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Abstract. Tensor analogues of right 2-Engel elements in groups were introduced
by D. P. Biddle and L.-C. Kappe. We investigate the properties of right 2-Engel tensor
elements and introduce the concept of 2⊗-Engel margin. With the help of these results
we describe the structure of 2⊗-Engel groups. In particular, we prove a tensor version
of Levi’s theorem for 2-Engel groups and determine tensor squares of two-generator
2⊗-Engel p-groups.
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1. Introduction. For any group G, the nonabelian tensor square G ⊗ G is a group
generated by the symbols g ⊗ h, subject to the relations

gg′ ⊗ h = (gg′ ⊗ hg′
)(g′ ⊗ h) and g ⊗ hh′ = (g ⊗ h′)(gh′ ⊗ hh′

),

where g, g′, h, h′ ∈ G and gh = h−1gh. The more general concept of nonabelian tensor
product of groups acting on each other in certain compatible way was introduced by
R. Brown and J.-L. Loday in [5], following the ideas of R. K. Dennis [6]. This
construction has its origins in algebraic K-theory as well as in homotopy theory,
yet it has become interesting from a purely group-theoretical point of view since the
paper of R. Brown, D. L. Johnson and E. F. Robertson [4]. Since then, many authors
have been concerned with explicit computations of nonabelian tensor squares; see the
paper of L.-C. Kappe [9] for a comprehensive survey of these results.

The main topic of [3] is consideration of tensor analogues of the center and
centralizers in groups. More precisely, for a given group G the subgroup Z⊗(G)
consisting of all a ∈ G with a ⊗ x = 1⊗ for every x ∈ G is called the tensor center.
This concept was introduced by G. J. Ellis [7]. Moreover, for a group G and a non-
empty subset X , the subgroup C⊗

G (X) = {a ∈ G : a ⊗ x = 1⊗ for all x ∈ X} is said to
be the tensor annihilator of X in G. Also, tensor analogues of right n-Engel elements
have been defined. Recall that the set of right n-Engel elements of a group G is defined
by Rn(G) = {a ∈ G : [a, nx] = 1 for all x ∈ G}. Here [a, nx] stands for the commutator
[· · · [[a, x], x], · · ·] with n copies of x. It is well-known that R1(G) = Z(G) and that R2(G)
is a subgroup of G [13]. In contrast with this, it was shown that for n ≥ 3 the set Rn(G)
is not necessarily a subgroup [14]. The set of right n⊗-Engel elements of a group G is

This work was supported by the Ministry of Education, Science and Sport of Slovenia.

https://doi.org/10.1017/S0017089504002083 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504002083


78 PRIMOŽ MORAVEC

then defined as

R⊗
n (G) = {a ∈ G : [a, n−1x] ⊗ x = 1⊗ for all x ∈ G}.

One of the results of [3] shows that R⊗
2 (G) is always a characteristic subgroup of G

containing Z(G) and contained in R2(G). It is also shown by an example that these
inclusions may be proper.

The purpose of this paper is to further investigate tensor analogues of 2-Engel
structure in groups. In the first part of the paper we determine some further information
about R⊗

2 (G) and provide some new characterizations of this subgroup. In particular,
we define the tensor analogue of 2-Engel margin and show that there is a striking
resemblance between the results about 2-Engel margin and the results about its tensor
analogue. We use these results to obtain the structure of 2⊗-Engel groups. Here
the group G is said to be n⊗-Engel when [x, n−1y] ⊗ y = 1⊗ for any x, y ∈ G. It is
straightforward to see that every 2⊗-Engel group is also 2-Engel. A well-known result
of F. W. Levi (see [15, pp. 45–46]) states that every 2-Engel group G is metabelian
and nilpotent of class ≤3 and the exponent of γ3(G) divides 3. Therefore it is hardly
surprising that the following result is obtained: if G is a 2⊗-Engel group, then G ⊗ G is
abelian, γ3(G) ≤ Z⊗(G) and ([x, y] ⊗ z)3 = 1⊗ for every x, y, z ∈ G. As a consequence,
we obtain several characterizations of 2⊗-Engel groups, once again indicating the
strong correspondence between 2-Engel groups and 2⊗-Engel groups.

Let G be a group-theoretic property. A group G is said to have a finite covering
by G-subgroups if G equals, as a set, to the union of finite family of G-subgroups. The
finite coverings of groups by their 2-Engel subgroups were studied by L.-C. Kappe [10].
It is proved in that paper that a group G has a finite covering by 2-Engel subgroups if
and only if |G : R2(G)| < ∞. The situation is similar in the context of 2⊗-Engel groups.
We prove that a group G can be covered by a finite family of 2⊗-Engel subgroups if and
only if |G : R⊗

2 (G)| < ∞. Another result of [10] in this direction is that G has a finite
covering by 2-Engel normal subgroups if and only if G is 3-Engel and |G : R2(G)| < ∞.
It is to be expected that there is a tensor analogue of this result, but we leave it for future
consideration. It is not difficult to see that if G has a finite covering by 2⊗-Engel normal
subgroups, then G is 3⊗-Engel and |G : R⊗

2 (G)| < ∞. For the reverse conclusion one
would probably need the characterization of 3⊗-Engel groups by their normal closures
analogous to [12].

Since every 2⊗-Engel group has an abelian tensor square, there is a good chance to
compute tensor squares of 2⊗-Engel groups explicitly. We reduce these computations
to consideration of tensor squares of groups of class ≤2. With the help of this we
compute tensor squares of two-generator 2⊗-Engel p-groups, using the results of [1]
and [11]. It is worth mentioning that there is a minor error in the classification of two-
generator p-groups of class 2 given by [1], so we give the correct result here. We also
compute the kernel of the commutator map κ : G ⊗ G → G′ given by g ⊗ h 	→ [g, h]
for any nonabelian two-generator 2⊗-Engel p-group G. The group ker κ is of interest
as it is isomorphic to the third homotopy group of the space SK(G, 1) [5]. In addition,
we compute the Schur multiplier of G.

2. Preliminary results. In this section we summarize without proofs some basic
results regarding computations in tensor squares and the results concerning 2-Engel
groups which will be used throughout the paper without any further reference. The
first lemma gives the right action version of [5, Proposition 3].
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LEMMA 1 ([5]). Let g, g′, h, h′ ∈ G. The following relations hold in G ⊗ G:
(a) (g−1 ⊗ h)g = (g ⊗ h)−1 = (g ⊗ h−1)h.
(b) (g′ ⊗ h′)g⊗h = (g′ ⊗ h′)[g,h].
(c) [g, h] ⊗ g′ = (g ⊗ h)−1(g ⊗ h)g′

.
(d) g′ ⊗ [g, h] = (g ⊗ h)−g′

(g ⊗ h).
(e) [g, h] ⊗ [g′, h′] = [g ⊗ h, g′ ⊗ h′].

Note here that G acts on G ⊗ G by (g ⊗ h)g′ = gg′ ⊗ hg′
. The next result is crucial

in studying the analogy between commutators and tensors.

PROPOSITION 1 ([4]). For a given group G there exists a homomorphism κ : G ⊗ G →
G′ such that κ : g ⊗ h 	→ [g, h]. Moreover, ker κ ≤ Z(G ⊗ G) and G acts trivially on ker κ.

An element a of a group G is called a right 2-Engel element of G if [a, x, x] = 1
for each x ∈ G. In a similar fashion, an element a is said to be a left 2-Engel element
of G if [x, a, a] = 1 for each x ∈ G. The sets of right 2-Engel elements and left 2-Engel
elements of G are denoted by R2(G) and L2(G), respectively. For the properties of right
2-Engel elements we refer to [15, Theorem 7.13] and [16, Lemma 2.2, Theorem 2.3].
We list here some of them, especially those which turn out to have tensor analogues.

PROPOSITION 2 ([15], [16]). Let G be a group, a ∈ R2(G) and x, y, z ∈ G.
(a) a is also a left 2-Engel element and aG is abelian.
(b) [a, x]rs = [ar, xs] for all r, s ∈ �.
(c) [a, x, y] = [a, y, x]−1.
(d) [a, [x, y]] = [a, x, y]2.
(e) a2 ∈ Z3(G).
(f) [a, [x, y], z] = 1.

Here aG denotes the normal closure of a in G. This result is the main ingredient of
the proof of Levi’s theorem [15, pp. 45–46] that every 2-Engel group G is nilpotent of
class ≤3 and the exponent of γ3(G) divides 3. We also list some characterizations
of 2-Engel groups which will serve as a model for 2⊗-Engel groups.

PROPOSITION 3 ([15]). For a group G the following assertions are equivalent:
(a) G is a 2-Engel group.
(b) CG(x) is a normal subgroup of G for every x ∈ G.
(c) [x, [y, z]] = [x, y, z]2 for any x, y, z ∈ G.
(d) [x, z, y]−1 = [x, y, z] for any x, y, z ∈ G.
(e) xG is abelian for every x ∈ G.

3. Right 2⊗-Engel elements of groups. The main object of this section is the
study of tensor analogues of right (left) 2-Engel elements of a given group. More
precisely, for an arbitrary group G we define the sets of right (left) 2⊗-Engel elements
of G by R⊗

2 (G) = {a ∈ G : [a, x] ⊗ x = 1⊗ for all x ∈ G} and L⊗
2 (G) = {a ∈ G : [x, a] ⊗

a = 1⊗ for all x ∈ G}, respectively. At the beginning we formulate some elementary
properties of these two sets.

LEMMA 2. Let G be any group.
(a) R⊗

2 (G) ⊆ R2(G), L⊗
2 (G) ⊆ L2(G).

(b) Every right 2⊗-Engel element of G also belongs to L⊗
2 (G).

(c) L⊗
2 (G) = {a ∈ G : ax ⊗ ay = a ⊗ a for all x, y ∈ G}.
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Proof. Let κ : G ⊗ G → G′ be the commutator map. Let a ∈ R⊗
2 (G) and x ∈ G. Then

we get 1 = κ([a, x] ⊗ x) = [a, x, x], hence a ∈ R2(G). The inclusion L⊗
2 (G) ⊆ L2(G)

is proved in a similar way, therefore (a) is proved. To prove (b), pick a ∈ R⊗
2 (G)

and x ∈ G. Then we have 1⊗ = [a, ax] ⊗ ax = [a, x] ⊗ ax = ([a, x] ⊗ a)x = ([x, a] ⊗
a)−[a,x]x, hence [x, a] ⊗ a = 1⊗ and therefore a ∈ L⊗

2 (G). So we are left with the
proof of (c). Let S = {a ∈ G : ax ⊗ ay = a ⊗ a for all x, y ∈ G}. For a ∈ S and x ∈ G
we have [a, x] ⊗ a = a−1ax ⊗ a = (a−1 ⊗ a)ax

(ax ⊗ a) = 1⊗, hence a ∈ L⊗
2 (G). Conver-

sely, let a ∈ L⊗
2 (G) and x, y ∈ G. Then we obtain ax ⊗ ay = (axy−1 ⊗ a)y = (a[a, xy−1] ⊗

a)y = (a ⊗ a)[a,xy−1]y([a, xy−1] ⊗ a)y. Since G acts trivially on ker κ, we have (a ⊗
a)[a,xy−1]y = a ⊗ a, whereas [a, xy−1] ⊗ a = 1⊗ by (b). This proves the assertion. �

The following theorem is already proved in [3].

THEOREM 1 ([3]). For any group G, the set of all right 2⊗-Engel elements of G is a
characteristic subgroup of G.

The computations with tensors involving right 2⊗-Engel elements are facilitated
by the following result which has roots in corresponding rules for computation with
2-Engel elements [15, Theorem 7.13]. Before formulating the result, note that

Z⊗
n (G) = {a ∈ G : [a, x1, . . . , xn−1] ⊗ xn = 1⊗ for all x1, . . . , xn ∈ G}

is a characteristic subgroup of G contained in the n-th center Zn(G). This subgroup is
called the n-th tensor center of G [3].

PROPOSITION 4. Let G be a group, x, y, z ∈ G and a ∈ R⊗
2 (G).

(a) [a, x] ⊗ y = ([a, y] ⊗ x)−1.
(b) [a, x] ∈ C⊗

G (xG).
(c) [a, x]n ⊗ y = ([a, x] ⊗ y)n for any n ∈ �.
(d) a ⊗ xn = (a ⊗ x)n for any n ∈ �.
(e) [a, x] ⊗ [y, z] = 1⊗.
(f) [x, y] ⊗ a = ([x, a] ⊗ y)2 and a ⊗ [x, y] = ([a, x] ⊗ y)2.
(g) a2 ∈ Z⊗

3 (G).

Proof. The identities (a) and (b) are already proved in [3, Lemma 5.1 and Lem-
ma 5.2]. To prove (c), it suffices to assume that n > 0. Now observe that [a, x]n ⊗ y =
([a, x] ⊗ y)([a, x]n−1 ⊗ y); hence (c) follows by an induction on n.

Before we proceed, note first that (a) implies that the elements of the form b ⊗ z,
where b ∈ aG and z ∈ G, commute with each other. Expanding a ⊗ xy and xy ⊗ a using
the tensor product rules, we have

a ⊗ xy = (a ⊗ x)(a ⊗ y)([a, x] ⊗ y) (1)

and

xy ⊗ a = (x ⊗ a)(y ⊗ a)([x, a] ⊗ y). (2)

The first equation yields

a ⊗ [x, y] = a ⊗ (yx)−1(xy) = (a ⊗ xy)(a ⊗ yx)−1([a, (yx)−1] ⊗ xy)
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by [3, Lemma 5.1]. Since xy is a conjugate of yx, we have [a, (yx)−1] ⊗ xy = 1⊗ by (b),
hence a ⊗ [x, y] = ([a, x] ⊗ y)2. Similarly we prove a ⊗ [x, y] = ([a, x] ⊗ y)2. It is also
clear that the equation (1) also implies (d).

It remains to prove that [a, x] ⊗ [y, z] = 1⊗ and a2 ∈ Z⊗
3 (G). Expanding

the identity [a, x] ⊗ yz = ([a, yz] ⊗ x)−1, we obtain that ([a, x] ⊗ z)([a, x] ⊗ y)z =
([a, z] ⊗ x)−[a,y]z ([a, y] ⊗ [z−1, x−1]x)−z. Since [a, z, x] ⊗ [az, yz] = 1⊗, it follows that
[a, y]z acts trivially on [a, z] ⊗ x. Thus we obtain, after cancellation and relabelling, 1⊗ =
[a, y] ⊗ [x, z] = ([a, [x, z]] ⊗ y)−1 = ([a, x, z]2 ⊗ y)−1, hence [a2, x, y] ⊗ z = 1⊗. �

The immediate consequence of Proposition 4 is the following characterization of
R⊗

2 (G).

COROLLARY 1. For any group G we have R⊗
2 (G) = {a ∈ G : [a, x] ∈ C⊗

G (xG) for all
x ∈ G}.

It is known that a ∈ R2(G) implies that aG is abelian. The following corollary gives
the corresponding result for right 2⊗-Engel elements.

COROLLARY 2. Let a ∈ R⊗
2 (G). Then the normal closure (a ⊗ x)G⊗G is an abelian

group for any x ∈ G.

Proof. Let a ∈ R⊗
2 (G) and τ ∈ G ⊗ G. As usual, denote with κ the commutator

map G ⊗ G → G′. Then we have [(a ⊗ x), (a ⊗ x)τ ] = [a ⊗ x, (a ⊗ x)κ(τ )] = [a, x] ⊗
[aκ(τ ), xκ(τ )] = 1⊗ by Proposition 4. It follows by conjugation that every two elements
of (a ⊗ x)G⊗G commute, as required. �

Let φ(x1, . . . , xn) be any word in the variables x1, . . . , xn. For a group G
the associated marginal subgroup φ∗(G) (also called the φ-margin of G) consists
of all a ∈ G such that φ(g1, . . . , agi, . . . , gn) = φ(g1, . . . , gi, . . . , gn) for every gi ∈ G
and 1 ≤ i ≤ n. It is clear that φ∗(G) is always a characteristic subgroup of G.
Margins were first introduced by P. Hall [8]. In particular, marginal subgroups
for the 2-Engel word φ(x, y) = [x, y, y] were studied by T. K. Teague [16].
Let E1(G) = {a ∈ G : [ax, y, y] = [x, y, y] for all x, y ∈ G} = R2(G) and E2(G) = {a ∈
G : [x, ay, ay] = [x, y, y] for all x, y ∈ G}. Then the 2-Engel margin of G is E(G) =
E1(G) ∩ E2(G). Now, the tensor analogues of these subgroups can be defined as

E⊗
1 (G) = {a ∈ G : [ax, y] ⊗ y = [x, y] ⊗ y for all x, y ∈ G},

E⊗
2 (G) = {a ∈ G : [x, ay] ⊗ ay = [x, y] ⊗ y for all x, y ∈ G},

and let E⊗(G) = E⊗
1 (G) ∩ E⊗

2 (G). It is not difficult to see that these sets are chara-
cteristic subgroups of G. Using Proposition 4, we also conclude that E⊗

1 (G) = R⊗
2 (G).

In [16, Theorem 2.4] it is proved that E(G) = {a ∈ G : [x, a, y][x, y, a] = 1
for all x, y ∈ G}. The following result is therefore hardly surprising.

THEOREM 2. For any group G we have

E⊗(G) = {a ∈ G : ([x, a] ⊗ y)([x, y] ⊗ a) = 1⊗ for all x, y ∈ G}.
Proof. Let S = {a ∈ G : ([x, a] ⊗ y)([x, y] ⊗ a) = 1⊗ for all x, y ∈ G}, let a ∈ S

and x, y ∈ G. It is clear that a ∈ R⊗
2 (G) = E⊗

1 (G). Using Proposition 4, we
have that [x, ay] ⊗ ay = [x, y][x, a]y ⊗ ay = ([x, y][x, a]y ⊗ y)([x, y][x, a]y ⊗ a)y =
([x, y] ⊗ y)[x,a]y ([x, a] ⊗ y)y([x, y] ⊗ a)[x,a]yy([x, a]y ⊗ a)y = ([x, y] ⊗ y)[x,a]y ([x, a]y ⊗ a)y.
Observe that ([x, a]y ⊗ a)y = (a−xyay ⊗ a)y = (a ⊗ a)−1(a ⊗ a) = 1⊗ by Lemma 2;
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hence we only have to prove that [x, a]y acts trivially on [x, y] ⊗ y. To see this, we
first note that y[x,a]y = [y, [x, a]]y, hence ([x, y] ⊗ y)[x,a]y = [x, y] ⊗ [y, [x, a]]y. As
[x, a] ∈ R⊗

2 (G), we get [[x, a], y] ⊗ [x, y] = ([[x, a], [x, y]] ⊗ y)−1 = 1⊗ by Proposition
4, thus the inclusion S ⊆ E⊗(G) is proved. Conversely, every a ∈ E⊗(G) also belongs
to R⊗

2 (G). Reversing the above arguments, we obtain a ∈ S, as required. �
Let us mention an important consequence of this theorem.

COROLLARY 3. Let G be a group, x, y ∈ G and a ∈ E⊗(G). Then ([a, x] ⊗ y)3 =
[a3, x] ⊗ y = 1⊗.

Proof. For a ∈ E⊗(G) we get 1⊗ = ([x, y] ⊗ a)([x, a] ⊗ y) = ([x, a] ⊗ y)3 by
Proposition 4, hence also [a3, x] ⊗ y = 1⊗. �

It is proved in [16] that Z2(G) ≤ E(G) ≤ Z3(G) for any group G. Similar arguments
show the following.

PROPOSITION 5. For any group G we have Z⊗
2 (G) ≤ E⊗(G) ≤ Z⊗

3 (G).

Proof. It is clear that Z⊗
2 (G) ≤ E⊗(G). Now, if a ∈ E⊗(G), then a3 ∈ Z⊗

2 (G) ≤
Z⊗

3 (G). On the other hand, we have a2 ∈ Z⊗
3 (G) by Proposition 4, hence

a ∈ Z⊗
3 (G). �

4. 2⊗-Engel groups. A group G is said to be 2⊗-Engel when [x, y] ⊗ y = 1⊗ for
any x, y ∈ G. It is worth noting that G is 2⊗-Engel precisely when R⊗

2 (G) = G, which is
equivalent to L⊗

2 (G) = G and is also equivalent to E⊗(G) = G. Using the commutator
map argument, it becomes clear that every 2⊗-Engel group is also 2-Engel. The
structure of 2⊗-Engel groups is described in the next result which corresponds to
the well-known Levi’s theorem about 2-Engel groups [15, pp. 45–46]:

THEOREM 3. Let G be a 2⊗-Engel group. Then we have:
(a) G ⊗ G is abelian group;
(b) γ3(G) ≤ Z⊗(G);
(c) ([x, y] ⊗ z)3 = 1⊗ for any x, y, z ∈ G.

Proof. It follows directly from Proposition 4 that G ⊗ G is abelian. From the
same proposition we obtain ([x, y, z] ⊗ v)2 = [x, y, z]2 ⊗ v = [x, [y, z]] ⊗ v = ([x, v] ⊗
[y, z])−1 = 1⊗. Furthermore, since E⊗(G) = G, we get (b) and (c) by Corollary 3. �

In contrast with this result, there exists a 2-Engel group G such that cl (G ⊗ G) = 2
[2]. The following is a tensor analogue of Proposition 3.

COROLLARY 4. The following statements for a group G are equivalent.
(a) G is 2⊗-Engel.
(b) [x, y] ⊗ z = ([x, z] ⊗ y)−1 for any x, y, z ∈ G.
(c) x ⊗ [y, z] = ([x, y] ⊗ z)2 for any x, y, z ∈ G.
(d) xy ⊗ xz = x ⊗ x for any x, y, z ∈ G.

Additionally, if G is a 2⊗-Engel group, then C⊗
G (g) � G for any g ∈ G.

Proof. By Proposition 4, (a), (b) and (c) are equivalent. The equivalence between
(a) and (d) is established in Lemma 2, (c). Now let G be a 2⊗-Engel group, let g, y ∈ G
and let x ∈ C⊗

G (g) ≤ CG(g). Then we have xy ⊗ g = x[x, y] ⊗ g = [x, y] ⊗ g = ([x, g] ⊗
y)−1 = 1⊗, thus xy ∈ C⊗

G (g). This proves the corollary. �
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It is evident that the condition “C⊗
G (g) � G for any g ∈ G” may fail to imply that G

is 2⊗-Engel, as C⊗
G (g) does not necessarily contain g.

Turning our attention to finite coverings by 2⊗-Engel subgroups, we mention here
a related result of L.-C. Kappe [10] which states that a group G has a finite covering
by 2-Engel subgroups if and only if |G : R2(G)| < ∞. Our proof of the tensor analogue
follows the lines of Kappe’s proof.

THEOREM 4. A group G has a finite covering by 2⊗-Engel subgroups if and only if
|G : R⊗

2 (G)| < ∞.

Proof. Suppose that G = ⋃n
i=1 Hi, where Hi are 2⊗-Engel subgroups of G. The

standard reduction step, due to B. H. Neumann (see [10]), shows that we may assume
that |G : Hi| < ∞ for every i. Hence the subgroup D = ⋂n

i=1 Hi has a finite index in G.
It is clear that D ≤ R⊗

2 (G); hence |G : R⊗
2 (G)| < ∞.

Assume now |G : R⊗
2 (G)| < ∞. Let {g1, . . . , gn} be a transversal of R⊗

2 (G)
in G and let Hi = 〈gi〉R⊗

2 (G). We have G = ⋃n
i=1 Hi, hence it suffices to prove

that each Hi is 2⊗-Engel. Let y = gia and x = gjb be arbitrary elements of
〈g〉R⊗

2 (G), where i, j ∈ � and a, b ∈ R⊗
2 (G). Since R⊗

2 (G) = E⊗
1 (G), we obtain, using

Proposition 4, [x, y] ⊗ y = [gj, gia] ⊗ gia = [gj, a] ⊗ gia = ([gj, a] ⊗ a)([gj, a] ⊗ gi)a =
(([g, a] ⊗ g)a)i j = 1⊗, as required. �

REMARK . Suppose that a group G has a finite covering by 2⊗-Engel normal
subgroups N1, . . . , Nn. Again we may assume that |G : Ni| < ∞ and by Theorem 4
we also have |G : R⊗

2 (G)| < ∞. Since for every x ∈ G we have xG ≤ Ni for some i, we
conclude that every normal closure of an element of G is 2⊗-Engel. In particular, we
have 1⊗ = [x−y, x] ⊗ x = ([y, x, x] ⊗ x)x−1

, hence G is 3⊗-Engel. In view of [10] it is
likely that a 3⊗-Engel group G with |G : R⊗

2 (G)| < ∞ has a finite normal covering by
2⊗-Engel subgroups, but we have not been able to (dis)prove this, since there are no
known tensor analogues of results regarding 3-Engel groups [12].

5. Tensor squares of 2⊗-Engel groups. We have proved in the previous section
that 2⊗-Engel groups have abelian tensor squares. Moreover, if G is a 2⊗-Engel group,
then γ3(G) ≤ Z⊗(G) by Theorem 3. Using a result of G. J. Ellis [7], we see that G ⊗ G ∼=
G/γ3(G) ⊗ G/γ3(G), hence the calculations of tensor squares reduce to the calculations
of tensor squares of class 2 groups (of course, the situation becomes even better when
G is abelian).

Let G be a nonabelian two-generator 2⊗-Engel p-group. The group G/γ3(G) is a
two-generator 2⊗-Engel p-group of class 2. From [1] and [11] we obtain the complete
classification of two-generator p-groups of class 2, hence we only have to check which
of these groups are 2⊗-Engel. The following lemma provides a useful criterion for this
task.

LEMMA 3. Let G be a two-generator group of class two. Then G is 2⊗-Engel if and
only if G ⊗ G ∼= Gab ⊗ Gab.

Proof. Let G = 〈a, b〉 be a group of class two and let x, y ∈ G. Then x = aibj[a, b]k

and y = ai′bj′ [a, b]k
′

for some i, i′, j, j′, k, k′ ∈ �. By means of linear expansion we
obtain [x, y] = [a, b]i j′−i′j, hence [x, y] ⊗ y = (a ⊗ [a, b])j′−i i′j′+i′2j(b ⊗ [a, b])−i′−i j′2+i′j j′ .
Therefore G is 2⊗-Engel if and only if a ⊗ [a, b] = b ⊗ [a, b] = 1⊗, which is equivalent to
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x ⊗ [y, z] = 1⊗ for all x, y, z ∈ G. By [9, Theorem 3], G is 2⊗-Engel if and only if
G ⊗ G ∼= Gab ⊗ Gab. �

The recipe for computing tensor squares of two-generator 2⊗-Engel p-groups
therefore consists of looking for those two-generator p-groups G of class two which
satisfy the condition G ⊗ G ∼= Gab ⊗ Gab. Note also that if Gab ∼= �a1 × · · · × �ar , then
Gab ⊗ Gab is isomorphic to the direct product of all �gcd(ai,aj), where i, j = 1, . . . , r.

First assume p is odd. Then we have the following cases [1].
(Case 1.) G ∼= (〈c〉 × 〈a〉) � 〈b〉, where [a, b] = c, [a, c] = [b, c] = 1, |a| = pα, |b| =

pβ , |c| = pγ and α ≥ β ≥ γ ≥ 1. Here we have G ⊗ G ∼= �pα × �3
pβ × �2

pγ , hence G ⊗
G �∼= Gab ⊗ Gab.

(Case 2.) G ∼= 〈a〉 � 〈b〉, where [a, b] = apα−γ

, |a| = pα, |b| = pβ , |[a, b]| = pγ and
β ≥ γ ≥ 1, α ≥ 2γ ; by a closer inspection of the proof of [1, Theorem 2.4] it
becomes clear that the extra condition α ≥ β given there is irrelevant. By [1,
Theorem 4.2] we have G ⊗ G ∼= 〈a ⊗ a〉 × 〈b ⊗ b〉 × 〈(b ⊗ a)(a ⊗ b)〉 × 〈b ⊗ a〉, where
|a ⊗ a| = pα−γ , |b ⊗ b| = pβ , |(b ⊗ a)(a ⊗ b)| = pmin{α−γ,β} and |b ⊗ a| = n, where n =
gcd(pα,

∑pβ−1
k=0 (pα − pα−γ + 1)k). Applying [1, Lemma 4.1], we immediately obtain

n = pmin{α,β}, hence G ⊗ G is isomorphic to �pβ × �pα−γ × �pmin{α,β} × �pmin{α−γ,β} . Since
Gab ∼= �pα−γ × �pβ , we get Gab ⊗ Gab ∼= �pβ × �pα−γ × �2

pmin{α−γ,β} . This yields that G is
2⊗-Engel if and only if min{α − γ, β} = min{α, β} which is equivalent to α ≥ β + γ .

(Case 3.) G ∼= (〈c〉 × 〈a〉) � 〈b〉, where [a, b] = apα−γ

c, [c, b] = a−p2(α−γ )
c−pα−γ

, |a| =
pα, |b| = pβ , |[a, b]| = pγ , |c| = pσ , α ≥ β ≥ γ > σ ≥ 1 and α + σ ≥ 2γ . Let δ =
min{α − γ, β} and τ = min{α − γ, σ }. Then we have G ⊗ G ∼= �pα−γ × �3

pδ × �2
pτ ,

hence it is not isomorphic to Gab ⊗ Gab.
For p = 2 the situation is more complicated [11].
(Case 4.) G ∼= (〈c〉 × 〈a〉) � 〈b〉, where [a, b] = c, [a, c] = [b, c] = 1, |a| = 2α, |b| =

2β , |c| = 2γ and α ≥ β ≥ γ ≥ 1. Here we have

G ⊗ G ∼=
{

�2α × �3
2β × �2

2γ , : β > γ,

�2α × �2
2γ × �2γ+1 × �2γ−1 × �2min{α−1,γ } : β = γ.

It follows from here that G ⊗ G �∼= Gab ⊗ Gab.
(Case 5.) G ∼= 〈a〉 � 〈b〉, where [a, b] = a2α−γ |a| = 2α, |b| = 2β , |[a, b]| = 2γ and

α, β, γ ∈ �, α ≥ 2γ , β ≥ γ and α + β > 3. In this particular case, G ⊗ G is isomorphic
to �2β × �2α−γ+1 × �2min{α−γ,β} × �2min{α,β} . It is straightforward to verify that G ⊗ G �∼=
Gab ⊗ Gab.

(Case 6.) G ∼= (〈c〉 × 〈a〉) � 〈b〉, where [a, b] = a2α−γ c, [c, b] = a−22(α−γ )
c−2α−γ

, |a| =
2α, |b| = 2β , |[a, b]| = 2γ , |c| = 2σ with α, β, γ, σ ∈ �, α + σ ≥ 2γ and β ≥ γ > σ .
Let ρ = min{α − γ + σ, β}. Then we have

G ⊗ G ∼=
{

�3
2γ × �2γ+1 × �2

2γ−1 : α = γ + 1 , β = γ,

�2α−γ+σ+1 × �2β × �2min{α,β} × �2ρ × �2
2σ : α ≥ γ + 2 or β ≥ γ + 1.

It is clear that G ⊗ G is not isomorphic to Gab ⊗ Gab.
We summarize our conclusions in the following theorem.

THEOREM 5. Let G be a nonabelian two-generator 2⊗-Engel p-group. Then p �= 2
and G/γ3(G) ∼= 〈a〉 � 〈b〉, where [a, b] = apα−γ

, |a| = pα, |b| = pβ , |[a, b]| = pγ with α ≥
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β ≥ γ ≥ 1, α ≥ 2γ and α ≥ β + γ . We have G ⊗ G ∼= 〈a ⊗ a〉 × 〈b ⊗ b〉 × 〈(b ⊗ a)(a ⊗
b)〉 × 〈b ⊗ a〉 ∼= �3

pβ × �pα−γ.

Our considerations also show the following.

COROLLARY 5. Every 2⊗-Engel 2-group is abelian.

More generally, if G is a 2⊗-Engel group without elements of order 3, then G′ ≤
Z⊗(G) by Theorem 3. This, together with the result of Ellis [7], implies G ⊗ G ∼=
Gab ⊗ Gab.

Let G be a group. From a topological point of view, the third homotopy
group π3SK(G, 1) of the suspension of K(G, 1) is of some interest. A combinatorial
description of πnSK(G, 1) has been given by J. Wu [17]. Observing the formula
π3SK(G, 1) ∼= ker κ [5], one can use a different approach when G ⊗ G is explicitly
computed. Applying Theorem 5, we describe π3SK(G, 1) for any nonabelian two-
generator 2⊗-Engel p-group G. We also determine the Schur multiplier H2(G) of G.

COROLLARY 6. Let G be a nonabelian two-generator 2⊗-Engel p-group, let κ :
G ⊗ G → G′ be the commutator map and let a, b, α, β, γ be as in Theorem 5.
Then π3SK(G, 1) ∼= ker κ ∼= 〈a ⊗ a〉 × 〈b ⊗ b〉 × 〈(b ⊗ a)(a ⊗ b)〉 × 〈(b ⊗ a)pγ 〉 ∼= �2

pβ ×
�pα−γ × �pβ−γ and H2(G) ∼= �pβ−γ.

Proof. As κ(a ⊗ a) = κ(b ⊗ b) = κ((b ⊗ a)(a ⊗ b)) = κ((b ⊗ a)pγ

) = 1, Theo-
rem 5 gives ker κ ∼= 〈a ⊗ a〉 × 〈b ⊗ b〉 × 〈(b ⊗ a)(a ⊗ b)〉 × 〈(b ⊗ a)pγ 〉 ∼= �2

pβ × �pα−γ ×
�pβ−γ , as required. To compute the Schur multiplier of G, note for instance that the
exactness of rows and columns in commutative diagram (1) in [4] implies H2(G) ∼=
ker κ/�(G), where �(G) = 〈x ⊗ x : x ∈ G〉. Now, every x ∈ 〈a, b〉 can be written in
the form x = ambn[a, b]k, where m, n, k ∈ �. Expanding x ⊗ x linearly, we obtain
x ⊗ x = (a ⊗ a)m2

(b ⊗ b)n2
((b ⊗ a)(a ⊗ b))mn. This yields �(G) ∼= 〈a ⊗ a〉 × 〈b ⊗ b〉 ×

〈(b ⊗ a)(a ⊗ b)〉 ∼= �2
pβ × �pα−γ , hence the result. �
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