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The death on 4th August 1967, at the age of 59, of Archibald James Macintyre,
Research Professor of Mathematics at the University of Cincinnati, after a brief
illness, came as a severe shock to all who knew him. His good nature and kind-
ness, his subtle but delightful sense of humour, the patience with which he
explained mathematical problems to those less quick than he to see the point,
his high standard, his humility—all these are but a fraction of the fine attributes
which explain the esteem and popularity accorded to him, by both staff and
students, wherever he went.

Elsewheref I shall give a full account of Macintyre's career. Here I present
only a short version, which will include what I consider to be the highlights of
his work.

Macintyre entered Magdalene College, Cambridge as a Scholar in 1926
and became a Wrangler with distinction in 1929. He undertook research,
latterly part-time, on meromorphic functions under Dr (now Sir) Edward
Collingwood, which earned him his Cambridge Ph.D. in 1933. He was assistant
lecturer at Swansea University College (1930-31), assistant lecturer and then
lecturer at Sheffield University (1931-36), lecturer and later senior lecturer at
Aberdeen University (1936-59) and finally, from 1959, research professor in
Mathematics at Cincinnati, where he was also elected a Fellow of the Graduate
School. He became a Fellow of the Royal Society of Edinburgh in 1946. He
was for nearly 40 years a member of several mathematical societies, including
the Edinburgh Mathematical Society.

Macintyre's family life was a happy one. In 1940 he married Sheila Scott,
of Edinburgh, a Girtonian and herself a Wrangler in Mathematics. She too
lectured in Mathematics at Aberdeen and Cincinnati, where she was both
popular and highly regarded. She died in America in 1960 at the early age of 50.
Both the surviving children, Allister and Susan, have settled in America.

Before discussing Macintyre's research in pure mathematics I ought to
mention that he had deep interests elsewhere, especially in aerodynamics, fluid
mechanics and related fields. He conducted with enthusiasm his experiments
with model aeroplanes, was awarded D.S.I.R. grants for his experiments and
corresponded widely with experts on these topics. He believed, for example,
that the rudder and the elevator of the aeroplane should be located at the front
and not at the back, and could give sound answers to the objections raised by
experts, as well as sound objections to the present practice in these matters in
the aircraft industry. At the time the special electronic equipment he needed
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was almost unobtainable, and later supervision of an increasing number of
research students in pure mathematics occupied much of his time. He was thus
prevented from pushing ahead further with these ideas, although his interest was
maintained throughout his life.

A. J. MACINTYRE'S WORK IN] PURE MATHEMATICS
As a classical analyst, Macintyre considered a diversity of problems, through-

out many of which runs a strong thread, his keen interest in overconvergence.
Amongst his 43 papers we find such topics as asymptotic paths, the flat regions
of meromorphic functions, interpolation problems based on the Laplace trans-
form and other formulae for regular functions, Tauberian theorems in connec-
tion with certain canonical products, and numerous problems, many studied

00

jointly with R. Wilson, in the theory of the singularities of/(z) = £ cnz" on
n = 0

the circle of convergence.
A full bibliography is not given here, as it will appear elsewhere. However

the books (l)-(4) contain proofs and references for many of Macintyre's results.
A significant part of Macintyre's work concerns the so-called flat regions of

integral and meromorphic functions /(z). J. M. Whittaker, who published
important theorems on the subject [see references (3), (4) of (4), p. 106], had
defined R to be a flat region if

//-x<{log | /(z,) | /log | /(z2) \}<H (1)
for all ZUZ2B R, where H> 1 is a constant. Ostrowski had given a sharp form
of Schottky's theorem which implies that if q(z) (^ 0, 1) is regular in | z \<s
then it is flat in | z |<0s (05S|) if | g(0) | is large enough. In his first paper on
flat regions (1935) Macintyre, using a dissection due to Valiron of the complex
plane into curvilinear quadrilaterals, shows that a meromorphic function/(z)
of order p > 0 whose Nevanlinna characteristic T(r) satisfies T(r) = o(rp'/log r)
where p'>p and whose poles are of deficiency <5>0, differs from 0, 1, oo in a
selection of these quadrilaterals and hence, applying Ostrowski's result, that
/(z) is flat, with H— 1 <ev, in a sequence of circles whose centres <!;„-» oo, where
ev-+0. In this way a new proof of a sharper version of Whittaker's results was
obtained.

Later an entirely different approach gave sharper and more general theorems.
Let/(z) be regular in the circle y: \ z \<R, and let z = zs be the zeros of/(z)
in y. The results referred to are

(2)

-^llog/(z) <Kr~%T(kr)y (3)

which are valid p.p. in | z \<r, with k>\ and q ^ 1 an integer, where T{kf)
denotes the Nevanlinna characteristic for/(z) on | z | = kr(<R). (2) was
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proved by Macintyre in 1938; in (3), pp. 72-77, Cartwright gives another proof
for functions of finite order. (3) was obtained by Macintyre and Wilson in
1942. Nevanlinna had given a formula for log/(2) whose real part (the Poisson-
Jensen formula) and qth derivative are used to prove (2) and (3) respectively.
A lower bound for \p{z) |, where p(z) = J~[(z —zs), and an upper bound for

s

\YJLZ~ ZS)~* |> outside the immediate neighbourhood N consisting of small
s

circles ys about the zs, are provided respectively by Cartan's lemma [(4), p. 46]
and theorems due to Macintyre and Fuchs (1940). An additional factor log
T(kr) appears on the right-hand side of (3) when q = 1, if the relative magnitude
of N is measured by comparing the sum of the radii of the ys with r. However
even in this case, which is of considerable importance in the coefficient theory
(see below), an ingenious argument due to Macintyre and Fuchs shows that (3)
holds if the z, are all on a radius from the origin. Flat region results follow by
integrating (3) with q = 1.

The methods apply equally well when/(z) is meromorphic, in which case (2)
has also a left-hand inequality KT(kr)>log | /(z) |. Analogous results when
/(z) is meromorphic merely in an angle are obtained by using the above in
suitable circles or by starting with the appropriate Nevanlinna formula for
log/(z) with/(z) denned only in the upper half-plane.

In another approach to problems of this nature Macintyre (1938) investigated
the extent of the regions in which an integral function/(z) remains large in the
neighbourhood of a point z = re'9 at which | /(z) | takes its maximum value
M(r). By a complicated process Wiman had shown that the usual behaviour
of/(z) for such z is something like zN where N is a constant, in simple cases
the rank of the maximum term of the Maclaurin series for/(z). Macintyre
states that this is equivalent to saying that (f>{T) = e~NTf(zeT)/f(z) is practically
constant for such z, and shows by a simple argument that N is real and lies
between the left and right derivatives d{log M(r)}/d{log r}. He obtains his
results by applying Schwarz's lemma to <f>(T) — 1 in a suitable circle, having first
proved boundedness of <j>(T) by using the convexity property of log M(r) and a
lemma of E. M. Wright on convex functions. He thus sharpened considerably
the best theorems, due to Valiron, then known in this direction. A further
consideration of <j>(T) led him (1938) to the simplest proof then known, and to
new generalizations, of Bloch's theorem.

In 1939, under the title " Laplace's transformation and integral functions ",
Macintyre published a remarkable paper which not only gave new proofs and
extensions of theorems of M. L. Cartwright [(3), p. 98; p. 129 (10)] as well as
other interpolation results, but also was to lead to new results in the coefficient
theory of power series.

00

Theorem. Let the integral function F(z) — £ anz" satisfy
•• 0

F(z)j
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Then

(i) | F{x) | <K(k)A for all real x and an explicit K(k) if | F(n) | <A (n = 0,
± 1 , ±2, . . .) , and

(ii) F(x)-*0 asx-* + co if F(n)->0 asn-> + oo(n= I, 2, ...)•

M. L. Cartwright had obtained these results by using the Lagrange inter-
polation formula and the Phragmen-Lindelof principle. Macintyre, inspired
by Polya's well-known article [Math. Zeitschrift 29 (1929), 549-640] on gaps and
singularities of power series, shows how to use the Borel-Laplace transform for

00

these problems. Setting/(z)= £ a^lz'"-1 and F(z) = (2ni)~l \Jc
d id

J c
with a suitable contour C, he replaces /(£) by a second associated function
\j/(z) expressed as power series in eTz with coefficients F(±ri) in Rez>A: and
Re z< — k, whence term-by-term integration leads to the interpolation formula

F(z) = lim %~x £ F(n)e-''"' sin co(z - n)\(z - n)
S-»0 —oo

if Em | F(±n) \1/n g 1, k<co<2n-k. From this result a whole family of
n-* oo

interpolation formulae, as well as (i) and (ii) of the Theorem, follow. Analogous
theorems, both for integral functions of any finite order p, and for functions
regular and of finite order in an angle, are obtained by similar methods.

We turn now to the coefficient theory of the Taylor series. In the same paper
Macintyre made several remarks which supplemented the discussion given by
Polya (Joe. cit.) on the connection between integral functions and the singularities
of power series. Considerable advances in this theory were soon to be made,
both individually and jointly by Macintyre and Wilson. The discussion here
is a summary of an account kindly prepared for me by Professor Wilson.
For a comprehensive account of developments in the theory up to 1955 see (1).

00

Suppose that | z \ = 1 is the circle of convergence of /(z) = £ cnz" and,
n = 0

for the first set of results, that there is only one singularity S, namely an essential
point at z = 1. The results are

\cn\>e-y, (4)

| c n + 1 / c - l | <e (5)

(y>0, £>0 arbitrary) for a common sequence {«'} of n. (4) had already been
given by Polya, the upper density, maximal density or density of {«'} being
unity, according to the nature of the singularity S which he had defined [ahnost
isolated (a.i.); easily approachable or approachable; a.i. of finite exponential
order, respectively]. Flat region techniques of Whittaker [(4), p. 106, (3), (4)]
had been used by Whittaker and Wilson (1939) to prove (5) with {«'} of unit
density for a more restricted S, thus partly confirming a conjecture of Wilson
(fully confirmed below). It was Macintyre who perceived that the connection
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between (4), (5) and " flat region " theorems was fundamental. Briefly, if G(z)
is the function approximately interpreting the cn, so that cn = G(n) + c*, where
En | c* 11/n<l, and G{z) is an integral function of at most order 1, minimum
n-»oo

type, then along any radius, by (2), (3),

log | G(z) | > - y | z | , | G'(z)/G(z) | <e (| z | = r) (6)

for a set of r of linear density 1. From (6), new proofs of Polya's results for
(4), as well as analogous results for (5), easily follow.

In the same paper (1941) by Macintyre and Wilson the virtually isolated
singularity is defined; for this the authors obtain (4), (5) with {«'} of density 1.
Their method contained an error, difficult to discern, but the result is correct
and was brilliantly proved by Macintyre in 1958 using Bourion's theory of
overconvergence.

In 1940 Macintyre and Wilson had supposed that there is a set {S} of singu-
larities on | z | = 1, and considered the density of the sequence {»"} of n for
which | cn \<e~yn, i.e. | cn \

i/n<e~y, so that {S} contributes nothing to such
coefficients, which are therefore called small, because their effects cancel out.
Briefly, it was found that the density (or lower density) of {«"} is zero, unless the
singularities are of the same kind and placed at the vertices of a regular polygon.
In that case, if the polygon is fc-sided with an identical singularity at each vertex,
the density is (k— \)jk. F. W. Ponting, a colleague of Macintyre at Aberdeen,
has dealt in detail with similar cases giving a density (k—2)/(k— 1), etc.

Methods used in the paper on Laplace transforms mentioned earlier were
applied in at least two further ways in joint papers with Wilson. In the first
(1947) it is shown that the orders and types of F(z), z~1/(z"1) and G(z) are all
related, and the directions of strongest growth of F(z) as z-» oo are the same to
within reflection as the corresponding directions of \]/(z) as z-*\, where

^(z)= J Cnz"=G[l/(l-z)]
n = 0

with G(z) an integral function, cn = F(ri), and/(z) is the Laplace transform of
F{z). This result was considerably sharpened by Wilson in 1961. The second
application (1954) was in the determination of the asymptotic form of the cn

arising from singularities like exp.P[l/(l—z)], where P(z) is a polynomial, and
from critical points derived from this singularity. In the introduction Macintyre
sketched an elegant theory which provided the basis required.

It was in the field of Tauberian theorems that I began my research in 1946,
with Macintyre as my supervisor. The initial problem was to obtain the
asymptotic relation n(r)~Krp (0<K<co, 0 < p < l , r-> + oo) for the number

00

n(r) of zeros in | z\<r of the integral function/(z) = \[ (l + z/an), 0<an g an+1

(n = 1,2,3, ...) given that
log / (z) ~ Knz" cosec np (7)

for z = +x-yoo. Lengthy^real variable proofs had been given by Valiron
E.M.S.—z
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(1914) and Titchmarsh (1926). A simple function theory proof, valid under less
restrictive hypotheses, was evolved under Macintyre's guiding hand. See
Chapter 4 of (2) for details of some of the theorems mentioned here. Montel's
limit theorem gives (7) for | arg z \<n — 5 (<5>0), from the imaginary parts of
which, with 5 small, we have

f" sin 8. n(ru). du „ . . „
-—*—L ~Knrp sin pin — 8) cosec np,

Jo 1 + w — 2u cos <5
which gives the required result by an elementary argument, since the integral
is significant only when u = cos 8. Trivial modifications are required to get the
result for any such canonical product of genus p, where p<p<p+1, so that a
complete proof of Valiron's theorem is thus obtained.

Relaxations which we found possible in the hypotheses are of two kinds.
In the first place the path P to infinity may be taken, as Montel's theorem allows,
to be any continuous path having no point in common with the negative real
axis, and P may even be replaced by a sequence {zn} such that | zn ||oo and
| zn+1/zn \-*\ as «->oo. We had in fact proved (1954) a refined version of
Montel's theorem, and also of Vitali's convergence theorem, from a lemma
due to J. M. Whittaker [(4), p. 57].

The second kind of relaxation is the replacement of (7) by the real parts of
the relation for arg z = a. with a ^ + % constant, with certain side conditions
[(2), p. 59]; and even for nonintegral p < 3/2 with a. = n, thus giving a new proof
and an extension of a result due to Titchmarsh (1926).

We also showed (1949) that Valiron's theorem can be regarded as the
limiting case of an oscillation theorem; that, in fact, from

fim x"

follows
0<<t>(l, L)^Mn~ 1!"an :g *(/, L)<oo,

n-*oo

where ®/<j> is arbitrarily near unity when Ljl is sufficiently near unity.
As far as I can discover, only one paper (1952) was prepared jointly by

Macintyre and his wife Sheila Scott Macintyre. Sheila, herself a classical
analyst, had numerous research publications to her credit, especially on the
Whittaker constant [defined in (2), p. 173] and on interpolation series of various
kinds for integral functions. The object of the joint paper is to investigate
conditions under which the Abel series

£ z(z-n)"-1F(n)(n)/«!
n = 0

(i) converges;
(ii) is asymptotically equivalent to F(z) in Re z>0, under the assumption that
F(z) is regular in | arg z | g 3TI/4 where it satisfies | F(rew) | <Kr~yeTbW with

https://doi.org/10.1017/S0013091500013043 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500013043


OBITUARY 371

K>0, y real and b(0) the supporting function of a certain convex set. The
proof of (i) is immediate, but that of (ii) depends on the use of the Laplace
transform/(z) of F(z)—in the expression

I (8)

with a suitable contour F, ez? is expanded in powers of (e5 and (ii) follows on
integration term by term.

In 1954 Macintyre alone obtained interesting results, applicable to the Lid-
stone and Whittaker two-point series as well as the Poritsky and Gontcharoff
n-point series, by expanding /(£) in (8) and integrating term by term, with F(z)
now an integral function of exponential type, and then gave an explicit solution
to a problem of Polya by modifying his method to apply when F(z) is of any
finite order.

On several occasions Macintyre took up the topic of gap power series. He
considered (1952) whether the existence of asymptotic paths of an integral
function

F(z) = £ cj" (0=g
n = 0

can or cannot be excluded by a knowledge of the sequence {!„} alone. With
Paul Erdos (1954) he amplified and sharpened P61ya's [loc. cit.'] deductions that

lim m(r)IM(f) = Urn n(r)IM(r) = 1
r-*oo r-»oo

from information about {!„}; here m(r), ju(r) denote min |/(z) [, max | cnz
x" \

respectively on | z \ = r. In 1959 he gave new results on overconvergence for
gap series.

In this brief account I have selected what I consider to be the highlights of
Macintyre's mathematical output. Others would probably have chosen
differently, but I think that all will agree what a great debt Mathematics owes,
and will owe, to the fertility of his mind.

In conclusion I offer my sincere thanks to all those who have helped me to
prepare this essay, in particular to the Registrars of Swansea University College
and of Sheffield University and to Mr W. S. Angus, formerly Secretary of Aber-
deen University, for biographical details; to H. S. A. Potter, G. E. H. Reuter,
J. M. Whittaker and especially H. Shankar and R. Wilson for assistance in
various ways concerning the mathematical content.
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