessel function

Qm "2 CE YT, v = (0 — 1)/2.

Its behaviour at infinity is described by an asymptotic expansion
_[Y,\=] e ¥y = 2(2m)"? cos(|§| - %)Igl_"/2

+ 0( Igl_(’1+2)/2)-

The purpose of this paper is to obtain such an expression for surfaces =
other than the unit sphere. If the surface ¥ is a sufficiently smooth
compact n-surface in R""! with strictly positive Gaussian curvature
everywhere then with only minor changes in the main term, such an
asymptotic expansion exists. This result was proved by E. Hlawka in [3]. A
similar result concerned with the minimal smoothness of 2 was later
obtained by C. Herz [2].

Our focus therefore is on surfaces with vanishing curvature. In this case
there are the estimates of W. Littman in [4]. He showed that if k& of the
principal curvatures of = are bounded away from zero then

diué) | = /Ee"‘f'*’dm')

More delicate estimates are obtained in [6], [7] and [8]. Their results

show that for = convex and C the interior of X, the radial maximal
function

U(.f’) = sup r(n+2)/2b2\c(r£r) |
0<r<oco

= C + |g)y 2

is an I” function on the unit sphere S" for some p depending on =. In
particular Svensson proved that if = is smooth, convex and has no tangent
of infinite order then U is in I* if and only if

/E Kk(x)? P 2dx < oo

Received February 21, 1984 and in revised form October 26, 1984. This research was
supported by NSERC Grant U0074.

Ly
ro
o

https://doi.org/10.4153/CJM-1986-016-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-016-7

HYPERSURFACES OF R""! 329

where k(x) is the Gaussian curvature at x € 3.

Our goal in studying cﬁt is to prove I estimates for solutions of certain
hyperbolic equations. To obtain the best estimates it is essential to be able
to isolate the dominant term in the asymptotic expansion of du It will
be seen in [S] that estimates on simply the radial maximal function do not
yield the best range of L? spaces. Our results apply to both convex and
nonconvex surfaces but we assume that the curvature vanishes in a
relatively simple way.

Consider a point x;, on the surface 2 such that the curvature at x; is
zero. We will assume that after some translation and orthogonal change of
coordinates the surface near x; is of the form x = (y, f(y)) wherey € R"
and f'is a smooth real-valued function such that f(0) = 0 and Vf(0) = 0.
We will assume that f is of the form

J(y) = P(y) + h(y).

R" is the orthogonal direct sum of subspaces Vi,..., V. Letm,..., 7 be
the corresponding orthogonal projections. P is of the form

s

P(y) = 2 B(m;y)

where each of the polynomials B is a homogeneous function of

n = dim 14 variables, and P is nondegenerate in the sense that for
every j,

det d°P(y) = 0

only when m;y = 0. Here d*P; is the matrix of second order derivatives of
P. Fix an orthogonal system of coordinates so that

P(y) = P(y,--- ,yjl) t Py - ) Tt P(..,y,).
If P,, is homogeneous of degree k,, define
ki =k, ifj,y<J=J, (Up=0j=n)
and
= (ay,...,a,) = (1/k}, ..., 1/k), la = 2 a.
j=1 7
Also assume that h(y) contains only higher order terms; that is,
J B 9 \5
DPn(y) = (—) (__) h(y) =
Wy
if B & B where
= {B: for every j = , S 77,8 0 or ij,Bl =

https://doi.org/10.4153/CJM-1986-016-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-016-7

330 BERNARD MARSHALL

Also for some j, ij,BI > k;}.

We will describe a critical point x, satisfying all these conditions as being
of type a, and fis a function of type a.

If f'is a function of type a then the Gaussian curvatures of the surfaces
Yot =f(y)and y,,, = P(y) vanish at the same points because

I = {y:det d*f(y) = 0} = {y:det d*P(y) = 0}.
A surface will be called type a if every point x” of the surface is of type
a = a(x’) for some a and
a = min{ la(x) |:x’ € £} > 0.
A surface is of positive type if such a constant a exists.
If the Gaussian curvature does not vanish then every point is of type
(", ...,%)and a = n/2.
If 2 = k; =...k,,, are even positive integers and

S= 0o+ = 1
then

n+1

a = 2 l/k,-.
=

The function

fny) =3 =y
is of type (%, ¥5) but
fuy) =y + yp3

is not.
Define

A'(§) = {x’ € Z: the tangent at x’ is perpendicular to ¢}.

THEOREM 1. Suppose that 2 is a compact convex n-dimensional C™
submanifold of R" ' of type a, that do is surface area on =, g € C*(2), and
dp = gdo. Suppose that for every &, A'(§) is a finite set. Then there exists a
constant C depending only on 2 and g such that

ldwg) | = €1+ 1g)™¢ forallg € R"T

For each £ € R"", the main part of

du®) = fze"g""g(x')do(xo
comes from the points in A'(£).

R Let k(x") be the absolute Gaussian curvature at x’. The principal part of
dp(§) is
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Co(xNg(x) v
172 €
xed (k(x))

where Cy(x’) is constant in the components of the set {x" € Z:k(x") # 0}.
Suppose that after a translation and an orthogonal change of coordinates
in R"! the point x’ on 3 is mapped into the origin in R"T! and the
normal vector u at x’ that points in the direction of £ is mapped into
(0, —1) € R" X R. The surface is now given by an equation y, ., = f(»)
where y € R". Define v to be the number of positive eigenvalues of the
matrix dzf(O) minus the number of negative eigenvalues. Then

CO(X,) — (zw)n/Zeiva.

A8 =

For example, if X is the unit sphere A’(§) contains two points, &/[¢| and
—¢/1§l. The corresponding values of v are n and —n respectively.
Therefore

dg(g) — (27T)n/2{ein7r/4e—i|£| + e—inw/4ei|§|}

2022 cos<|£| - %”)

If f'is of type a then the restrictions imposed on the higher order terms
imply that the curvatures of fand P vanish at the same points. This means
that

T = {y:det d’f(y) = 0}

is the union of a finite number of linear subspaces I},...,I,. The
subspaces I, are the orthogonal complements of the spaces V; such that
kj > 2.1f I, and V; are orthogonal complements then define

T = 0/ (k; — 1) where n; = dim V.
Let
T = min{nj/(kj — DR is not convex}.

If every P, is convex then set 7 = co. The parameter 7 gives an indication
of the type of inflection points present on the surface. For example, if
2=k =...=k,

k,, = max{k;k; is odd}
and

fO) =B =By k> 2
then » = 1/(k,, — 1). Also let n, = min{n;:k; > 2}.

THEOREM 2. Suppose that X is a compact n-dimensional C™ submanifold
of R"1 of positive type, that do is surface area on 2, g € C™¥(Z), and
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dp = gdo. Assume also that for every ¢ the set A'(§) is a finite set,
and v > 1.
If ny > 1 then there exists a function h. (&) such that

dpE) = 187"2E) + ha(®)

where

r " ./|$|=r lhe@®) ldt = Cr= V2 forallr = 1.

If n, = 1 then the L' norm of hy is replaced by the weak L' norm:
o (&2 ) > A= O/ A>0

where o, is the uniform probability measure on { [§| = r}.

THEOREM 3. Let £ and dp. be as in Theorem 2, except that 0 < 7 = 1.
Then for every p < T,

r" L,lzr lho(§) |ds = Cr=""P"2 forallr = 1.

The weaker results in Theorem 3 are caused by the inflection points
(r=1).

If 2 is orientable then #(§) is closely related to the Gauss map, which
maps each point x’ € X to its outward unit normal vector. In fact, A’(§) is
the inverse image of the point set {§, —£}. Therefore

1 1

2 JEI=T 0 S0 In(x) |

equals the surface area of 2. As a result, by the Cauchy-Schwarz
inequality, for all r = 1

Fn ./I;I=’ j(ﬁ)dé‘ = C\Areaof S = C.

COROLLARY. If 2 and dy are as in Theorem 2 or 3 then there exists a
constant C such that

Pt ﬁq:r due) de = Cr ™ forr = 1.

Since the main term #(§) is singular where the curvature k(x’) vanishes,
Theorem 1 is not a consequence of Theorems 2 or 3. The estimate
of Theorem 1 is appropriate in directions £ where the curvature x(x’) is
zero but in the other directions the decay rate of ﬂﬁ is Clg| "2

These estimates are useful in applications. Previously, in describing the
behaviour of solutions of hyperbolic partial differential equations one
used estimates of the form

ey = clg e
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as, for example, in [1]. The point of Theorems 2, 3 and their corollary,
however, is that from the point of view of spherical averages the decay
rate of cﬁx is like CJ¢~"/2. In this sense the decay of cﬁ; is the same
whether or not the curvature of 3 vanishes. This can be seen similarly in
the results of [6], [7] and [8]. In the I’ estimates for wave equations, i
i1s placed into another oscillatory integral and estimated. Since polar
coordinates and integration by parts in the radial direction are used, the
natural way to approximate cﬁﬁ is in terms of averages over spheres, as in
Theorems 2 and 3.

I thank C. Herz and W. Strauss for discussions on parts of this
research.

2. Summary. The three theorems will be proven together. This section
contains an outline of the whole proof.

The first step is to reduce di(¢) to an integral on R". Fix §, € R" "\,
The main part of dp(io) comes from the points of A’(§0) If gis a
C® function on = that is supported away from A’(£,) then d,u(ﬁo) can be
put in the form

oo

di&) = L e g (X)du(x') = f o€ b, s)ds
where £ = &/1&| and (&), s) is a C* function of s whose derivatives
depend smoothly on £). Therefore in this case

(&) | = Cy(1 + 1g1) ™" for every N = 0.
As a result, by using a C partition of unity on =, we may assume that g is
supported in a small neighborhood of a fixed point x, € A'(§,). The set
A’'(&,) is finite by assumption.

Make a translation and an orthogonal change of coordinates so that
xq = (0, 0) and & = (0, —1) € R" X R. The surface near x is of the
form x = (y, f(y)) where y € R" and f(y) € R. Assume that g is sup-
ported in this small neighborhood of x;. Suppose also that { = R(4, —1)
where 6 € R”, R = 0. R is not quite the modulus of £ but [£§|//R — 1 as
18] — 0. Now dji(£) becomes

(1) dut) = fE e g (X)du(x') = f we Mgy

where g is a C™ function supported in a neighborhood of the origin and
o) =0y — f(»).

fif a function of type a, as described in the introduction.

If VP(y) = 0 for some point y such that m;y # 0 then by the
homogenelty VP(y) = 0 on a ray in V. This means that

det d*P(y) = 0
on this ray. Therefore since det d*P(y) = 0 implies 7,y = 0, the gradient
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V1}( ») can vanish only when 7;y = 0. Hence
VE() | = Clyls!.
Also if B € B then either [ijBI = 0 or
|ijﬁ| = Clyl Ivrjylkf‘l where V, = 7V.
Thus for y in a sufficiently small neighborhood of the origin
(2 IVaO) I = %IVP(y)] j=1,....s
Suppose that j,, | <j < j,,. Then
IDDA(y)| = Clyllm, yI*» "> = ClylIdet d°B,(y) .

Use the formula expressing a determinant as a sum over permutations. It
follows that

S
\det d’a(y)| = Clyl" 11 Idet d°B,(y) I" = Clyl"ldet d*P(y) .

m=1
Similarly,
|det @’ (y) — det d°P(y)| = Cly|Idet d°P(y)|.
So for |y| small enough,
(3) |det d*f(y) — det d*P(y)| = %|det d*P(y)|.

We will assume that the support of g is so small that both (2) and (3) hold,
and also the estimates of Lemmas 1 and 2 in Section 3 are true.
In estimating the oscillatory integral

diugy) = L e FIg(y)dy

it is natural to first look at the part of R” where there is a great deal of
cancellation; that is, the set of points y such that |Ve(y)| is large. In
Section 3 we prove a number of results in a set E{, where |[Vg(y)]| is
large. The corresponding results where |Vg| is small will be proven in
Sections 4 and 5.

Let

a=(ap,....a) = /K, ..., 1K),

n
lof = X lel. and
j=1

s
Oy = 3 Iml/ G0,
j=1

Also let b = max{R™', ()}.
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Constants Cy, ..., C; will be chosen so that whenever y is not in the
set

E = {yilmyl = Cp''5.j = 1,....5}
then
Vf(y) & {wilmwl = 265D 5 =1, s}

By assumption, if VPi(y) = O theny, =y, = ... =y, = Oand VP, is
homogeneous of degree (k; —1). Therefore there exists a positive constant
C} such that

VP | Z Gyl + o+l DY = Cllayf
Define VJ = ij. Thus, for example,

Vif(y) = D f (). D f($),0,....0).
Since |V h(y) | = AIVP/(y)| then
@ VS| = nClayl

Define G similarly for allj = 2, ..., s, by considering each V,, separately.
Now if

Vf(y) € {wilmw| = 2657 5 =1, 5}
then
njzb(kj*l)/kj > %C;leylkj—l.
Hence
() lmyl = 2mb"RiinC; forj =1,....s.
Therefore define
Cj = 4n/Cj’-, j=1...,s
This shows that in fact y € E,. Because
lmfl = 6%~ forj =1,....s
thenif y & E|,
Vo(y) = 6 — Vf(y) & {wilw| = %K j =1, s}
Therefore outside E, the oscillation is large in the sense that
(Ve(y)) Z b = max{R"', (6) }.

A C® function ¥, with compact support can be chosen so that
Yy approximates the characteristic function of E; in the following
way: Yo(y) = lfory € E|, ¢yo(y) = 0 for y & 2E,, and for every multi-
index B,
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PPy | = cpp P

ESTIMATE 1. For every N > 0, there exists a constant Cy > 0 such
that

© Il = ‘ f e~ I — yy(»))B()dy
CyR M1 + R¢8Y) V.

1A

As in the case of E|, a set of E, of the form
Ey = {yimyl = Clag" 47V, j = 1, 5}
can be chosen so that E, contains all the points y where
ijVf(y) | = 2|77J~0| forallj =1,...,s.

If ¢, is a function approximating the characteristic function of E, then we
will prove the following.

ESTIMATE 2. For every N > Q there exists Cyy > 0 such that

Ll = | / e ML = go(y) JB(»)dy

CyR El (Rlm g1 &=y =N,

IA

Estimate 2 will be used to prove Theorem 1.

We will show that Estimate 1 is of the right type for Theorems 2 and 3;
that is

@ /i;)lsl \1,(0)|d6 = CR™ """ D72,

To prove this it is necessary to estimate

f|0|§l CR™ 11 + R¢8) ) Nao.

If

t=(R"",,... . R"g)
then

(ty = R(8) and dit = R" 1.
Therefore

ﬂwgn CR™(1 + R(8)) N

_ —n -N _ —n
= CR R,,(l+<t>) dt = CR
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if N > n. Since n = (n + 1)/2, this completes the proof of (7).
Suppose that () = R~ !. The measure of

F={0:(8) =R 1}
is bounded by CR~"_ Since the measure of E, is less than CR"“I,

@) | = 11| + ‘ f e Ry ()E(y)dy| = CR™
and

fﬂ@(g) |d§ = CR"""CcR™" = CR™" = CR™"*D"2,

This shows that we may assume that () > R~ .
This leaves only the integral over 2E;:

® 1= fzi e TN ()F( )y
This is the set where |Vg| is small. It is natural at this point to consider the
points

z € A(0) = {z:Ve(z) = 0};
That is, the points where Vf(z) = 6.

Define, forj = 1,...,s,
w0l ST i k> 2
8/'(0) = 1/k .
ON if k=2

The set of all  such that
I1s6) =0
j=1

is a set of measure zero. In fact it is a union of linear subspaces. From the
point of view of Theorems 1, 2 and 3 this set is not important and we may
assume that II§; # 0. Also let
8(0) =6,0) ifj, <j=j, j=1L....mmm=1....s
Consider z € A(6). Let Q'(z) be the matrix

det d*f(z)

) —(n+2)/2n
det d’P(z)

Q(z) = '/zdzP(z)( )(1 - é (D))

where d*f(z) is the matrix of second derivatives of f. Notice that since the
determinants of the first and second fundamental forms of the surface

Yat1 = f(y) equal

(1 + ﬁ (D,-f(z))z) and

J=1
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n —n/2
(det &’/ (2) )(1 2 (0/E) )2)
fn

respectively, then the absolute value of det Q’(z) equals one half the
absolute Gaussian curvature at (z, f(z)).

Since @’ is symmetric there is an orthogonal matrix U, such
that U.Q'U’ is diagonal. Let ¢ be an even C* function on R such that
Y(y) = 1if |y] = 1 and Y(y) = 0if |y| = 2. Define

W) = ¥/8(6)) .. U,/ 8,0))

and

L.(9) = ¥U.(y — 2)/CoE(»)

where C; is the constant in Lemma 2 of Section 3. Thus ¢, is supported in
a small neighborhood of z.
If

Yo =%E — 2 ¥

zE€EA

then the integral I} in (8) can be split into parts:
I = fe*"R'P{\p* + > ¢z}dy =1, + X L.
Define
O J. =) ﬁ, e RO U.y)dy
where O = Q(y) = y'Q'(2)y.

Suppose that either = is convex or 7 > 1 we will prove the following
estimates:

(10) |1, = fe*"%*dy‘ = (R, 0)
and for each z € A(6),
V. — LI = hy(R, 0)

where

(11) fF (hy + hyd§ = CR™" D2

and F* = {6:¢(§) = R™'}. If = 1 and p < r the estimate in (11) is
replaced by

(12) .. (hy + hydo = C,R™""P"> forall R = 1.
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The integrals I, and I, will be approximated in Sections 4 and 5
respectively.

It is clear that the main part of dAp(g) should come from the points
z € A because

Ve(z) = Vf(z) — 8 = 0.

Geometrically, this means that the tangent at (z, f(z) ) is perpendicular to
¢ = R(#, —1). The rather poor estimate in (12) shows that the integral I,
can also be important. The gradient |Ve(y) | can be very small without
ever equalling zero. For example, if f(y) = y3 and § > 0 then

Ve(y)| > 0 for all y.

Equivalently, the graph of f has no tangents perpendicular to (6, — 1) for
8 > 0. On the other hand if § < 0 there are two such tangents.

All that remains of the proof at this point is to show that the expression
J, in (9) is equivalent to the main term #(£) given in the introduction. At
the end of Section 5 we will show that

A& — 2 J| =R 0

z€A(H)
where hy satisfies (11) or (12).

3. The regions of large oscillation.

The proof of Estimate 1. Define

n
Iyl = 2 [yl
j=1

Since P is homogeneous in the first j; variables then

(2 (2o

Clmylo ™Ml < cjy||'~«h

for every multi-index B. Since the higher order derivatives of ¢ are
independent of 8 and the terms of 4 are dominated by P then

(13) |DPe(y)| = Cllyll'™*F 1Bl =2,y € R

IDPP,(y) |

A

Define cone-like regions W, j = 1,...,s by

j’
) 1
W, = {y € Epllmyll = ES‘HYH}.

Let {n;: = 1,...,s} be a C* partition of unity on Ej subordinate to
the covering { W} with the homogeneity property:

https://doi.org/10.4153/CJM-1986-016-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-016-7

340 BERNARD MARSHALL

n(y) = 0"y, ..., 1",) y € Ej, 1 >0.
v v

For example, {n;} could be defined on [lyll = 1 and then extended by
homogeneity. If 7 = ||y||~' then

Iy, oy )l = 1
Thus
(14)  1DPy(y)| = CllyII~** for all B.

It follows from the estimate of y;, in Section 2, that y, also satisfies (14).
Therefore

(1) IDP((1 = dom@(») | = Callyll ™ for all 8.
The integration by parts will involve operators
Tg =V - {Tosg/lVel’}, j=1....s
As in the construction of E|, for y € Ej,
Vo(y)| Z Clmyls™! = Cllmpll' =174,

The function 7, is supported in a set where the component m;y is large.
Therefore ' '

(16) [Ve(y)| = A%, = apl' ="y e w,.
It follows from (15) and (16) that
T — - [ T
a7 | S« 11"0)7Ij§)()’)| = I;'lla’; W = Cllyl
B

|
7

and in general,
(18) |T7"((1 = ypm@(») | = Clyll ™™
Let
g =~ Yz

The integration by parts formula that we will use is
—i i —irgt
(19) f e gl dy = — f e M——gldy
Q ] R /02 |qu)|2 )
. Vioo?
+ —J— e 'R‘pvf{'ﬂ}gjz }dy
iR 25T U

where 7 is the outward unit normal vector on the boundary of €. This
formula can be derived by applying the divergence theorem to the
function
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F = g,#e_m"’Vjtp/ |qu>12~

Let Q = E{. Because of the cut-off function (1 — y;) and the fact that g
is compactly supported, there will be no boundary term in the integration.
Integrate by parts N times to get

0) J. e ®egFdy — iRY™V fE e eV (g7 )dy.
1 1

By (18),

f,;(. e"‘“gﬁdy] = crR" fwj Iyll ey
1
< ~p—N -N
= CR fw, llyll =" dy.
Fix j = 1. The cross-section of W, for a fixed 7y = ¢ has area

C IT ™ = Clmylite =,
J=h

Therefore if U = {z € RI:pYM = 2] = 1},

f‘, e Rrgfdyl = cR7V L |zfflal = —kiN g
1
<= CR_N fl rkl( |01|—N)—|dr _ CR—Nb)Otl‘N
= "
if N > |a|. After summing over j = 1,...,s, then this shows that

L, e (1 — Yo)gdy| = CR™(RH)™N
1

= CR™ a1 + RV
for every N > 0. This proves Estimate 1.

Proof of Estimate 2. The calculation for Estimate 2 is virtually the same
except that b is replaced by

|7Tj0|kf/(kf_ l).

As a result

J e~ amaar| = CRlRim 10y
Summing over j = 1,...,s completes the proof.

We will finish this section with a number of simple estimates for the
function f. Since P is a direct sum of homogeneous polynomials, d*P can
be diagonalized by a direct sum of orthogonal matrices. Therefore,

U,(d*P(z))U. = A
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where U, is orthogonal, A is diagonal, and the eigenvalues )\j(z) are
arranged so that ?\j(z) is homogeneous of degree k; — 2. Note that
N |z Caz™? ¢ > 0.
Let 8,’(0), j = 1,...,n, be defined as in Section 2. Also write i ~ j if
there exists an m such thatj,,_| <i = j,, j,,_ <J = J,; thatis, iand
are associated to the same subspace V,,.

LEMMA 1. Suppose that f is a function of type a. Then there exists a
constant Cy > 0 such that if |yl = C, then

@ IDDS()| = CNO) | i~
(ii) IDfD,f%y)l = BN ifi " .
(i) [DDDPF(y)| = CIN() [l ™ALy 7B i i~ .
Proof W j, | <J = jpimy <i = j, then

IDDf(y)| = IDDP(y)| + [DDh(y)l
= Q™2 + Clyl a2 = AN |-

A

This proves (i). For (i1) notice that D,D;,P = 0 whenever i + j. Therefore,
as before,
-2
IDDf(») | = Clyl lm, 72 = Clyl N .
Clearly, for |y| sufficiently small (ii) holds.
Estimate (iii) is also clear:
IDDDPf(y)| = Cla, ylon ™ 2ayl MBIl y .
LEmMA 2. Let z € R", 8 = Vf(z). There is a constant C; > 0 that is so
small that for all
y e {ylmyl = C8(0),j =1,...,s}y = W
the following are true
() If(y +2) = f(2) = Vf(@2y — Wd'PEyl = %ly'd’P@)yl
(i) Vf(y +2) = Vf(z) — d’P@2)y| = %ld’P(2))]
(iii) If e is any unit vector in | for somej = 1,...,s then
le- VN f(y + 2)| = Cl8) ">
Proof. The estimate (iii) of Lemma 1 can be improved slightly to show
that

IDDDPf(2)| = CING) | (81(8)) A ... (88)) '
because [A\(z) | = C if k; = 2. Therefore

78]

y
|)’i)j‘l

Wm
8,.(0)

N
IDDD*f 2wyl = ah@) | T1

m=1

= CCPING) [yl
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Similarly,
IDDDP(z)yyyP = CCNG) | Iyl

Since the roles of i and j can be reversed this shows that the expression in
the left hand of (1) is less than

CCy VNG il VINGT Iyl = €€, 2] A2 |yl
=

Suppose that j,, | < j = j,. Because |)\J.(z)| = lﬂmzlk"'_z,

2 N [y = ay'd*P@ypl.

J
As a result the left hand side of (i) is less than
CColy'd*P(2)y| = %ly'd*P(z)yl
for C, sufficiently small. The proofs of (ii) and (iii) are similar.
4. The reduction to A(#). The purpose of this section is to prove
estimates (11) and (12) for h;. This will take care of the integral
I, = fe_iRw(Y)‘P*()’)dJ’-

The support of y, is contained in the region
C
_ o . < 0g P =
Q=R ZLEJA {y + zlmUyl = 4n81(0),j I...,s}
The problems of this section are those associated with inflection points.
We will estimate I, by integrating by parts using

Tg = V - {VgglVe| 2}

This will require in particular an estimate for the minimum value of Vg in
Q. This minimum occurs either on the boundary or in the interior of (. For
|yl sufficiently large, [Ve(y)| = C and on the boundary of

G :
(v + zlmpl = 280, = 1.5},

Ve(y) | = IVf(») — Vf(z)| = %ld*P(z)yl

because of Lemma 2(ii). Since fis of type a this minimum can be replaced
by

1) Ve(y)| = Cld*P(z)y|
€ minf |7 8%~ &7 D860y = 1,..., 5}

v
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Let p(6) denote the distance from 8 to Vf(T):
p(8) = dist(6, V/(I)) = inf{ 16 — Vf(y): det d*f(y) = 0}.
Since
p(6) = min{ |’7Tj0|§j =L....5 k> 2}
the expression in (21) can be bounded below by Cp(#). Hence
IVe(y) | = Cp(0).

Now consider the interior of Q. If |Vg| has a minimum at y, then by
differentiating,

d*¢(yo)Ve( yy) = 0.
That is,

AL ()0 — V(3 } = 0.
Since y, & A’, 0 — Vf(y,) # 0. Hence

det d*f(y,) = 0.

This shows that y, € I'. Therefore [Vo(y)| = p(f) at any minimum
" Ith.follows from the definition of y, in Section 2 that
IDPy.(3) | = C&i0) P 30) P
and ¢, satisfies the same estimate.
Now, since |[Ve(y)| = Cp(8) for all y € Q, and since
p(0) = min{8j(0):j =1,...,5},
then

C C C
N = = )
(@) T = Vel 2°  nflVel ) (min 8N T (0(0) Y

This estimate can be improved if the curvature vanishes only at the origin.
Integration by parts N times using 7 shows that

(23) L =cr N / e TN Wu)()dy| = CR™Np 7N,
In the set F = {f:p(8) > R * || = 1}

(24) fFu*(a) ld = CyR VR* forall R = 1.

As a result, if b << % then by choosing N large enough we see that

/FU*(G) |dd = CR™("tD/2,

As mentioned in the introduction I' is the union of linear subspaces
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Iy, ..., I,. Consider a fixed surface I',, and let
W, = {6:dist(d, I') = dist(4, T,,) }.
Since all points @ are in such a region if suffices to fix I, and W, and to

consider only § € W,,.
The part of the region Fin W) is sketched in Figure 1. Estimates similar

to (24) will eventually also be obtained in the regions Fi, ..., Fy.

#-plane
F
F‘V
yd :
P K
Fo—
F
N .
AN
\ Fy
F

Figure 1
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If p?* = Yalm;0] and |V4q>(y)| = p? then
lmyl = Cop" ™

Choose a C® function n(y) in R” such that n(y) = 1if [yl = 1 and
n(y) = 0if [y| = 2. Let

={y € Vilmyl = COpY/(kj'”}
and
n(y) = n(y/Cop"' 47 Y).

If p* < Ya|m 6], G; and m will be different. The fact that det dzP(y)
vanishes only at the origin in ¥; means that VP, is locally one-to-one from
V; onto itself. Therefore VP is locally one-to- one from R” to R". Because

|det d*f(y) — det d*P(y)| = 'ldet d*P(y)|

then Vfis also locally one-to-one. If dim V; > 1 then VP, is one-to-one on
v because the unit sphere in V 1s connected Suppose for the moment that
dim v, > 1. Then for each 0 and j there exists a unique w; in V] such
that

ij(wj) = 7Tj0.
Also
Cl77'j0|1/(kj_]) = ijl = Cleall/(kjvl)
Since VPJ. is homogeneous of degree kj — 1, there exists a set
={y € Viy-w >clyllwl and
iyl = Iwll = prleﬂl_(k/_z)/(kj"l)}
such that if
[(VHD) = o

theny € G Let m; be a C*° function on V such that n(y) = lin G; and v,
is supported in a set like G; but with ¢ and C replaced by Yac and 2C
Suppose also that

IDPn(»)| = Cgo " forall B,y € R™.

I

If dim Vj = land kj 1s even then VI} is still one-to-one and onto and the
above construction of G; and 7, can be used. If k; is odd then

Vifw) =m0

has either two solutions or no solutions in Vi depending on the sign of m 0.
In this case define G; to be the union of the two sets corresponding to the
two solutions of the equations
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ij(wj) = "_"nj().
Ey = {yimy € G forj =1,...,s} and
$(y) = m(my) ... nymey).

In this definition each V; is identified with R" in a natural way.

Cot/ k=D if ¥ = valm b
Gl = —(k, =27k, 1) '
Cp”’yl'”/ol (k;=2)/(k;— 1) if pY = 1/2|7Tj0|
= Cpn/y(max{py’ |7T/-0| } )—(k/—Z)/(k,—l)‘
IfJ,, = {j:V; ¢ I} then
|E2| = Cpny{ H p'—n/y(kj—Z)/(kj—])} { H [77-0["“‘1‘2)/("1_”}.
Jj&J,, JEIm ’

This estimate is used to bound part of I,:

f e Roypdy

(25) = ClE,|.
From the construction of E, it follows that if y is in the support of
IVe(y) | = Cp".

The estimates for n, also show that

IDPYy (1) | = Cpo 7.

Therefore an integration by parts as in (23) shows that

1A

CR™V fe_iR'pTN( (1 — Y)W )dy

= CR ™ Np~ 2N,

(26) f e U1 = YyWudy
The estimates (25) and (26) will be combined to estimate I, in a set
F={6:R"%=p06) =R
Hence if y = 1,

./I;ll*(a) |do = CR—nyb{ H R—bn/-+ybn/-(kj—2)/(kj—l)}
Jé‘]m

+ CR—N{ I_I R—an'*'ZYNB}.

JES,

If 2yB < 1 then the second term can be made less than CR™(th2 by
taking N sufficiently large. Let
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(ki =2

j(k 1)) = b(o; + v0,)

nyb + 2 (bn — ybn

where

op=n—dimI, and o, = dimI, + >
_]‘k_l

Then if 2yB < 1,

(27) fF|1*(0) |df = CR™POF) 4 cRTHD,
If p > b(e; + 0,/2B) then y can be chosen so that
2yB <1 and p < b(o; + v0,).

The problem now is to split the set { |§] = 1} into sets of the form F in
such a way that the decay rate b(o, + yo,) in (27) is as large as possible.
Let

F={0:R" 1 =p@) =R " forj=1...,N

From the simple estimate, |/,(0) | = C it follows that

fp —pb x(0)|d6 = CR™"TD2

if by = (n + 1)/2. It is necessary to maximize
b](ol + 02/217‘]-*1)
for a sequence by = b, = ... = by such that by, < Y. If by, <%

then (24) shows that |1,(6) | is appropriately bounded in the region
{p(6) = R ™).

Consider the function

P 2xp
g(x) = = .
(o, + 0,/2x) (2xo, + 0,)
If b, = (n + 1)/2 we want to show that for N sufficiently large

gN(bl) < %. As N increases gN(bl) approaches the positive fixed point of
the function g. This fixed point is

2 o
20,
Therefore for gN(b,) < %2 we must have
2p — oy
20,

< Y.

This is equivalent to
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E, ; support of .,

l 'z ]

£y

Figure 2

"y
p <o, + 0y = %ln+ 2 — ) =%t ).
Je -

kj
Hence if b; = gf_l(bl) forj = 2,..., N + 1 then we have split W, into
sets F; such that
fF [1,(6)|dd = CR™P + CR™("*tD/2,
]

If 7y = min{r,;m = 1,...,t} > 1 then we can choose p = (n + 1)/2
and

4
ﬂlél 10 1d) = X /Wm [ d6 = CR™"D? Rz 1.

m=1

If 7y = 1 then for any p < (n + 74)/2

ﬁ,lgl 1,(6)1d6 = CR? R=1.

The only estimate that remains for I, is in the case where X is convex.
In this case the only points where [Vg(y) | = 0 are the points of 4’(6), and
there are only two such points. These points are roughly antipodal. Thus
in a neighborhood of y = 0 there can only be one such point. Since there
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are no inflection points the problems associated with I, do not arise. The
modifications for the simpler convex case therefore more naturally fit at
the end of the next section. Similarly, for subspaces I',, associated with
convex polynomials P, the problem illustrated in Figure 2 does not arise.
Therefore we need only be concerned with the distance to those subspaces
associated with the nonconvex polynomials. This gives the estimates for
the integral of I, with the parameter 7 defined as in the introduction.

5. The points of stationary phase. In this section we estimate the
integrals

L= [ e

where z € A(f). Fix z € A(#). Since z is fixed the dependence on z will
often be suppressed; for example, Q(y) = y'(Q'(z) )y. All the constants C,
except those identified by C, or cp(z) are independent of z.

Since z is fixed the coordinate system will be chosen so that d*P(z) is
diagonal. As in Lemmas 1 and 2 we will suppose that the eigenvalues {\)
are arranged so that A; is homogeneous of degree k/.

Letn; bea C °° partition of unity on the unit sphere such that for some
constant C; > 0

() Lif |yl = 21yl
ki 0if lyl = Cilylj = 1,....n

Define

0 (y) = m(y/Iy1) and wr(») = 0 VN VIR
Then n*(y) = 1 in the pair of cones defined by

Ayl = c)y’ § AL %)

and nl*(y) = 0 in the set
Nyl = ¢ 2 I v
Also it follows from differentiating that
IDPa ()| = Cglyl ™ and
D) | = CoAT L NS A Iy A2,
However if |8] # 0 then
SN = NIy P
in the support of Dﬁn;’f Therefore
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B, _
) |)j| IBI

We will use this partition of unity on R” to split up I,. Define

A

_n

i
. A

(28) IDPnr(y)| = c( 7

L = / ST Wy + )y
Now I, = L, + ... + L,. Consider a fixed j between 1 and n. For
simplicity

n(y) = nf(yW.(y + 2).
We begin by integrating by parts M times using the formula

—IiRg, __l_f —iR(p—>( ) _l_f —iRg
.['le n_R asze n D(p +1R Qe 7}(11)

where T;(n) = D(n/ Do) and 7, n; is the j-th component of the outward unit
normal vector to 89 Except at the originn(y) = n/*(y)xp (y +z)isaC™
function with compact support. A natural choice for § therefore is

={|lyl=¢€¢ =R"— B,
Integrating M times gives

L= (&) f|y|=e‘""R¢"J( )Tm("’)"y
./

m=0 ‘R

! M/ —iRe M
* (;E) iz € L) (mdy.

We will show that as e approaches zero the boundary terms in (29)
disappear.
For e sufficiently small, |[Vg| = C.e because det d’¢(z) # 0. Therefore

|7—71(n)| = C1|Vq)|_2m = Czc—Zm.

1.

Hence the boundary terms in (29) go to zero as e = 0 if m < (n — 2)/2.
Therefore

30) L = (i_%)M f e R T (aay

if M < n/2.
To integrate further it is necessary to obtain better estimates for 7). It
follows from the definitions that

é CJE—Zm“lIaBil é Czerl—l“zi’H‘l.
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N N -N
G IDYm | = 1D} @) | = Iyl
By Lemma 2,
(32) IVe(y + z) — d*P(z)y| = Wld’P(z)yl
and
(33) IDNMe(y + 2)| = CIN(2) | (3Y0) Y ™.
By (32), in the support of 7,
(34) [Ve(y + z)| Z WId*P(2)y] = KA.
It follows from (31), (33), and (34) that

A PV
35 1T = C 2 '|L+k(6<0> YN = Ny,
Let
(y)
s - o {72 )
() = DO()
where
B (2 20— (n+2)20 | det d’f(2) }
0(y) = BO'EfEX1 + 21D fE)P) {gerare) T
Note that

(36) IDQ(y) — Ayl = By

for z sufficiently small. The following estimates are all for 0] = ¢, where ¢,
1s so small that (36) holds. Then just as in (30)

(B1) L3G) = fpp e M 00y

= (R)™ f ye RO s (nydy.

As in (35), the estimate

N N , 2-N| Y
IDYe(y + z) — DYO(y + 2)| = CIA| (5(6)) v
from Lemma 2 leads to
(38) 1S¥m) — TV | = My V2.
! . 8]_(0)

The estimate
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(B9 le(y +2) —olz) = Q)| = CIA, y,l

’(0)
of Lemma 2 will also be useful. Let

0% (y) = #(2) + Q(»).

Using (35), (38), and (39) it follows that the difference between the
integrands in (30) and (39) is less than

: . # . . #
(40) e T} — 7RO sjVI = le e — RO T + |T,-N - 8}

| 2N+ Cl)\l Nl)j' N |y

= C(RI\| 8,

Let B, again be the ball of radius € about z. When |y| is sufficiently small
the second term in (40) is the larger. Thus

_ipy—M—1 —iRe My M -iRQ#ﬁj M ‘
(IR) ./E;Bc e ‘pD—-q)T) e B;SJ dy
7

J
= CR*M—I ‘/a.B |}\J|*M‘l|)§| 2M—1

i
8/

Ceé 1M
=S ———57—0 ase—>0
M+Tgy (MF1
RT 51N
if M < (n — 1)/2. This gives us an improvement to (30):
@) L — L= GRY Mlim | e Ror¥ — ¢ 07sMgy
; 0 VB J j
if M < (n + 1)/2. Now let U(z) be the set of points y in the support of
n = nfy. such that
lyl = IRN(2) 17"

In this region U(z), the second term of (40) is the larger. Since the support
of n is contained in a set of the form

{y:IN D = Oyl fori = 1, n}

then

_ _ _iRO*
(42) | (R) M/;,(Z)e 'R"’T}M — ¢ RQ S}Wdyl

y" Hf dy,dy,

-M IRA -M 2M
= CR 0 N Tyl

where

https://doi.org/10.4153/CJM-1986-016-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-016-7

354 BERNARD MARSHALL

. A
M, = mm{ \/ XI . 8,’}.

M, = min{~/]\|8/:i = 1,...,n}

If

then

1 .
Mf = W min V|Aj||y/|’ M*}

If k = [A; ... A,J"" then the integral in (42) is less than

c(RIND)MIN® IRV ity =
s Jo  min{VRllyl, M)yl
]

- CR—(II+1)/2 - CR—(n+l)/2
K1/28;|>\j'1/2 = K]/2M*

(43)

To approximate the part of (41) over the set U(z)° we integrate three
more times. After one integration the boundary terms will be

=Ml —iRg M —iRQ¥ T M}
(iR) ./E;U(:){e qu)T/ e DJQS’
_ CR—M»] |7\I|M(R|>\,I )~'/2 fmin|RA,|‘/1
INCRIND TP sy

CR“(II+])/2 CR_(’H_”/Z
= =
S;K]/Zp\j"/z = K]/2M*

dy,;

Similarly after the second and third integrations

—(@R)" M1 AU

For the integral in (41) we chose M so that (n — 1)/2 = M < (n + 1)/2.
In the region outside U the first term of (40) dominates. Therefore

—iRegM+3 _ —iRQ¥oM+3
fu({e T] e Sj- }

Cl}\jl(n-%- 1)/2—=2(M+3) '/‘81’
R1w+3'c]/2M* |R}\jk

g CR—(H+1)/2K*I/2M;‘I

é CR*(II+1)/2K—1/2M;l'

(44)

e (Rl}\J| )r)1+2—2(M+3)dr

sincen + 2 — 2(M + 3) = —3.
The calculations from (42) to (44) combine to show that
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(45) | fule™®" — e ROy gy = CRTAeR) M

In a similar way it is possible to replace
V(y) =W — )/ Cdi(0) - U((y,, — 2,)/ CeB(6) )&(y)
by
VIO = Wy = 2)/CBi0)) - (3, — 2,0/ CoB}0) )E(2).
Observe that
.0 = 47| = Clylrs;
and in general
DR, — )1 = chyl7Pylre.
It follows therefore that
|yl

— # Wiy =N, —2N
S@Fy) = S| = oMyl
J
With this estimate instead of (40) the integrations proceed as before to

show that

(46) f e ROy, — yH)dy| = CRTAkRY ML

Since X =1 then combining (45) and (46) and summing over
j = 1,...,n gives the result that
47 W, — L] = CR™"*xR) "M, .

The expression in (47) is clearly less than C(R"x)” " when R"M, = 1.
For the case R”M, = 1 is necessary to re-examine the proof. The term
|78 in (42), after integrating leads to a factor R™"M; "in (43). If instez?d
we had used /81 = 1 then the expression in (43) would be C(R"x) .
With the same change in the other calculations we get

W, — L] = C(R") "
Therefore
(48) |I| = C(R") (1 + RM%) ™"
where

M. = min{ \J @)% = 1,...,n).

To complete the proof of (10) and (11) it is now necessary to examine
the integrability of

hy) = X (k(z)) A(M,)~!

z€A
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in a small neighborhood of the origin: { |0] = ¢,}.
Since f'is of type a

S
(k(z)) = C Hl jm gk 2/,
j=
|}\]-(z)| |8//-(0) | will be a minimum in some direction j = m where
k,, > 2:
NG 180) P 2 Clr, g1/ %o D,
Therefore
N
hy(0) = Clwn,Hlfk"'/z(k"f“ I‘I] |7Tj0|7n](kf2)/2(k,~l).
j=
This is integrable over each subspace I_/j, j # m, because
ni(k; = 2)/2k; — 1) < n,.
If j = m then the exponent of |, 0] is

_ m_ 2)
2(k,, — 1) 2k, — 1)

nm

k B n,, (k

When n,, # 1 this is greater than —n,, and so /,(f) is integrable. When

m
n,, = 1, h,(0) contains a factor of '77,,,49]7‘7 which is not integrable. In this

m

case however the Gaussian curvature vanishes on the orthogonal comple-

ment of V,, which is a subspace of dimension n — 1. Therefore

My — 1 <1
k, —1 k, —1 '

m

3
I\

Although h,(8) is not integrable, it is of weak type L' on {10l = ¢):
49) {0 | >1}| = Crt.

Now we must show that X J, approximates the main term #(£). From
the definition of J. in (9)

[2,, e RNV = fo e BN iy

where A = 2U.QU. is a diagonal matrix with eigenvalues
{Al.... A}, 20 was modified so that the absolute value of its
determinant is the absolute Gaussian curvature x(z). Thus

J. = #(z)e R [ / . RN 2y »/840) )dy
j=1 ‘
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— 'g(z)e—iR(p(Z)zn/z(RnK)—l/z

n (o'e) » , ,2 »
x 1 f e ARV (8)D) ).

J=1

A simple integration by parts shows that since ¢ = 1 near the origin then
the integrals equal

n (o) ) . y
s0) IT [ e ¥ + o((1 + RME) ™).
s

The values of the Fresnel integrals at infinity are

f O,Ooo sin(x})dx = / o_ooo cos(x*)dx = \/-»g

If » is the number of positive eigenvalues of dzf(z) minus the number of
negative eigenvalues then the integrals in (50) equal

/I:I] (\/g + i(sgn }\j)\/g) E— L
This shows that
Sy V. — g(z)e REDQay” 2Ry V26|
= C(R"™) (1 + RM)™".
Also R can be replaced by (R \/ml—z) with the same error.
The error on the right hand side of (51) is acceptable because it is the

same as that of (48). If x’ = (z, f(z)) is a point on the surface where
the tangent is perpendicular to § = R(#, —1) then g(z) = g(x’),

RV1 + |6 = |§ and Re(z) = R(z- 8 — f(z)) = x' - &

Therefore
> 3(z)e R Qmy R \/W)—nQeiWMK—I/z
z€A
= 2 , g(x/)e*i_\’"i(zw)n/2|$|—)1/2K(x;)7I/Zeiv'rr/4 _ |£|_"/%f(§).
x'€A'(0)

This completes the proofs of Theorems 2 and 3, except when X is
convex.

Suppose that X is convex and consider the region ly,-l = (Clyl. In the
calculations of this section we used the fact that

Ve(y + 2)| = '/2'%,(2));/1 Iyll =yl
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in the support of .. This gave the estimate in (35) for T,. Since Z is convex
there are exactly two points where the tangents are perpendicular to
£ = R(A, —1) and these points are far apart. Therefore in this case we
estimate the whole integral

n=/?ﬂ“m%umw@
rather than splitting it into parts as was done in Sections 4 and 5. Since
[Ve(y + z)| increases away from the origin we use

Ve(y + 2)| Z € min( A Gl N8O 1) 1yl = Clyl

in the support of ¢y Now the integral from |RA/| 1o 8/ in (44) is the same
as before but to it we must add an integral
me ' P) |2 g < ¢ f 2= UMAD) g,
& = IRN|~ w !
if§ = IR}\ | =" 1f 8 = IR}\JI_/’ then the integral in (44) does not occur and
SO the estlmate in (43) alone suffices. A similar modification to (43) has no
effect on the estimate. Therefore the calculations proceed as in (48)

(52) |l = C(R)™"*(1 + RMZ)™2,

This proves Theorem 2 and 3 when Z is convex.
Now consider Theorem 1. As in (52)

I

<ﬁ>m|lffmmmw%»éa&r“

= CR~i1/2 H |770| n;(k;—2)/2(k; —I)
Jj=1

If 8() = R~ "% for all j then
(54) '131 é CR*H/Z fI Rn/(k/~2)/2k/ — CR‘!(XI
Jj=1
On the other hand the support of ¢§ is contained in the rectangular set
E; = {y:ly,l = 8/’-(0),1' =1,...,n}
If 8(6) = R~"% for all j then

(55) 11l = Bl = ¢ T1 ¢0))" = cr "
j=1

The general case is a combination of these two extremes. The set £ can
be written as the Cartesian product E; = Ej3 X Ej where Ej is a
rectangular solid with sides of length §(6) = R 17k; and E7 has 51des of
length 8/(8) < R™'"%. Now

https://doi.org/10.4153/CJM-1986-016-7 Published online by Cambridge University Press


file:///R/j/
https://doi.org/10.4153/CJM-1986-016-7

HYPERSURFACES OF R""! 359

’ —iRe(y).10~ 5.+ ”
tim Jo{ et o

Integrate by parts to get an estimate similar to (53) for the inner integral.
The constant obtained will depend continuously on y”, since it depends on
the derivatives of f and g. Then a calculation similar to (55) completes the
proof that

Iy = cR™1

Note that the restriction on the higher order terms of f(and ¢) plays a role
in this step. This proves Theorem 1.
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