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Abstract

A review of the sequence stratigraphic development of the Tertiary basins of the North and West Alpine Foreland domains shows that their
structural and depositional history was episodically affected by brief tectonic phases. These were associated with intermittent deformation events
induced by the collisional convergence and compressional coupling of the Apulian and Iberian microplates with the European Plate. The plate
kinematics-related episodicity was essentially isochronously recorded in the basin fills of the Alpine Foreland region. These are generally
correlative with changes in eustatic sea level. The ensuing correlative successions of so-called Cenozoic Rift and Foredeep (CRF) sequences and
phases can be traced throughout the European Cenozoic Rift System and Alpine Foreland Basin. Their temporal correlation indicates that, apparently,
the changes in the plate collision-related stress regime of the Alpine Foreland were repeatedly accompanied by coeval changes in eustatic sea level.
To test and substantiate the validity of this inferred causal relationship between intraplate deposition, plate kinematics and eustacy, the tectono-
sedimentary evolution of the basins of the Mediterranean plate-boundary zone has been analysed in conjunction with a review of the plate-
boundary events in the North Atlantic. Within the uncertainty range of available datings, synchroneity could thus be demonstrated for the punctuated
tectonostratigraphic development of basins of the western Mediterranean (comprising the Liguro-Provencal Basin, Valencia Trough, Sardinia Rift
and Tyrrhenian Basin), the Apenninic-Calabrian Arc, the Betic domain (including the Alboran Basin) and the North and West Alpine Foreland
regions. Similar temporal correlations of plate tectonicsrelated events near the Mid-Atlantic Ridge in the North Atlantic and tectonostratigraphic
sequences and phases of the Alpino-Pyrenean Foreland basins are further evidence of a common causal mechanism. The driving mechanisms
appear to have been the northward drift of Africa and the resulting mechanical coupling of Apulia and Iberia with the southern passive margin

of Europe, as well as the stepwise opening of the North Atlantic and accompanying episodic plate re-organisations of the Mid-Atlantic Ridge.
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| Introduction The northern forelands of the Alpine and Pyrenean thrust-
and-fold belts include Cenozoic basins with sedimentary fills
which have been affected by brittle deformation that occurred

in response to the collisional convergence of the African,

The post-Variscan crustal deformation in Western and Central
Europe is characterised by polyphase epeirogenetic movements,

which were expressed by long-term episodes of regional
subsidence and uplift of the crust, separated by brief tectonic
phases of more rapid differential movements of crustal blocks.
Within a plate-kinematic context, numerous studies of the
temporal changes of the tectonic stress regime of the European
lithosphere have demonstrated a close causal relationship
between geodynamic processes at the Europe-Africa plate
boundary and deformations of the fractured European Plate.
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Apulian and Iberian plates with the European Plate (Figs 1
and 2). These motions were related to an evolving, synorogenic
system of plate interaction that was governed by the middle
to late Alpine collision and, following a Late Eocene main
collisional coupling of the converging plates at crustal levels,
so-called ‘post-collision’ phases of the convergence of the
African and European plates. In general, the accompanying
changes in compression and extension of the West European
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Platform occurred coevally with the orogenic events in the
Alpine collision zone. Altogether, these tectonic events appear
to have been induced by the collision of the Alpine and
Pyrenean orogenic wedges with the European passive margin
and the overthickening and uplifting of those orogenic wedges
during the later, ‘post-collision’ stage of the Alpine orogeny
(e.g. Ziegler et al., 1998). Though temporally and spatially
variable, both the collision and ‘post-collision” stress regimes
at the European-African plate boundary represent overall
increased mechanical coupling of the orogenic wedges with
both their forelands and hinterlands. Far-field transmission of
the orogen-derived stresses resulted in vertical and horizontal
movements of crustal blocks along pre-existing fault systems
in the adjacent foreland and hinterland domains. In addition,
transmission of stress led to new fault systems commonly
following trends of the older, re-activated systems. The associated
intra-plate compression and extension of the Alpino-Pyrenean
Foreland, i.e. the southern part of the West European Platform
that was most affected by the collision of the Apulian, Iberian
and European plates, resulted in two dominant tectonic
features : (1) the Alpine Foreland Basin and (2) the European
Cenozoic Rift System (Fig. 1; Encls 1 and 2).

In the Alpino-Pyrenean Foreland the collision induced by the
Africa-Europe convergence caused buckling and folding of the
lithosphere during the Early Tertiary. Horizontal compression
of the relatively low-strength crust re-activated pre-existing

faults and led to inversion and uplifting of Mesozoic basins.
The intensity of this inversion decreased with increasing
distance from the Alpine thrust front (Ziegler et al., 1995).
Throughout this period, as well as during later Tertiary times,
compressive stresses were intermittently ‘projected” from the
Alpine collision zone into the foreland, with different directions
and magnitudes. As indicated for the Recent by the World
Stress Map (Zoback & World Stress Map Team, 1989; Zoback,
1992), horizontal compressive stress can be transmitted over
very large distances through both continental and oceanic
lithosphere. There is every reason to assume that during the
Tertiary comparable far-field stress transmission did occur in
the Alpino-Pyrenean Foreland. The regional compilations of
present-day stress indicators in Western and Central Europe
(Griinthal & Stromeyer, 1986; Rebai et al., 1992; Miiller et al.,
1992; Gélke & Coblentz, 1996) have demonstrated a regionally
rather uniform, NW to NNW orientation of the maximum
horizontal compressive stress. Numerical modelling has shown
that both the orientation and magnitude of this regional stress
field are remarkably consistent and invariant despite different
boundary conditions used to represent the tectonic forces acting
along the southern and eastern plate margins. This regionally
uniform stress orientation is (sub)parallel to the general
direction of the convergent plate motion between Africa and
Europe, that was governed by the Indian, South Atlantic, and
North Atlantic ridge-push forces (Fig. 2). It also matches the
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Fig. 1. Main Tertiary tectonic features and basins of Western and Central Europe, the western Mediterranean and the northern Atlantic.
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Fig. 2. Main Tertiary plate-kinematic motions in Western and Central Europe, the western Mediterranean and the northern Atlantic.

general direction of the horizontal compressive stresses which
are projected northwards from the European-African plate-
boundary zone located in the western Mediterranean (Udias &
Buforn, 1993). The NW-SE compression of the present West
European Platform thus testifies to the predominance of
Alpine collision forces induced by plate-tectonic activity in
the Mediterranean. However, platform areas subjected to recent
tectonic deformation and seismo-tectonic activity, such as the
western Alps and the northern Pyrenees, may display important
deviations from the general stress directions (Rebai et al., 1992)
with local-scale variations being spatially associated with
thrust, strike-slip and normal faults. The common occurrence
of normal faulting within a compressive stress regime may be
related to adjustive movements of upper crustal fragments
which are decoupled from the lithospheric mantle by the
relatively ductile lower crust. Affected by the Atlantic ridge-
push force or the Alpine collision force, these fragments may
have moved independently of each other and also relative to
the mantle (Miiller et al., 1997). In the West European
Platform, the release of compressive stress was mainly through
transpressional and transtensional movements along pre-
existing crustal block boundaries (Illies et al., 1981). These
intra-plate stress releases affected both the collisional and
‘post-collisional’ evolution of the Alpine Foreland Basin and
the syn- and post-rift development of the European Cenozoic
Rift System (Encls 1 and 2).
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The geographic location, as well as the overall orientation
and basin configuration of both the pro-wedge North and West
Alpine foreland basins and the retro-wedge North Pyrenean
(Aquitaine) foreland basin (Figs 1 and 2), reflect flexural
foredeep subsidence. This flexural subsidence was related to
the convergence of Europe and Africa (including the Apulian
and Iberian plates) and accompanying thrust-loading along
the collision zone. In contrast, the European Cenozoic Rift
System (Figs 1 and 2; Encls 1 and 2), the most important
intra-plate tectonic feature of the West European Platform,
reflects re-activation of pre-existing faults, crustal extension
associated with intra-graben block-faulting and differential
movements of the adjoining extra-graben crustal blocks. For
both settings and types of basin development, it is likely that
pre-existing crustal discontinuities that had weakened the
lithosphere of the West European Platform played a role in the
collision-induced flexuring and rifting.

Given this context of convergent plate motions and
consequent changes of collision-related intra-plate stresses,
the present paper focuses on the tectonostratigraphic
correlations between the Alpino-Pyrenean Foreland and the
Mediterranean and North Atlantic regions, on the basis of
comparative sequence stratigraphic analyses of the Cenozoic
basins.

| 2006
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| Tectonostratigraphic records

Tectonic records of the Alpino-Pyrenean Foreland testify that
phases of crustal deformation were coeval with episodic
changes in the intra-plate stress regime. These tectonic phases
had durations ranging from many million of years (first-order
events) to only a few million years (second-order events)
(Letouzey, 1986; Bergerat, 1987a,b, Blés et al., 1989, Bles &
Gros, 1991; De Ruig, 1992; Hippolyte et al., 1993; Peresson &
Decker, 1997). The tectonostratigraphic records of the West
European Platform basins are indicative of episodically changing
stress regimes (Sissingh, 1997, 1998, 2001, 2003a,b). Similarly,
changes in stress regime occurred repeatedly in and around
the tectonically very active western Mediterranean (Fig. 2;
Letouzey & Trémolieres, 1980; Letouzey, 1986; Montenat et al.,
1987; Philip, 1987; Ott d’Estevou et al., 1988; Galindo-Zaldivar
et al., 1993; Aite, 1995). These changes are thought to be
related to re-organisations of plate-boundary conditions
which were (see Fig. 28) most frequent during the Eocene and
the later phases of the Alpine orogeny. During this collisional
event the lithospheric plates and palaeostress fields of Western
and Central Europe and the western Mediterranean domains
became increasingly coupled.

The intra-plate stress field is controlled by two first-order
sources (Fig. 2): (1) the generally N- and NW-directed continental
collision forces, which originate along the southern margin of
the European Plate, and (2) the ridge-push forces generated
along the Mid-Atlantic Ridge as a consequence of ongoing
seafloor spreading. Through their plate-tectonic interrelation-
ship, these forces produced the temporally and spatially
changing pattern of the intra-plate stress fields in Western
and Central Europe. In the Alpino-Pyrenean Foreland, the
northward- and westward-directed collision force dominated.

As is argued in this paper, there is strong evidence that
during the Tertiary large-scale geodynamic processes controlled
by the simultaneous E-W opening of the Atlantic Ocean and
the S-N directed collision of Europe and Africa, resulted in
variable stress regimes within the crust of the Alpino-Pyrenean
Foreland. These variations in the regional stress field can be
kinematically correlated with the sequence stratigraphic
development in the different basins. Apparently, the internal
stress regime of the sedimentary basins changed episodically
in response to events at the collisional boundaries between the
African, Apulian, Iberian, and European plates. It is therefore
argued that the development of sedimentary sequences and
unconformities in the Alpine Foreland Basin and European
Cenozoic Rift System reflects coeval changes in the Atlantic
and Mediterranean plate-boundary stress fields.

The stratigraphic records of tectonic phases and sedimentary
sequences in the intra-plate basins allows unravelling of the
interplay between plate-kinematic and depositional processes,
and hence relating plate-tectonics and palaeogeography
(Sissingh, 2006). Changes in the far-field intra-plate stress

field and the tectonic setting as related to African-European
plate-boundary events, may provide a partial explanation for
the sequence stratigraphic architecture of basins in the
foreland of the Alpine orogen (Meulenkamp & Sissingh, 2003).
Detailed basin analysis of Alpine foreland basins indicates
that their sedimentary fills are sensitive recorders of foreland
stress fluctuations. Their tectonosedimentary events also
correlate to short-term variations in relative sea level (Sissingh,
1997, 1998, 2001, 2003a,b). Thus, it is assumed that the
sequence stratigraphy of these basin fills reflects a common,
unifying plate-kinematic relationship in which sedimentary
sequence boundaries are related to coeval changes in the
palaeostress regime and the relative sea level. Stress regimes
and relative sea level in turn are likely to be linked to plate-
tectonic events associated with seafloor spreading. If such a
relationship is demonstrated, it would imply that the global
sea-level curve (Hag et al., 1988) contains important signals of
stress variation. For example, third-order eustatic cycles being
associated with short-term plate-kinematic re-organisations
of the lithospheric stress field. Lowering of relative sea level
would reflect increases in horizontal compression, whereas
rises in relative sea level would correlate with increases in
tension (Cloetingh, 1986), all of them playing an important
role in controlling basin-fill sedimentation.

Most particularly, the objective of this study is to substantiate
the above mentioned stratigraphic interpretations concerning
the plate-kinematic and depositional history of the Alpino-
Pyrenean Foreland. To that purpose, a tectonostratigraphic
summary of the Alpine foreland basins is given. Special
attention is paid to the temporal correlation of depositional
sequences and short-term intra-foreland and intra-orogen
tectonic events. The exact mode and extent of punctuated
plate-kinematic stress transfer from the Mediterranean and
Atlantic plate-boundary domains towards the Alpino-Pyrenean
Foreland remains to be assessed geodynamically. However, it is
clear that the African-European plate collision was a more
important control on the Tertiary deformation and tectono-
stratigraphic evolution of the Alpino-Pyrenean Foreland than
the opening of the Atlantic Ocean. The Alpine plate-collision
forces deformed and displaced the upper crust much more
than Atlantic ridge-push forces. This may be due to the
associated seafloor spreading being relatively constant in
terms of direction and rate.

To test the idea of a temporal interrelationship between
Alpine foreland plate-kinematics and basin sedimentation, the
stratigraphy of representative plate-boundary basins of the
western Mediterranean has been analysed to document the
plate-kinematic and depositional events which, within the
accuracy of biostratigraphic and radiometric dating techniques,
were synchronous with such events in the Alpine foreland
domain. Finally, an attempt is made to correlate Alpine foreland
and Mediterranean hinterland events with developments at the
Mid-Atlantic seafloor spreading axis. As in previous studies,
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stratigraphic records are calibrated with the time scale of
Harland et al. (1990) and the sea-level curves of Haq et al.
(1988).

| Structural Setting

The Tertiary geodynamic evolution of the Alpine-
Mediterranean lithosphere is closely related to the collisional
interaction of Europe and Africa. Particulars of the relative
motion are still under debate (e.g. Mazzoli & Helman, 1994;
Albarello et al., 1995). However, it is generally agreed that the
Cenozoic convergence of Africa and Europe involved a relative
counter-clockwise rotation of the African and Apulian plates
(Fig. 3). Relative to Africa and Europe, however, Apulia would
have moved northwards independently (Platt et al., 1989). The
plates moved dominantly to the north from the earliest Eocene
until the Eocene-Oligocene transition, when the convergence
path became slightly more northwesterly. A striking counter-
clockwise rotation in convergence occurred in Tortonian time
(about 10 Ma ago: Mazzoli & Helman, 1994; Fig. 3).

West European domain

In line with N-S compression during the Eocene, the structural
evolution of the West European Platform was accompanied by
the emplacement of partly basement-cored Alpine nappes and
the increasing effects of accompanying thrust loading. At the
same time, the coupling of the lithosphere-loading Alpine
orogenic wedge with the passive European margin was
enhanced. Increases in mechanical coupling occurred mainly
following the Late Eocene main collision of the Alpine and
Pyrenean orogenic wedges with the southern margin of Europe.
The north- and northwest-trending compression related to the
Late Eocene collision and coupling of Iberia and Apulia with
Europe probably interfered in the Alpino-Pyrenean Foreland.
Most evidence for the occurrence of episodic far-field
compressive pulses in the West European Platform dates from
the post-Eocene period (see below). Prior to the Late Eocene,
the convergence of Africa, Apulia and Europe was dominated
by subduction. From the Early Oligocene onwards, however,
the ‘post-collision convergence phase’ was actually collision-
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Fig. 3. Schematic representation of the plate-tectonic drift of Apulia relative to Europe by means of the convergence paths of four reference points,

which migrated to the present-day northern Alpine thrust front during the Cretaceous and Cenozoic, as calculated from palaeogeographic reconstructions

by Dewey et al. (1989). The approximate paths indicate convergence at different rates and with variable directions. The relatively low rates during the

Eocene are related to accelerating lithospheric shortening and nappe stacking in the Alpine orogenic wedge. At the same time, rifting of the Upper Rhine and

Rhéne grabens in the Alpine pro-wedge foreland increased, probably in conjuction with increased transmission of collision-related, N-S striking compressive

stresses from the Pyrenean and Alpine orogens into the conjugate Alpino-Pyrenean Foreland (which at the time included the area presently occupied by

the doubly-vergent Alps). In turn, the increased compression is linked to enhanced mechanical coupling of the Iberian, Apulian and European plates.
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dominated. During this orogenic phase, the Alpine and
Pyrenean wedges increased substantially in thickness,
implying that basically only the lower crust was subducted.
Earlier, structurally important phases of foreland compression
occurred in the Paleocene. Through Late Paleocene intra-plate
compression, Laramide and older features of the continental
Alpine foreland were uplifted and degraded by erosion, whereas
farther to the south, the development of the Alpine Foreland
Basin was initiated by load-induced downflexing of the pro-
wedge foreland crust by the nascent Alpine orogenic wedge
(Allen et al., 1991). As indicated by the northward decreasing
intensities of deformation, the Paleocene compressions reflect
increased mechanical coupling between the Alpine orogen and
the European foreland. Contemporaneously with Middle Eocene
emplacement of Alpine precursor nappes, the Variscan
basement and Mesozoic cover of the West European Platform
was broken-up by the overall N-S trending European Cenozoic
Rift System from close to the Early-Middle Eocene transition
onwards (Figs 1 and 2; Encls 1 and 2; Ziegler, 1994; Prodehl et
al., 1995; Sissingh, 1998; Dézes et al., 2004). In tandem with
plate-driven compression from the south, the West European
Platform was affected by E-W extension, especially during the
Late Eocene and Oligocene. From the Late Eocene onwards, the
development of the European Cenozoic Rift System was
broadly contemporaneous with the development of the Red
Sea-Suez-Libyan-Pelagian Shelf and Trans-Atlas rift systems,
possibly reflecting the establishment of a widespread regime
of extensional tectonics governing an Alpine-Mediterranean
plate-boundary re-organisation and affecting the West
European stress regime (Ziegler, 1988, 1994; Ziegler et al.
1995). Generally, rifting of the platform continued until the
Early Miocene. In part of the rift system, however, extension
continues until the present day. As deduced from Arctic and
North Atlantic magnetic anomaly lineations, the rifting of the
West European Platform probably involved a westward motion
of the West Rhenish-Gallic subplate (west of the rift), relative
to stable Central Europe (Le Pichon et al., 1988). In addition,
it has been proposed that the North Rhenish-Lower Saxon
subplate (eastern Rhenish Massif) has rotated clockwise relative
to the West Rhenish-Gallic subplate (Schreiber & Rotsch,
1998) and that the Southwest German subplate has moved
westwards towards the latter subplate (Sissingh, 2003a). The
opening of the rift basins occurred either obliquely or
perpendicularly relative to the direction of the lithospheric
mantle movement that governed the oceanic spreading at the
Mid-Atlantic Ridge and the direction of collision of Africa-
Apulia with Europe (Fig. 2). It has also been postulated that
the crust of the West European Platform has moved laterally
towards the southwest, relative to the underlying mantle and
the East European Platform (Zeyen et al., 1997).

West Mediterranean domain

Overall, the orogenic belts bordering the western Mediterranean
have an outward-directed structural polarity (Fig. 2). Since
the late Paleogene, the intra-Mediterranean structuration was
dominated by eastward-directed, probably intermittent roll-
back of the westward subducting Maghrebian-Apenninic
lithospheric slab (Fig. 4; Gueguen et al., 1997; Carminati et
al., 1998a,b; Roca, 2001). Thus, the structural evolution of the
western Mediterranean Basin resulted in an interrelated series
of tectonic subdomains defined by discontinuously-developed
continental lithospheric necks isolating large-scale lithospheric
boudins (Gueguen et al., 1997) and extensional back-arc
basins in the hanging wall of the migrating lithospheric slab.
These structures originated during a Late Oligocene - Early
Miocene (about 30 - 16/15 Ma) and a later Miocene - Quaternary
(9/8 - 0 Ma) main phase of basin opening, initially near the
Iberian Peninsula and finally in the Tyrrhenian Sea (Figs 1, 2
and 4; Doglioni et al., 1997, 1999; Carminati et al., 1998b).

North Atlantic domain

In the North Atlantic domain, crustal separation between
Europe and North America-Greenland began around the
Paleocene-Eocene transition. Crustal separation by rotational
divergence of the European and American plates could start
when such movements were no longer impeded by Laramide
and later Paleocene compression. At the same time, seafloor
spreading axes could extend northwards into the domain of
the Norwegian-Greenland Sea (Srivastava & Tapscott, 1986).
This event caused the E-W sinistral strike-slip between Africa
and Europe along the Azores-Gibraltar Fracture Zone to change
into E-W dextral strike-slip. This occurred in conjunction with
a change in convergence direction from strongly westwards to
approximately northwards (Fig. 3). The northward propagating
opening of the North Atlantic continued with the development
of the Reykjanes-Kolbeinsey-Aegir ridge system (Fig. 2). During
the later Cenozoic, the North Atlantic system of mid-oceanic
ridges evolved in terms of various short-term re-organisations
(Klitgord & Schouten, 1986; Srivastava & Tapscott, 1986; Géli,
1991). East of the Mid-Atlantic Ridge, the King's Trough
developed from around the Early-Middle Eocene transition
onwards (Fig. 2; Kidd et al., 1982; Kidd & Ramsay, 1986;
Srivastava & Tapscott, 1986). Together with Boundary B (Fig. 2;
Roest & Srivastava, 1991), it was involved in the transmission
of compressive stress from the Mid-Atlantic Ridge to the
Pyrenean convergence zone during the Eocene collision of the
Iberian and European plates and the N-S subduction of the
North Spanish Trough in the earliest Oligocene (Fig. 2;
Srivastava & Tapscott, 1986). This fracture system coincided
with the African-European plate boundary until the late Middle
Eocene, when Iberia decoupled from Africa and became
kinematically independent (Roest & Srivastava, 1991). Around
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restored positions of Africa relative to the present-day configuration of Europe (based on Carminati et al., 1998b). Accompanied by a NW translation

of Apulia since the Late Oligocene, the Alpine thrust front rotated counter-clockwise around the Ligurian Knot, the structural-kinematic join of the Alpine and

Apenninic orogens near the southern edge of the salient Apulian Indenter, its kinematic link with the Apenninic thrust front (Laubscher et al., 1992).

the Oligocene-Miocene transition, however, it became a
mechanically coherent part of the European Plate. From that time
onwards, the African-European plate boundary coincided with
the Azores-Gibraltar Fracture Zone (Roest & Srivastava, 1991).

Main orogenic phases

In summary, the following Cenozoic orogenic phases can be
distinguished for the plate-kinematic interrelationship and
orogeny-related evolution of the Alpine-Mediterranean and
North Atlantic domains (Fig. 3; numerical ages approximate):
1. Late Paleocene to earliest Middle Eocene (60 Ma to 52 Ma) —
Early Mesoalpine subduction-dominated orogenic phase.
Characterised by a relatively slow, strongly west-directed
motion of Apulia (Fig. 3). It started in the North Atlantic
with the formation of the Azores-Biscay Rise and ended in
this domain with the initiation of the King’s Trough-
Azores-Biscay Rise-North Spanish Trough Fracture Zone
(Kidd & Ramsay, 1986; Srivastava & Tapscott, 1986).
Initiation and termination in the pro-wedge Alpine

foreland domain coincided respectively with the origin of
the Alpine Foredeep (Allen et al., 1991) and the initial
development of the European Cenozoic Rift System
(Sissingh, 1998; late part of Phase 3 of Dewey et al., 1989).

. Earliest Middle Eocene to Eocene-Oligocene transition (52 Ma

to 36 Ma) — Middle to late Mesoalpine subduction-dominated
orogenic phase. Dominated by a very slow, north-directed
motion of Apulia (Fig. 3), which induced basement-cored
Penninic and Austro-Alpine thrusting in the initial Alpine
orogen. In the North Atlantic domain this phase ended
with compression and subduction of the North Spanish
Trough (Srivastava & Tapscott, 1986). In the Alpine domain
it ended with a main phase of mechanical coupling of the
Apulian and European plates during final Penninic and
Austro-Alpine thrusting of the Alpine orogenic wedge
(Sissingh, 1997; Phase 4 of Dewey et al., 1989).

3. Eocene-0ligocene transition to mid-Early Miocene (36 Ma to

20 Ma) — Late Mesoalpine to early Neoalpine collision-
dominated phase. Characterised by slow, north-directed
motion of Apulia (Fig. 3). This resulted in crustal shortening
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associated with enhanced imbrication of the European
continental margin and pronounced ‘post-collision” Helvetic
thrusting and overthickening of the Alpine orogenic wedge,
as well as back-thrusting and folding in the early Alps
along the Insubric Line. In the North Atlantic this phase
ended with renewed rifting of the King's Trough (Kidd &
Ramsay, 1986) and increased volcanism in the Eastern
Central North Atlantic domain (Schmincke, 1982). In the
Alpine domain it ended with a general tectonic ‘crisis’,
including cessation of intense in-sequence and out-of-
sequence thrusting (Laubscher, 1992; Sissingh, 1997; Kempf
et al., 1999; early part of Phase 5 of Dewey et al., 1989).

4. Late Early Miocene to early Late Miocene (20 Ma to 10 Ma) —
Middle Neoalpine collision-dominated orogenic phase.
Characterised by a very slow, north-directed motion of
Apulia (Fig. 3). This induced further crustal shortening and
imbrication of the European continental margin and Helvetic
thrusting and overthickening of the Alpine orogenic wedge.
Large-scale pro-wedge foreland thrusting ended around the
Early/Middle Miocene transition (ca. 17 Ma) at the onset of a
tectonic re-organisation in the Alpine orogen (Marton et al.,
2000; Kuhlemann et al., 2001; Kuhlemann & Kempf, 2002).
In the North Atlantic the end of this phase coincided with a
re-organisation in seafloor spreading that affected (at least)
the distant Mohn's Ridge region north of the Aegir Ridge
(Fig. 2; Géli, 1991). In the Alpine domain this coincided with
migration of crustal deformation onto the West European
Platform and outward fanning from the western Alpine
orogenic wedge in association with another major tectonic
resetting of the orogen (Sissingh, 1997, 2001; Kuhlemann et
al., 2001; late part of Phase 5 of Dewey et al., 1989).

5. Late Late Miocene-Recent (10 Ma to 0 Ma) — Late Neoalpine
collision-dominated orogenic phase. Corresponds to a very
slow, northwest-directed motion of Apulia (Fig. 3). This
caused imbrication and partial overriding by nappes of the
southern parts of the North Alpine Molasse Basin,
northward displacement of the Swiss North Alpine Molasse
Basin and, from there, eastward propagating uplift of the
entire remnant basin (starting at ca. 11 Ma: Kuhlemann et
al., 2001; Kuhlemann & Kempf, 2002), and folding and
thrusting of the Jura and Subalpine Chains during the Late
Miocene (Laubscher, 1992; Sissingh, 1997, 2001; Phase 6 of
Dewey et al., 1989).

Tectonostratigraphic Outline of the Alpine
| Foreland Evolution

Alpine Foreland Basin

This pro-wedge basin developed in response to flexural isostatic
compensation and subduction of the European foreland
lithosphere that was induced by overthrusting of the Apulian
Microplate. It forms a zone along the Alpine orogenic belt in
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which sediment accumulated. Its orogenic margins are formed

by the Northern and Western Alps, and it is geographically

divided into a North and a West Alpine Foreland Basin (Fig. 1;

Encls 1 and 2). Subsidence was driven by the load of the

northwestward propagating North and West Alpine orogenic

wedges and enhanced by the vertical loading effect of the basin
fills on the flexed lithosphere. Through the tectonic loading of
the pro-wedge foreland crust by the advancing Alpine orogenic
wedge, the events that governed the Alpine phases of intra-
orogen deformation also affected the development of the Alpine

Foreland Basin. The inception of the basin corresponded with

the Late Paleocene accretion of a leading Apulian terrane to

the southern European continental margin. This event initiated
the closure of the last remnant oceanic basins of the western

Neotethys and the final decay of the Tethyan seaway. This

compressive overthrust event converted the European passive

margin into an embryonic Alpine orogenic belt. It simulta-
neously caused flexure-induced subsidence in the proximal
convergence zone and erosion-inducing uplift (bulging) of the

European foreland farther away from the newly-formed,

wedge-shaped orogenic zone (Allen et al., 1991; Sinclair &

Allen, 1992; Sinclair, 1997b). While the Apulian leading edge

progressively overrode the European margin, flexural foreland

subsidence developed generally deep-water depositional
conditions for the Alpine Foredeep, the early pro-wedge
foreland basin. Plate convergence and overthrusting continued
to push the northern orogenic wedge over the margin. Possibly

until uplift of the Alpine orogenic wedge in response to a

Rupelian detachment of a subducted lithosphere slab (Sinclair,

1997a) that closed the transitional Alpine ‘Pre-Molasse’ Basin

(Sissingh, 1997), flexure-induced subsidence no longer

Instead, shallow-water

deposition became predominant in the Alpine Molasse Basin,

the younger foreland basin (Sissingh, 1997). Towards the end
of the Cenozoic, isostatic rebound of the orogenic wedge -
possibly in response to another slab detachment (Andeweg &

Cloetingh, 1998) leading to decoupling of the Apulian and

European plates (Mantovani et al., 1993) - occurred during

reduced convergence and nappe piling. It concluded the

sedimentary phase of the basin with an Alpine orogenic phase

that induced widespread erosion and non-deposition. Thus, a

succession of three basinal settings is distinguished for the

North and West Alpine Foreland basins (Sissingh, 1997). From

old to young these are:

1. Alpine Foredeep — Essentially an underfilled basin
characterised by a tripartite sediment sequence of shallow-
marine, basal carbonates, which are overlain by deep-water
(hemi)pelagic marls and flysch. This sequence formed
in response to increasing subsidence which caused

exceeded sediment accumulation.

accommodation space to exceed sediment supply. The
contemporaneous kinematic development of the accretionary
thrust-wedge was typified by relatively rapid, submarine
advances towards the platform, dominantly horizontal
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motions and low exhumation rates. Consequently, limited
erosional unroofing of the Alpine orogenic wedge occurred.

2. Alpine Pre-Molasse’ Basin — Transitional, underfilled to filled
basin with a sediment fill of deep-water flysch, shallow-
water carbonates and non-classical molasse in broadly
comparable proportions. Thrust-wedge loading, thickening,
exhumation and unroofing increased, as the movement of
the Alpine thrust front decreased.

3. Alpine Molasse Basin — Mainly filled to overfilled basin
characterised by shallow-water molasse. Thrust-wedge
loading and thickening occurred under largely subaerial
conditions, as the advancing thrust-front slowed down.
Consequently, Alpine thrust-wedge erosion was substantial
and induced additional subsidence of the basin in response
to sediment loading.

North Alpine Foreland Basin

The lithostratigraphy and sequence stratigraphic subdivisions
of the North Alpine Foreland Basin are shown in the Figures 5
to 7 (see Sissingh (1997) for details). The tectonosedimentary
history of the basin began with deposition of Thanetian and
younger marine strata on top of a widespread unconformity.
This hiatus developed in relation to uplift and erosion that
was induced by compressional folding of the crust in front of
the advancing incipient Alpine thrust belt. Accumulation in
the marine North Alpine Foredeep continued until about the
Bartonian-Priabonian transition, when the North Alpine
‘Pre-Molasse’ Basin formed. Younger Tertiary deposits of the
successive North Alpine Molasse Basin are commonly classified
into the following general sedimentary series (Figs 5 to 7)
which partly overlap each other in time (e.g. Kempf et al.,
1999; Strunck & Matter, 2002):

1. Lower Marine Molasse (essentially Rupelian)

. Lower Freshwater Molasse (Chattian-Aquitanian)

. Upper Marine Molasse (Burdigalian)

. Upper Freshwater Molasse (Langhian-early Tortonian).

N W

Similar to the older fill of the North Alpine Foreland Basin,
the accumulation of this four-fold succession of continental to
marine sequences, is also directly linked to the tectonics of
the evolving Alpine orogenic wedge. Deposition came to an
end due to basin-wide uplift in the Tortonian. Especially the
post-Middle Eocene sequence boundaries formed in response
to changes in eustatic sea level onto which tectonic pulses in
the adjacent Alpine orogen were superimposed (Figs 8 to 10;
see Sissingh (1997) for discussion).

West Alpine Foreland Basin

The lithostratigraphy and the sequence stratigraphic inter-
pretations of the West Alpine Foreland Basin, the coeval
Manosque-Forcalquier Basin and post-Oligocene Cucuron-

Valensole Basin are summarised in Fig. 11 (see Sissingh (2001)
for details). Generally, the development of the West Alpine
Foredeep and ‘Pre-Molasse’ basins resembled that of their
northern equivalents. The preserved fill of the West Molasse
Basin consists of two major sedimentary series (Fig. 11):

1. Continental-Marine Series (Rupelian)

2. Continental Series (Chattian).

These series are separated by a hiatus which is related to
the major fall in eustatic sea level of the mid-Oligocene and to
coeval tectonic uplift and continentalisation of the basin.
Post-Oligocene uplift terminated deposition and caused erosion
of the Upper Oligocene. In general, the basin fill of the
southeastern West Alpine Foreland records a Late Eocene-
Pliocene succession of short-duration tectonic events, which
are often represented by an unconformable sequence
boundary (Figs 8 and 11; see Sissingh (1997) for discussion).

European Cenozoic Rift System

Cross-cutting the regional Variscan structural grain this intra-

plate graben system extends with a variable, but overall N-S

orientation from the southern North Sea Basin and southern

North German Basin across the West European Platform to the

Iberian Meseta in the westernmost Mediterranean Basin. Farther

to the south, the rift can be traced till in the Atlantic (Ziegler,

1994). Its position is thought to be controlled by pre-existing

zones of weakness in the Variscan basement. From north to

south it can be divided into the following principal segments

(Figs 1 and 2; Encls 1 and 2):

1. Northern European Cenozoic Rift Segment — Including the
NNE-SSW trending Upper Rhine Graben which bifurcates at
its northern end, forming the Rhenish Triple Junction at
the Rhenish Massif. Its eastern branch leads to the NNE-
SSW striking Hessen Depression, whereas the western branch
forms the NW-SE trending ‘Middle Rhine Graben’ (Neuwied
Basin) and the NW-SE striking Lower Rhine Graben that
comprises the Lower Rhine Embayment at the Rhenish
Massif (Sissingh, 2003a).

2. Rhine-Sadne Transform Zone — A sinistral, NE-SW striking
transverse fault system characterised by a dense pattern of
shear fractures and strike-slip faults (Lacombe et al., 1993).

3. Southern European Cenozoic Rift Segment — Consisting of the
almost N-S trending Rhéone Graben (dominated by the Bresse
and Valence grabens; Sissingh, 2001), the relatively wide
and complex Gulf of Lions with narrow and elongate, NE-
SW trending grabens (Séranne, 1999, Guennoc et al., 2000)
and the NE-SW striking Valencia Trough (discussed below).

4. Mediterranean-Atlantic Volcanic Chain — Includes the rift-
related, alkaline volcanic chain of latest Miocene and Plio-
Pleistocene age that connects the Alboran Basin with the
Cape Verde Islands via the Rif and Atlas mountain ranges of
northern Africa (Ziegler, 1994).
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Fig. 6. Lithostratigraphic diagram and sequence stratigraphic interpretation for the central part of the North Alpine Foreland Basin (from Sissingh, 1997;
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Fig. 7. Lithostratigraphic diagram and sequence stratigraphic interpretation for the eastern part of the North Alpine Foreland Basin (from Sissingh, 1997;

see also Fig. 5).
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Fig. 10. Proposed plate-kinematic relationship between CRF sequences of the Alpine Foreland Basin and deformation phases of the Alpine orogenic

wedge (after Schmid et al., 1997) and correlation with CRF phases of the North and West Alpine Foreland domains (see Fig. 23 for explanation).
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Lithostratigraphic diagram and sequence stratigraphic interpretation for the southeastern West Alpine Foreland (from Sissingh, 2001).

Fig. 11.
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The rift segments comprise (sub)basins which are frequently
separated from each other by ENE-WSW to NNE-SSW trending
highs. In addition to the four-fold main rift structure, the N-S
trending rift complex of the French Massif Central (dominated
by the Limagne Graben), the N-S trending Sardinia Rift of the
Corsica-Sardinia Block (which initially developed as part of
the Southern European Cenozoic Rift Segment and next rotated
away from the French Provencal coastal area to its present
location) and the ENE-WSW striking Eger Graben of the
Bohemian Massif form isolated elements of the European
Cenozoic Rift System. The system developed since the Middle
Eocene in direct response to the prevailing stress regimes of
the North and West Alpine foreland regions. Northward-
directed rift propagation occurred in the Northern European
Cenozoic Rift Segment from the southern Upper Rhine Graben
towards the Hessen Depression and Lower Rhine Embayment,
whereas the Southern European Cenozoic Rift Segment
propagated from the northern Rhone Graben towards the
Valencia Trough in the south. Within the context of a changing
stress regime and a period of tectonic uplift and erosion/non-
deposition, a Middle Eocene ‘Early Rhine Graben’ and a post-
Middle Eocene ‘Late Rhine Graben’ may be distinguished.
Similarly, an ‘Early Rhone Graben’ and a successor ‘Late Rhone
Graben’ may be distinguished for respectively the Middle
Eocene - earliest Miocene and the later Cenozoic period. The
development of the Upper Rhine Graben comprised three
episodes of low-strain/low-displacement deformation: a Middle
Eocene phase, a Late Eocene-early Middle Miocene phase and
a mid-Pliocene-Quaternary phase. For the Rhone Graben two
main periods of similar rift deformation can be distinguished:
a Middle Eocene - earliest Miocene phase and a mid-Pliocene-
Quaternary phase.

Several models have been proposed for the structural origin
and evolution of the rift system; but none of them is really
comprehensive. It is generally agreed, however, that E-W
extension associated with N-S compressive stresses projected
into the North and West Alpine forelands from the Pyrenean
and Alpine collisional fronts played a crucial role in the early
Middle Eocene to Early Miocene development of the rift. An
intra-Miocene directional change in compression also strongly
affected the development of the structure. The initial, Middle
Eocene compressive stress regime would have resulted in grabens
within a Pyrenean tensional gash, whereas the Late Eocene
Alpino-Pyrenean and the Oligocene to Early Miocene Alpine
stress regime would have re-activated and further shaped the
rift system.
perspective, the Rhine and Bresse grabens have previously
been interpreted as pull-apart depressions linked by major,
ENE-SWS to NE-SW trending transcurrent faults. From north to
south these are the Metz-Mainz Fault Zone, the Rhine-Sadne
Transform Zone, and the Cévennes Fault Zone (Fig. 2; Encl. 2).
Similarly transverse strike-slip fault zones delimit rhomb-
shaped intragraben subbasins (Chorowicz & Deffontaines, 1993;

In keeping with such a plate-kinematic

Sissingh, 1998, 2001). In addition to the effects of the far-
field stress regimes, other mechanisms, such as mechanical
stretching of the lithosphere in response to active mantle and
asthenosphere upwelling and lithosphere flexuring in response
to Alpine thrust loading (Bois, 1993) were probably also
important for the evolution of the rift system. Overall the
evolution of the rift proceeded under influence of episodic
changes in pro-wedge foreland stress regimes related to
kinematic interactions of the African, Apulian, Iberian and
European plates. The hypothesis of such a punctuated rift
evolution is supported by tectonostratigraphic analyses of the
rift system as summarised below.

Northern European Cenozoic Rift Segment

The lithostratigraphy and sequence stratigraphic subdivision
of the main basins of this rift segment are summarised on
Figures 12 and 13 and Enclosures 3, 5 and 7 (see Sissingh
(1998, 2003a) for details). Prior to rifting, the area of the rift
segment was shortened during Late Cretaceous and Paleogene
phases of basin inversion and upwarping (Ziegler, 1994; Ziegler
et al., 1995). After these compressional events, Lutetian and
probably (some) Bartonian sediments accumulated in the
land-locked and fault-controlled ‘Early Rhine Graben’ that
developed in response to impure, transtensional E-W rifting
associated with block movements along oblique strike-slip
fault zones. However, the initial graben formation was induced
by N-S striking Alpine compression (Schumacher, 2002). Its
position was determined by re-activation of crustal-scale Permo-
Carboniferous and Mesozoic fracture systems (Schumacher,
2002; Dezes et al., 2004). During the Priabonian-early
Rupelian, a pure, E-W striking extensional stress regime was
established. This resulted in the formation of the ‘Late Rhine
Graben’ by proper rifting. Rifting continued until the Langhian-
Serravallian transition, when a regime of E-W compression
was probably established (Sissingh, 2003a). In turn, this
compression was replaced by second-phase extension
(combined with strike-slip) in the Pliocene. The Tertiary fill of
the Upper Rhine Graben comprises the following major
sedimentary series (Fig. 12):

1. Older Continental Series (Lutetian)

2. Continental-Marine Series (Priabonian-Langhian)

3. Younger Continental Series (Serravallian-Piacenzian).

The start and end of deposition of each of these series was
marked by significant tectonic events, which correspond to
the onset and end of the different phases of graben formation.
During graben formation, intra-graben deposition was
repeatedly affected by short-lived tectonic events (Fig. 14; see
Sissingh (1998, 2003a) for discussion).

Like the Upper Rhine Graben area, the region of the Hessen
Depression was subjected to pre-rift uplift and erosion. E-W
striking rifting propagated from the Upper Rhine Graben into
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the Hessen Depression during the Lutetian. It persisted in this
basin until the Langhian, when widespread uplift occurred
and volcanism became prevalent. The pre-volcanic syn-rift fill
of the graben can be divided into three major sedimentary
series (Fig. 13):

1. Older Continental Series (late Lutetian-early Rupelian)

2. Marine Series (late Rupelian-early Chattian)

3. Younger Continental Series (late Chattian-Burdigalian).

Deposition of these series was again controlled by tectonics.
The depositional history of the rift basin was punctuated
by an episodic succession of brief tectonic events including
four pre-volcanic periods of deposition, which are bounded by
erosional/non-depositional hiatuses (Fig. 14; see Sissingh
(1998, 2003a) for discussion).

In the Lower Rhine Embayment, the third major basin of
the Rhenish Triple Junction, syn-rift deposition occurred from
the Priabonian-Rupelian transition to the Recent. The initial,
SW-NW trending rifting occurred in combination with
re-activation of pre-existing faults that responded to NNW-SSE
directed compression. The main phase of rifting lasted from
the Chattian until the mid-Aquitanian. The Tertiary of the
Lower Rhine Embayment is subdivided into the following,
partly unconformity-bounded sedimentary series (Fig. 13):

1. Marine Series (Rupelian)

2. Older Continental - Marine Series (Chattian-Aquitanian)

3. Younger Continental - Marine Series (Burdigalian-Messinian)
4. Continental Series (Zanclean-Piacenzian).

This succession reflects a complete retreat of the sea from
the basin. On the whole, this fundamental change in
depositional setting is probably related to episodically-
progressing, relative tectonic uplift of the Rhenish Massif, and
to longer-term lowering of the global sea level (Fig. 14; see
Sissingh (2003a) for discussion).

In summary, the structural evolution of the composite
Northern European Cenozoic Rift Segment was governed by
diachronous, syn-sedimentary intra-plate rifting associated
with volcanic activity and uplift of the Rhenish Massif. In
addition to fault-controlled basin subsidence and
tectonomagmatically induced uplift and denudation of the
adjacent massif, the depositional history of the graben system
was also influenced by fluctuations in sea level. Tectonic and
magmatic events intermittently affected all three main
grabens of the Rhenish Triple Junction (Fig. 14).

Eger Graben

The lithostratigraphy and sequence stratigraphic interpretation
of the small, intra-massif Eger Graben (Encl. 2) is shown in
Fig. 15. Polyphase tectonic development of the five component
basins resulted in accumulation of fluvial and lignite-bearing
lacustrine deposits intercalated with volcanic and pyroclastic

horizons (see Kasinski (1991) for details). Three main
sedimentary series occur (Fig. 15):

1. Older Continental Series (Bartonian-Rupelian)

2. Intermediate Continental Series (Chattian-Serravallian)

3. Younger Continental Series (Zanclean-Piacenzian).

The pre-Pliocene basin fill comprises a number of ‘mega-
cyclothems’ which developed during intermittent volcanic
activity. They match (in general) the sequence stratigraphic
subdivision (Fig. 15). This continental sedimentary series
represents a succession of rifting phases and tectonovolcanic
episodes during which rift-bounding faults were re-activated
and graben subsidence increased (Kasinski, 1991).

Southern European Cenozoic Rift Segment

The lithostratigraphy and sequence stratigraphic succession of
the Rhone Graben, which corresponds to the northern half of
the Southern European Cenozoic Rift Segment, are shown in the
Figures 16 and 17 and the Enclosures 4, 6 and 8 (see Sissingh
(1998, 2001) for details). Stratigraphic features of the
Mediterranean part of the rift are discussed below. In response
to N-S Pyrénéo-Provencal compression, intricate rifting
combined with strike-slip faulting began in the northern
Rhéne Graben area (Bresse Graben and ?Valence Basin) around
the Ypresian-Lutetian transition. The rift propagated south-
ward during the later Eocene and the Oligocene, through
tensional and transtensional re-activation of crustal-scale
Permo-Carboniferous and Mesozoic fracture systems (Dézes et
al., 2004). As in the Upper Rhine Graben, the main rifting
occurred during the Priabonian and early Rupelian. E-W
directed extension continued until Aquitanian time, when it
was replaced by NE-SW trending compression related to the
westward advancing Western Alps, until resumption of E-W
extension in the earliest Pliocene. Three Tertiary sedimentary
series are distinguished in the Rhone Graben (Figs 16 and 17):
1. Older Continental - Marine Series (Lutetian-Aquitanian)

2. Intermediate Continental - Marine Series (Burdigalian-

Messinian)
3. Younger Continental - Marine Series (Zanclean-Piacenzian).

This threefold subdivision is correlative with the syn-rift
stage of the ‘Early Rhéne Graben’ and the post-rift and final
syn-rift stages of the ‘Late Rhone Graben' The sequence
stratigraphic successions reflect a series of tectonic phases
(Fig. 18; see Sissingh, 2001 for discussion), which can be
correlated with the Late Eocene-Pliocene record of palaeostress
changes determined for the Provence (Fig. 19).

Limagne Graben

The N-S trending Limagne Graben is situated above a similarly
N-S oriented Loire Dome, a local uplift of the Moho (up to a
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present-day depth of about 25 km). Their superposition may
signify that the development of the graben is related to pre-
and syn-rift rather than post-rift crustal attenuation induced
by upwelling of a hot asthenosphere. Contemporaneous with
the small, NW-SE striking Puy Basin, the dominant Limagne
Graben originated around the Ypresian-Lutetian transition,
while volcanic activity increased in the Massif Central (Fig. 20).
The massif probably broke up into a horst-and-graben system
at the same time that the Bresse and Rhine grabens (and the
Valence Basin?) took shape. They originated in response to
comparable Pyrénéo-Provencal tectonic stress regimes. As
elsewhere in the initial European Cenozoic Rift System, crustal
extension associated with strike-slip motions resulted in block-
faulted complexes comprising variably-sized grabens, pull-apart
basins and horsts delineated by re-activated, pre-existing

faults. The predominantly lacustrine and fluvial fill of the
Limagne Graben (see Sissingh (2001) for details) encompasses
two major sedimentary series (Fig. 20):

1. Older Continental Series (Lutetian-Aquitanian)

2. Younger Continental Series (Burdigalian-Picenzian).

The older succession also includes brackish to marine strata
of Priabonian and early Rupelian age. These beds represent the
main rifting phase in the Massif Central. Little is known about
the tectonosedimentary development of the Massif Central
grabens. For example, the episodicity of the basin subsidence
and the origin of the lithological changes and breaks of the
depositional records are unclear.
was analogous to that of the Rhone Graben. In particular,
extensional tectonics seems to have ended in both grabens in

Probably, rift formation
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response to the same Aquitanian tectonic event. Post-rift
deposition occurred during a Burdigalian-Messinian period of
E-W compression and (still ongoing) uplift of the Massif
Central. Extension resumed during the Pliocene, as in the
Rhone and Rhine grabens (Sissingh, 2001).

Overview

The sequence stratigraphic development of the North and West
Alpine Foreland basins, including their phases of volcanic and
tectonic activity, is summarised in Figures 21 and 22 and
Enclosures 3 to 8. Many of the sequence boundaries correspond
to unconformities that can be correlated with short-lived
tectonic phases and changes in eustatic sea level (see also Figs
8,9, 10, 14, 18 and 19). Numerous widespread tectonic pulses
can be distinguished. Some had a relatively great and
fundamental impact on the Tertiary development of the Alpine
Foreland. These ‘crises’ (Sissingh, 2001) occurred during the
early Thanetian, Ypresian-Lutetian transition, Priabonian,
Rupelian-Chattian transition, Aquitanian, mid-Burdigalian,
Langhian, mid-Tortonian, Messinian and Zanclean-Piacenzian
(Figs 21 and 22). Another one occurred in the mid-Pleistocene.
All were controlled by episodic changes in the crustal far-field
stress regime of the pro-wedge Alpine Foreland. Those during
the Burdigalian (CRF 17) and Tortonian (CRF 22) may have been
contemporaneous with a break-off of a subducting slab (Fig.
23; Schmid et al., 2002 and Andeweg & Cloetingh, 1998). The
short-term tectonic phases (Fig. 23; CRF 1 to 28) affected the
Cenozoic depositional development and sequence stratigraphy
of the Alpine Foreland basins (Fig. 23; CRF 0 to XI). In
essence, they affected the basins isochronously (Figs 5 to 20
and 23). Their correlation with the curve of short-term
changes in eustatic sea level suggests temporal and causal, i.e.
kinematic, interrelationships between Alpine tectonic pulses
and African, Apulian and Iberian plate motions (relative to
Europe) and eustatic cycles of the world ocean system. This
inferred mechanical coupling will be further explored in the
following discussion of Mediterranean and Atlantic plate-
boundary events.

Correlation with Mediterranean
|__APrlﬂartg:_ti)oundary Events

Grer'nrgral

The plate-tectonic collage of the western Mediterranean region
resulted in a complexly-curved chain of Cenozoic arcuate
structures comprising three major Alpine orogens, the Betic
Cordilleras, the Maghrebides and the Apennines, which are
linked together by the Gibraltar Arc in the west and the
Calabrian Arc in the east (Fig. 1). These mountain ranges
enclose a system of basins that is considered to have evolved
more or less independently from the coeval deformation of the

774600077921 Published online by Cambridge University Press

surrounding continents (Fig. 2). Situated within the Africa-
Europe convergence zone, crustal shortening and back-arc
extension associated with internal-external propagation of
thrust belts, lithospheric slab migration and block rotations
(Figs 3 and 4) jointly governed the structural development of
the western Mediterranean Basin from the Oligocene onwards.
As shown in the following summary, episodic tectonics
contemporaneous with these large-scale, crustal deformational
events affected the structural development of the Alpino-
Pyrenean Foreland and the tectonosedimentary evolution of
its basins. The proposed correlative CRF phases and ‘crises’ are
indicated between brackets, together with the reported
numerical ages and biostratigraphic zones.

The last remaining Neotethyan oceanic basin in the western
Mediterranean domain, the Piemonte-Ligurian-Alboran Ocean,
finally closed during a Late Eocene collision climax induced by
the N-S convergence of Apulia and Iberia with Europe (CRF 5
to 8; ‘Late Eocene Crisis’; Ziegler, 1988). At the same time, the
northward movement of Africa intensified compression,
thrusting and crustal shortening (including subduction of the
Maghrebian lithosphere) along the southern margin of the
Alboran-Kabylia Block and caused this block to collide with
(and to subduct underneath) the southeastern Iberian-
Balearic margin (Frizon de Lamotte et al., 2000). Compression
contemporaneous with this so-called ‘Atlas event’ occurred in
the Gibraltar Arc (Guerrera et al., 1993). The onset of this
major stage in the convergence of the African, Apulian, Iberian
and European plates is correlative to a tectonics-related
unconformity at the base of the Priabonian of the southern
orogenic chains (internal domain) of the western Mediterranean
(CRF 5; Guerrera et al., 1993). Related to the ongoing plate
convergence, volcanism began on the Corsica-Sardinia Block
during the Priabonian (between 39 Ma and 36 Ma) and in
southern France near the Priabonian-Rupelian transition or in
the earliest Rupelian (from CRF 8; from about 34-35 Ma:
Bellon, 1981; Roca, 2001). The onset of the latter volcanic
phase may signify brittle extension of the upper crust that led
to the late Rupelian continental rifting of the Corsica-Sardinia
Block and Liguro-Provencal Basin (CRF 10; Chamot-Rooke et
al., 1997; Brunet et al., 2000; Roca, 2001), when HT Lepontine
metamorphism peaked in the developing Alps (Fig. 10; Brouwer,
2000) and thrusting began along the North Giudicarie Fault of
the Insubric Line (32 Ma: Miiller et al., 2001).

In ‘post-collision’ Oligocene time, Apulia moved to the north
at an increased rate (from CRF 8 onwards; Fig. 3), while the
eastward slab roll-back migration of the Apenninic-Calabrian-
Maghrebian Arc initiated ‘post-orogenic’ sedimentation in the
back-arc area and ‘syn-orogenic’ deposition in the overthrusted
fore-arc zone (from CRF 10 onwards; Séranne, 1999). Following
the mid-Rupelian tectonic pulse, a main tectonometamorphic
phase ended close to the Rupelian-Chattian transition in the
Betic Cordilleras (CRF 11; ‘Mid-Oligocene Crisis’; Ar-Ar minimum
cooling age of about 30 Ma: de Jong et al., 1992). During the
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mid-Chattian-Aquitanian, the Gulf of Lions passive margin
increasingly collapsed and opened in response to NNW-SSE
trending Liguro-Provencal rifting (Fig. 19; CRF 12 to CRF 16;
Hippolyte et al., 1993). The onset of this tectonic main phase
(CRF 12) seems to be correlative to the end of high-pressure/
low-temperature meta-morphism in this region (Ar-Ar age of
25 Ma: Monié et al., 1991), as well as thermotectonic myloniti-
sation synchronous with overthrusting in the Kabylian massif
(Ar-Ar and Rb-Sr ages at 25 Ma: Monié et al., 1988) and the
end of main Pyrenean compression (24.7 Ma: Vergés & Sabat,
1999). The rifting preceded crustal failure and generation of
oceanic crust in the Liguro-Provencal Basin simultaneous with
eastward drift of the Corsica-Sardinia Block and dextral strike-
slip movement along the southeastern extension of the Central
Pyrenean Fault, i.e. the suture between Iberia and Europe
(Gorini et al., 1993; Guennoc et al., 1994; Vially & Trémoliéres,
1996). The Valencia Trough developed contemporaneously,
involving a further response to N-S directed rift propagation.
This coincided temporally with a late Chattian-Aquitanian
episode of increased high-temperature metamorphism in the
southern chains of the western Mediterranean (CRF 12 to
15/16; 25 - 21/22 Ma: Guerrera et al., 1993). The end of this
developmental stage corresponds in the Betic Cordilleras, the
Apennines and the Gibraltar and Calabrian arcs with a major
deformation phase, the climax of the ‘Aquitanian Paroxysm’
(around CRF 15; ‘Basal Miocene Crisis’; Rb-Sr age of 21+2 Ma:
Zeck et al., 1989). During the ensuing tectonic re-organisation,
crustal and lithospheric mantle extension resulted in the
emplacement of ultramafic rocks in the western Betic
Cordilleras. Simultaneously, a tholeiitic basaltic dyke swarm
developed in its Internal Zone (K-Ar age of 22 - 23 Ma: Torres-
Roldan et al., 1986). These events are probably causally
related to the detachment of a subducted lithospheric slab
underneath the Betic chain (about 23 - 22 Ma: Zeck, 1996,
1999; Carminati et al., 1998a,b).

Subsequent to rifting, seafloor spreading was initiated in
the Algéro-Provencal Basin from close to the Aquitanian-
Burdigalian transition onwards (CRF 16; 21 Ma), firstly along
the NE-SW trending axis of its Liguro-Provencal Basin in the
north and later on along the NW-SE and E-W trending axes of
the Balearic and North Algerian basins farther to the south
(Rehault et al., 1985; Vigliotti & Langenheim, 1995; Chamot-
Rooke et al., 1997; Séranne, 1999; Roca, 2001). This occurred
in tandem with further rotation of the Corsica-Sardinia Block
around a pole located in the Ligurian Sea near the Ligurian
Knot (Fig. 4). The terminal Aquitanian oceanisation event is
correlative to a widespread tectonic unconformity in the
southern orogenic chains of the western Mediterranean
(Guerrera et al., 1993).

Seafloor spreading and block rotation was likely interrupted
in response to a mid-Burdigalian compressive event in the
Algéro-Provencal Basin as evidenced by a similarly paroxysmal
tectonic event and hiatus (Guerrera et al., 1993) (CRF 17;

‘Miocene Crisis’; 19 Ma: Burrus, 1984; Chamot-Rooke et al.,
1997; Roca, 2001). This interruption corresponded with a
widespread collision between parts of the western Mediterranean
orogenic belt and the surrounding Iberian, North African and
Apulian plates (Guerrera et al., 1993). In response to this
event, the convergence velocity of Apulia and Europe was
reduced (Fig. 3). The event is correlative to a tuff horizon in
the Mediterranean (19 Ma: Gélard, 1979; K-Ar ages of 19.1 Ma,
18.8 Ma and between 22 Ma and 18 Ma: Bellon, 1981; Ar-Ar
ages of 18,31 - +0,14 Ma and 18,37 - 0,14 Ma: Odin et al., 1994)
and to the closure age of the metamorphic cooling which
followed upon the main episode of ductile deformation in the
Betic Cordilleras (Ar-Ar age between 18.9 +0.5 Ma and 19.5+0.5
Ma: Monié et al., 1991). Volcanic eruptions occurred from the
mid-Burdigalian onwards in southern Spain and on the North
African coast (K-Ar age from about 18-19 Ma: Bellon, 1981).
The eastern Iberian margin was affected by extension (about
18 Ma: Vergés and Sabat, 1999). In the Prebetic zone of the
external Betic Cordilleras, a coeval change in compression from
NW-SE to N-S occurred (Ott d’Estevou et al., 1988; see also De
Ruig, 1992).

At the Burdigalian-Langhian transition (CRF 18; onset of
the 'Middle Miocene Crisis’; 16 Ma), a Maghrebian slab break-
off caused the end of trench retreat along northern Africa, the
end of back-arc rifting west of the Corsica-Sardinia Block
(Carminati et al., 1998a,b) and the beginning of back-arc
extension in the Sardo-Thyrrhenian domain (Séranne, 1999).
Oceanic spreading in the Liguro-Provencal Basin ceased around
the same time (16 Ma or 16.5 Ma: Chamot-Rooke et al., 1997,
1999; Carminati et al., 1998a; Roca, 2001; Mauffret et al., 2004).
However, a younger age closer to the Langhian-Serravallian
transition can not be ruled out (near CRF 19; 14 - 15 Ma:
Vigliotti & Langenheim, 1995; see also Speranza et al., 2002).
Oceanic crust started to form in the North Algerian Basin in
Langhian time (between CRF 18 and 19; between about 16 Ma
and 15 Ma: Vergés & Sabat, 1999; CRF 18; 16 Ma: Mauffret et al.,
2004). In the Betic Cordilleras, the detachment event is
correlative to the end of extensional ductile deformation (Ar-Ar
ages of 16-17 Ma: Monié et al., 1991). At the same time, Africa’s
motion relative to Europe changed (16.2 Ma: Mazzoli &
Helman, 1994). In the Betic orogenic belt, a tectonic pulse has
been identified near the Langhian-Serravallian transition (CRF
19; end of ‘Middle Miocene Crisis’; Ott d’Estevou et al., 1988;
Guerrera et al., 1993). This event is correlative to the collision
of the Kabillies with Africa (Vergés & Sabat, 1999). Close to
the Serravallian-Tortonian transition, tectonic activity in the
region of the southern Mediterranean chains increased again
(CRF 21; Guerrera et al., 1993), in association with volcanism
in the Betic Cordilleras (K-Ar age about 10 Ma: Bellon et al.,
1983). Another, widely-recognised phase of crustal shortening,
folding and thrusting occurred in the Betic-Balearic cordilleras
and Maghrebian fold belt in mid-Tortonian time (CRF 22; ‘Late
Miocene Crisis’; Guerrera et al., 1993). It is probably related to
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a change in direction of the convergence of Apulia and Europe
(Fig. 3; 8.9 Ma: Mazzolli & Helman, 1994), the onset of dextral
oblique shortening between Iberia and Africa (8 - 9 Ma: Lonergan
& White, 1997), the termination of the opening of the North
Algerian Basin (8 Ma: Mauffret et al., 2004) and the beginning
of renewed volcanism in the Betic Cordilleras (K-Ar ages
between 10 Ma and 8.8 Ma: Bellon, 1981; K-Ar ages between
about 8 Ma and 7 Ma: Bellon et al., 1983; Di Battistini et al.,
1987; Hernan et al., 1987). In the southern Mediterranean
chains, this tectonomagmatic event seems to be correlative to
a widespread tectonic unconformity (Guerrera et al., 1993).
The development of the North Algerian Basin and Tellian front
ended approximately at the same time with calc-alkaline
volcanism in the Tellian domain (8 Ma: Vergés & Sabat, 1999;
Hernan et al., 1987). In the Prebetic, it is known to correspond
to a directional change in compression from about NW-SE to
N-S (Ott d'Estevou et al., 1988; see also De Ruig, 1992).
Following this event, the Alboran Basin subsided rapidly in a
back-arc tensional setting. All these events occurred around
the opening time of the southern Tyrrhenian Basin (between
9 and 8 Ma). Slab detachment induced southward migration of
the depocentre along the Apenninic and Calabrian arc segments
from the mid-Tortonian onwards (Fig. 4). Later discrete phases
of tectonic activity in the arcs occurred from the latest
Tortonian (‘Terminal Miocene Crisis’ to ‘Mid-Pleistocene Crisis’)
onwards. They are reflected by re-sedimentation phenomena
in the adjoining foredeeps (Guerrera et al., 1993) and by thrust
re-activation in the orogen itself (Bocaletti & Sani, 1998).
Progressive tectonism ultimately led to closure of the pro-
wedge North Betic Corridor and the virtual disappearance
of the Strait of Gibraltar occurred during the late Tortonian-
early Messinian (Weijermars, 1988; Sanz de Galdeano & Vera,
1992). Subsequently, the (presumably) tectonically induced
Mediterranean salinity crisis occurred synchronously over the
entire basin during the late Messinian (in between CFR 23 and
CRF 24; during the ‘Terminal Miocene Crisis’; 5.96 - +0.02 Ma
according to calibration with the astronomical polarity
timescale; Krijgsman et al., 1999a). Age-wise, it corresponds
with the deposition of a volcanic ash layer in the Ait Kandoula
Basin of the High Atlas in Morocco (Ar-Ar age of 5.9+0.5 Ma:
Benammi et al., 1995). The onset of the salinity crisis was
followed by a very brief but widespread erosional desiccation
and tectonic isostatic rebound event (5.59 - 5.50 Ma) that
occurred immediately prior to the deposition of the non-marine
‘Lago Mare” beds (5.50 - 5.33 Ma: Krijgsman et al., 1999a).
These developments were associated with the tectonic closure
of the Rifian Corridor (between 5.59 Ma and 5.33 Ma:
Krijgsman et al., 1999a). This marine passage opened again in
mid-Tortonian time (about CRF 22; 8 Ma: Krijgsman et al.,
1999b). Subsequently, it shallowed in response to tectonic
uplift and a limited glacio-eustatic drop in sea level(?) close
to the Tortonian-Messinian transition (CRF 23; onset of the
‘Terminal Miocene Crisis’; 7.2 Ma: Krijgsman et al., 1999b). The

isolation of the Mediterranean Basin from the Atlantic Ocean
lasted until the Miocene-Pliocene transition, when, after
a latest Messinian pulse of compressional tectonics (Chalouan
et al., 1997), eustatic transgression re-established marine
communication via the Gibraltar Strait at the very beginning
of the Zanclean. This ended the salinity crisis and the modern
Mediterranean Sea developed (from CRF 24 and the end of the
‘Terminal Miocene Crisis” onwards).

Valencia Trough

The Valencia Through is a broadly triangular, NE-SW trending
basin that extends over some 400 km in between the Catalan
Coastal Ranges and the Valencia-Castellon area along the
eastern Iberian Peninsula margin and the Balearic Promontory,
the offshore prolongation of the Betic Cordilleras (Fig. 1; Encls
1 and 2; Fontboté et al., 1989, 1990). The basin is underlain
by a strongly attenuated continental crust. The depth of the
Moho decreases gradually from 27 - 30 km below the Iberian
Plate to 15-16 km at the axis of the Valencia Trough, from
where it increases again to a depth of 22 - 24 km near Mallorca
(Fig. 24; Danobeitia et al., 1992; Torné et al., 1996). The
development of the basin began during a latest Oligocene -
Early Miocene main phase of NW-SE directed rifting that
coincided with counteracting NW-SE directed compression,
stacking of NW-vergent thrusts and syn-compression deposition
in the adjacent Balearic Promontory (Fig. 24; Alvaro et al.,
1984; Alvaro, 1987; Fontboté et al., 1989, 1990; Ramos-
Guerrero et al., 1989; Roca & Desegaulx, 1992). Unlike the
Algéro-Provengal Basin, rifting did not progress to the stage of
separation of the continental crust and emplacement of
oceanic crust. Initial rifting affected mainly the northwestern
part of the basin by the development of numerous ENE-WSW to
N-S oriented horst and graben structures (Roca & Desegaulx,
1992). These formed in tandem with the development of such
structures in the Gulf of Lions (Séranne, 1999). At the same
time the Balearic margin of the Valencia Trough developed
into an orogenic system with SE-NW trending thrusts and
reverse faults (Roca & Desegaulx, 1992). Palaeomagnetism
indicates that the islands of Mallorca and Menorca rotated
clockwise relative to the Catalan Coastal Ranges (Parés et al.,
1992), thus opposing the counter-clockwise rotation of the
Corsica-Sardinia Block at a NW-SE trending transfer fault
system (Fig. 4; Rehault et al., 1985; Maillard et al., 1992). The
initial phase of combined extensional and compressional
tectonics was succeeded by a Middle to Late Miocene period of
post-main rift subsidence. By that time, rifting had propagated
to the southeastern part of the basin (Roca, 2001). At the
same time and concurrent with further clockwise rotation, the
Balearic thrust-and-fold belt was re-activated by an
extensional tectonic regime and thus divided by NE-SW
trending horsts and (half)grabens (Fig. 24; Torres et al., 1993;
Roca & Desegaulx, 1992). During the Plio-Quaternary, extension
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resumed simultaneously with uplift along the Iberian margin of
the Valencia Trough (Maillard et al., 1992; Janssen et al., 1993).

Two well-differentiated cycles of volcanic activity separated
by a non-volcanic period can be distinguished (Fig. 24; Marti
et al., 1992; Roca, 2001). The first cycle (late Chattian-early
Serravallian; K-Ar ages between 25 Ma and 12 - 13 Ma; from
CRF 12 to CRF 20 ?) corresponds to the initial and main phases
of rifting in the northwestern part of the offshore basin.
Causally, it was probably related to compression in the south-
eastern basin, as induced by the subduction of Apulia-Africa
beneath Iberia-Europe. It is characterised by the extrusion of
calc-alkaline andesitic and pyroclastic rocks. The second cycle
(Tortonian-Recent; K-Ar ages from 10 Ma to 0.3 Ma; from CRF
21 onwards) is typified by poorly differentiated alkaline basalts.
Their extrusion was associated with back-arc extension in the
southeastern basin. The change in type of volcanism (between
about 12 Ma and 10 Ma) may reflect the detachment of a
rolled-back subduction slab that induced upwelling of hot
asthenosphere (Roca, 2001).

The origin and subsequent evolution of the Valencia Trough
has been studied extensively from geological and geophysical
points of view and is much disputed (Banda and Santanach,
1992). Various explanatory models have been proposed for the
geodynamic development of the basin, mainly because of
interpretational problems arising from the co-occurrence of
widespread NW-SE directed compression in between the
African/Apulian and European/Iberian plates and similarly-
oriented tension in the Valencia Trough (Figs 2 to 4 and 24).
Following Ziegler (1994), the trough is considered to be a
post-Oligocene, southward extension of the European Cenozoic
Rift System. However, back-arc extension may have helped to
shape the trough. Alternatively, the trough has been viewed
as a compressional and flexural foreland-type basin of the Betic
belt that occurs on top of an aborted rift (Fontboté et al., 1990;
Roca & Desegaulx, 1992; questioned by Torres et al., 1993).

The depositional record of the Valencia Trough (Fig. 24;
Encls 4, 6 and 8) comprises basal continental clastics which are
overlain by shallow-marine carbonates and shallow- to deep-
marine clastics including (hemi)pelagic clays and calcareous
turbidites (Soler et al., 1983; Dafiobeitia et al., 1990; Clavell &
Berastegui, 1991; Banda & Santanach, 1992; Bartrina et al.,
1992; Roca & Desegaulx, 1992; Torres & Bois, 1993; Torres et
al., 1993). The basal clastics are late Chattian in age. They
accumulated in graben-like subbasins with fault-bounded
margins. These were successively overstepped and submerged
by marine syn-rift deposits during the Aquitanian-Langhian.
Under influence of increasing tectonic activity, the latter
strata accumulated in an initially slowly but ultimately rapidly
subsiding basin (Torres et al., 1993). Following a break in
sedimentation near the Langhian-Serravallian transition, the
lower sedimentary sequence was succeeded by a post-main rift
sequence consisting of calcareous and clastic deposits of
Serravallian-Tortonian age. This sequence is overlain by a

remnant Messinian series with evaporites, which is truncated
by a regional, high-relief unconformity representing a wide-
spread subaerial system of canyons and valleys developed in
response to the terminal Miocene salinity crisis (Escutia &
Maldonado, 1992). Deposition of these beds occurred in an
overall slowly subsiding basin (Torres et al., 1993). In
conjunction with rapid basinal deepening related to post-rift
thermal relaxation, an eastward prograding palaeo-Ebro
deltaic complex developed along the Catalan Coastal Ranges
from the Piacenzian onwards.

The tectonostratigraphic record of the Valencia Trough
reveals the episodic extension- and compression-related
depositional conditions. However, the age of the onset of rift
development is not well constrained (Fig. 24; Encl. 8; CRF 12 ?).
The initial rifting phase began in the late Chattian with the
localised deposition of poorly dated continental strata (Bartrina
et al., 1992) in an evolving horst-and-graben setting, and
continued until the Aquitanian-Burdigalian transition. Rifting
was contemporaneous with the initial thrusting of the Balearic
Promontory (Ramos-Guerrero et al., 1989), by which a ‘syn-
orogenic’ series of out-of-sequence pull-apart basins in a
piggy-back setting formed on the island of Mallorca (Alvaro et
al., 1984). Unconformable deposition of Aquitanian breccias
and shallow-marine carbonates testify of transgressive deposi-
tional conditions associated with tectonic activity (CRF 14).
The breccias at the base of the Aquitanian are possibly
unconformably overlain by limestones (Soler et al., 1983). The
postulated intra-Aquitanian break (Fig. 24; CRF 15) is virtually
coeval with the termination of rifting in the Rhone Graben
(Monleau et al., 1988) that just preceded the crustal separation
of the Corsica-Sardinia Block and the European mainland. It
also correlates with the rifting between the Balearic-Alboran
and Kabylian blocks that was associated with clockwise rotation
of Kabylia and slab detachment in the Betic domain (Fig. 25;
Zeck, 1996, 1999). The Aquitanian-Burdigalian transition is
marked by a break-up unconformity (Fig. 24; Encl. 8; CRF 16).
This sequence boundary is correlative to the onset of the main
rifting and deepening phase of the Valencia Trough (Roca &
Desegaulx, 1992) and the beginning of major thrusting in the
Balearic promontory (Alvaro, 1987; Ramos-Guerrero et al.,
1989). At the Ebro continental margin a mid-Burdigalian facies
change corresponds to an increase in coastal onlap and thermal
subsidence and a decrease in extension of the trough proper
(Fig. 25; CRF 17; Danobeitia et al., 1990; Vergés & Sabat, 1999;
Roca, 2001). At the opposite basin margin, the ‘crisis’ is repre-
sented by calc-alkaline rhyodacitic volcanism on Mallorca
(K-Ar ages of 18.6 Ma and 19 Ma: Mitjavila et al., 1990; Marti
et al., 1992). This event probably affected or interrupted the
main phase of rifting in the northwestern Valencia Trough. In
this region, rifting ceased probably during the Langhian
(between CRF 18 and CRF 19; around 15 Ma: Torres et al., 1993;
Dafiobeitia et al., 1990; Roca, 2001). Around this time, the
emplacement of the Balearic thrust system ended with a major
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phase of additional thrusting and nappe piling (Fig. 24; Alvaro
et al., 1984; Alvaro, 1987; Ramos-Guerrero et al., 1989; Gelabert
et al., 1992; Torres & Bois, 1993). These developments were
geodynamically linked, with detachment of a Langhian slab as
the causative factor (Figs 4 and 25). The Langhian-Serravallian
transition is represented by a regional unconformity (Fig. 24;
Encl. 8; CRF 19). This stratigraphic hiatus presumably developed
in response to compression that preceded extension in the
southern part of the Valencia Trough (Fig. 25; Encl. 8; (close
to) CRF 20; Roca, 2001). In response to a collapse of its thrust
edifice, the Balearic Promontory experienced a ‘post-orogenic’
phase of extension transforming the crust of the island of
Mallorca into a host-and-graben system (Fig. 24). The collapse
may be related to ongoing extension and oceanisation of the
North Algerian Basin (Fontboté et al., 1990). A eustacy-related
break in sedimentation occurred at the Serravallian-Tortonian
transition (Fig. 24; Encl. 8). This change in depositional setting
does not seem to be reflected by any tectonosedimentary
event at the Ebro margin. However, it correlates with extension
re-activation on Mallorca (Alvaro et al., 1984). Moreover, it
occurred close to the onset of alkaline volcanism (Fig. 24;
Encl. 8; CRF 21). Basinward propagation of the Castellon deltaic
complex, was simultaneous with slow syn-rift subsidence of
the basin, closure of the North Betic Corridor and narrowing
of the Strait of Gibraltar (Weijermars, 1988), started during
the Tortonian (Fig. 24; Dafiobeitia et al., 1990). Rifting in the
southern Valencia Trough ended at the Tortonian-Messinian
transition (CRF 23; Roca, 2001). The Messinian salinity crisis
ended in response to a tectono-eustatic event at the Pliocene-
Miocene transition (CRF 24). Pliocene coastal deposition along
the Iberian margin was typified by an early phase of marine
highstand ponding that was succeeded by a brief mid-Pliocene
episode of erosion and a Late Pliocene period of rapid eastward
progadation of the Ebro Delta (Fig. 24). At the same time, the
initial, relatively stable deeper-marine setting became much
shallower and hence more directly influenced by sea-level
fluctuations and glacial climatic cycles. These conditions
prevailed until the Quaternary (Fig. 25; Nelson & Maldonado,
1990). In general, tectonic activity was limited after the
Tortonian. Probably in response to Late Pliocene-Quaternary
crustal doming, the eastern Iberian margin, the Balearic
Promontory and the Valencia Trough area were uplifted (Banda
& Santanach, 1992; Janssen et al., 1993), while renewed
extension (since the latest Oligocene-Early Miocene) and
volcanism occurred in the Catalan Coastal Ranges (from about
3 Ma: Sim6n-Goémez, 1989) and on the Balearic Islands (CRF
25, CRF 27 and CRF 28; Pomar Goma, 1979; Alvaro et al., 1984;
Banda & Santanach, 1992; Marti et al., 1992).

Betic Basins

Together with the Maghrebides and the Gibraltar Arc, the Betic
Cordilleras form the westernmost Alpine chain of the

Mediterranean region (Fig. 1). The arcuate Betic-Rif mountain
chain acquired its tectonic features during Late Cretaceous-
Cenozoic stages of the Alpine orogeny (Biermann, 1995). The
evolution of the post-Oligocene stress regime in the Betic-Rif
cordilleran region is recorded by a succession of discrete
deformation phases (e.g. Galindo-Zaldivar et al., 1993). Rifting
occurred contemporaneously with the late Chattian-early
Aquitanian formation of the southernmost part of the European
Cenozoic Rift System offshore eastern Spain (i.e., the Valencia
Trough). Approximately NE-SW directed extension co-occurred
with a similarly oriented regime of compression associated
with the convergence of Apulia and Europe (Figs 2 to 4; Sanz
de Galdeano, 1990, 2000). During this early phase of rifting,
the first sediments accumulated in the Alboran Domain, the
centrally located Internal Zone of the Betic-Rif orogen, which,
at the time, was situated east of southern Spain (Sanz de
Galdeano & Vera, 1992). Southward progressing back-arc
extension in the Western Mediterranean led to westward drift
and relocation of the Alboran Domain from the mid-
Aquitanian onwards (e.g. Sanz de Galdeano, 2000). Around
the Aquitanian-Burdigalian transition, the ongoing N-S
directed compression between the African and Iberian plates
co-existed with extensional, E-W directed opening of the
Liguro-Provencal Basin (Fig. 25). By mid-Burdigalian time the
westward ejected Internal Zone collided with the peripheral
External Zone of southern Iberia (Sanz de Galdeano & Vera,
1992). By the end of the Early Miocene, extension, simul-
taneous fragmentation and re-structuration of the Internal
Zone was boosted by the oceanic opening of the North Algerian
Basin (Mauffret et al., 2004). At the end of the Middle Miocene,
widespread deformation occurred during the so-called
Terminal Serravallian tectonic phase (Estévez et al., 1984).
This episode of regional structural re-organisation culminated
with the formation of numerous intramontane basins during
the Late Miocene (Sanz de Galdeano & Vera, 1992).
Simultaneously, the westward drift of the Alboran Domain
virtually ceased. From the latest Tortonian onwards, uplift of
Betic mountain ranges rather than subsidence of the Betic
intramontane basins governed the topographic evolution of
the Betic Cordilleras.

Since the Miocene, sedimentary basins developed concur-
rently with the structuration and uplift of the surrounding
cordilleras. The basin fills were typically derived from the
nearby land masses of the Internal and External zones and
sedimentation was mainly in marine settings (Fig. 26; Geel et
al., 1992; Sanz de Galdeano & Vera, 1992). The sedimentary
sequences within the basins are typically bounded by tectonics-
related unconformities. In the Internal Zone, Chattian-
Aquitanian strata unconformably overlie the allochthonous
Malaguide Complex, the source of these shallow-marine coarse
clastics. The deposits accumulated either before or at the
beginning of the principal deformation of the Malaguides
(Sanz de Galdeano & Vera, 1992) and contemporaneously with
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a strong, extension-related, adiabatic decompression of the
Alpujarrides that was probably triggered by the detachment of
a slab of subducted lithosphere beneath the Alboran Sea (CRF 14
to CRF 16; Ar-Ar ages of 25 Ma to 22 Ma: Monié et al., 1994).
Unconformable clastic sedimentation continued until the mid-
Burdigalian (Fig. 26; CRF 17), transgressively onlapping both
the Malaguides and the Alpujarrides. Similarly, the External
Zone was affected by late Chattian-Aquitanian tectonics. Close
to the Valencia Trough, differential tectonic movements
occurred in the eastern Prebetic (Geel et al., 1992; Geel, 1995,
2000) during mid-Chattian time (CRF 12; transition of zones
P21 and P22), at the Chattian-Aquitanian transition (CRF 14)
and during the ‘Altomira’ tectonic phase at the end of the
Aquitanian (CRF 16; Andeweg, 2003). Another tectono-
sedimentary change occurred in the Prebetic during the
Aquitanian (CRF 15; around the zonal N4-N5 transition; Geel,
1995; Tent-Manclds et al., 2001). In the same region, older
tectonic phases occurred in mid-Rupelian time (CRF 10; at, or
shortly after, the zonal P18-P19 transition) and at the
Rupelian-Chattian transition (CRF 11; early during zone P21;
Geel, 1995, 2000). Still older tectonic pulses have been dated at
the Danian-Thanetian transition (CRF 1; De Ruig et al., 1991;
see also Kenter et al., 1990), the Ypresian-Lutetian transition
(CRF 3; Kenter et al., 1990; predated and succeeded by other
tectonic events; Geel, 2000), as well as the earliest Bartonian
rather than latest Lutetian (cf. Geel, 2000; CRF 4; late during
zone P12), near the Bartonian-Priabonian transition (CRF 5;
late during zone P14), the mid-Priabonian (CRF 6; at the zonal
P15-P16 transition) and the late Priabonian (CRF 7; late during
zone P16; Geel et al., 1998; Geel, 2000).

In the Prebetic, sediments accumulated seemingly uninter-
rupted on top of an unconformity dated to around the
Chattian-Aquitanian transition (CRF 14). This correlates with
the onset of the ‘Aquitanian Paroxysm’ and the extinction of
the northern Iberian-European plate boundary (Roest &
Srivastava, 1991) by the mid-Burdigalian (CRF 17), when the
first, truly major Miocene change in stress regime occurred
(Fig. 26; Ott d’Estevou et al., 1988; De Ruig, 1992). The latter
tectonic phase, or ‘Burdigalian Paroxysm’, involved accelerated
subsidence and uplift related to folding in the eastern Prebetic
(Geel et al., 1992; Geel, 1995). This correlates with the onset
of a structural re-organisation of the Subbetic in response to
a collision of the Internal and External zones (Martin-Algarra
et al., 1988) and backthrusting of the External Zone over the
Internal Zone (Tent-Manclas et al., 2001). These events are
associated with the development of the dextral Crevillente
transcurrent fault system, the initiation of westward movement
of part of the Subbetic along this fracture zone, the deposition
of huge olistostromes in the Proto-Guadalquivir Basin (central
and western sectors of the North Betic Corridor) and the
accumulation of correlative allochthonous units in the late
Burdigalian Guadix-Baza and Granada basins in the Internal
Zone (Fig. 26; Sanz de Galdeano & Vera, 1992). Simultaneously,

6774600077921 Published online by Cambridge University Press

the hot Alpujarrides cooled down rapidly (Ar-Ar age of 19 - 20
Ma: Monié et al., 1994). However, this major event is not
known from the Alboran Basin. After the mid-Aquitanian
Castellana, or Iberica, tectonic phase (CRF 15; modified after
Calvo et al., 1993 and Andeweg, 2003), the first syn-rift
deposits accumulated without any distinct tectonosedimentary
break until the onset of the main rifting phase. Rifting
followed the development of an angular unconformity at the
Burdigalian-Langhian transition (CRF 18; Comas et al., 1992,
1999; Jurado & Comas, 1992). Following the development of a
terminal, rather than an intra-, Langhian unconformity related
to the Gudarrama 1, or Neocastellana, tectonic phase (Fig. 26;
CRF 19; Calvo et al., 1993; Andeweg, 2003) and a coeval
change in stress regime that induced wrenching movements in
the External Zone (Martin-Algarra et al., 1988; Ott d'Estevou
et al., 1988; Geel et al., 1992; De Ruig, 1992; Sanz de Galeano
& Vera, 1992; Geel, 1995), thick breccias and other coarse-
grained, regressive clastics accumulated in the Internal Zone
from around the Langhian-Serravallian transition onwards
(Fig. 26; CRF 19). From around that time, thrusting ceased in
the External Zone and both rapid basin uplift and strong basin
subsidence occurred (Geel, 1995). This tectonic instability
continued to affect deposition in the Internal and External
zones throughout the Serravallian. Especially in the Proto-
Guadalquivir Basin, olistostromes continued to accumulate
from the Gudarrama 2 tectonic phase onwards in conjunction
with the ongoing tectonic re-organisation of the Subbetic
(Fig. 26; from CRF 20 to CRF 23; Calvo et al., 1993; Andeweg,
2003). The best preserved basins postdate the Tortonian
transition and occur in the Internal and External zones. They
developed through tectonic re-activation of pre-existing faults
induced by compression around the Serravallian-Tortonian
transition (Fig. 26; CRF 21; zone N15: Martin-Algarra et al.,
1988; Ott d’Estevou et al., 1988; Sanz de Galdeano & Vera,
1992). Large-scale tectonic uplift subsequently affected the
basins of the Betics (Sanz de Galdeano & Vera, 1992; Geel,
1995). Westward motion of the Internal Zone was terminated
around the same time (Sanz de Galdeano & Vera, 1992). A
large number of sizeable intramontane basins originated around
the Serravallian-Tortonian transition. An intra-Tortonian
change in the tectonic stress regime of the Prebetic corresponds
with the development of a stratigraphic hiatus and a change
in lithofacies (Fig. 26; CRF 22; Ott d’Estevou et al., 1988; De
Ruig, 1992). This main tectonic event affected the whole Betic
chain, reflecting a relatively spectacular and widespread
deformation of the Betic palaeorelief, that initiated the closure
of the North Betic Corridor (in response to a north(west)
movement of the Prebetic) and the transformation of the Pro-
Guadalquivir Basin into the Guadalquivir Basin (Sanz de
Galdeano & Vera, 1992). In the Sorbas Basin of the internal
Betic Cordilleras, the Messinian salinity crisis was preceded by
a latest Tortonian tectonic phase represented by the develop-
ment of an angular unconformity and the termination of
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dextral strike-slip movements (CRF 23; >7.2 Ma: Stapel et al.,
1996 modified after Krijgsman et al., 1999b). This event
postdates the intra-Tortonian angular unconformity (CRF 22;
Jurado & Comas, 1992; Comas et al., 1999) that marks the end
of the main Miocene rifting phase (Comas et al., 1992, 1999)
and an increase in NNE-SSW trending compression in the
Alboran Basin (Rodriguez-Fernandez & Martin-Penela, 1993;
Chalouan et al., 1997). In the Betic Cordilleras the ensuing
salinity crisis is typically represented by widespread erosion
and deposition of continental, partly evaporitic deposits
(Fig. 26). At the end of the Messinian major uplift occurred in
the Internal Zone of the Betics during the Iberomanchega 1,
or Rodanica, tectonic phase (CRF 24; Cloetingh et al., 1992;
Calvo et al., 1993; modified after Andeweg, 2003). In the
Alboran Basin, coeval re-activation of pre-existing faulted
folds occurred (Chalouan et al., 1997). At the beginning of the
Pliocene, marine deposition resumed in the southern peripheral
Betic basins in response to the tectonics-related opening of
the Strait of Gibraltar that was associated with incipient
tensional stress and thermal subsidence in the Alboran Basin
(Chalouan et al., 1997). During the following Early Pliocene
period, radial extension (Sanz de Galdeano & Vera, 1992)
affected the Betic Cordilleras, especially its central sector. This
episode of change was concluded with the mid-Pliocene
Iberomanchega 2 tectonic phase (CRF 25; Calvo et al., 1993;
modified after Andeweg, 2003), which caused uplift and
erosion of intramontane basin fills (Fig. 26). This tectonic
event is correlative with the onset of a new phase of
compression, locally associated with some extension, in the
Alboran Basin (Campos et al., 1992; Chalouan et al., 1997).
Another compressional sequence boundary in the Alboran-
Betic region has been identified in the Pleistocene (CRF 28;
about 1 Ma: Dillon et al., 1980; Sanz de Galdeano & Vera,
1992; Rodriguez-Fernandez & Martin-Penela, 1993).

During the Tertiary, Alpine tectonic activity of the Iberian
Peninsula induced generally compressional/transpressional
intra-plate deformation and re-activation of Hercynian normal
and strike-slip faults. The Neogene stratigraphic records of the
pro-wedge Ebro Basin along the Pyrenean orogen and the
intracontinental Tajo, Duero and Catalayud-Teruel basins of the
Spanish meseta, record a simultaneous, punctuated tectonism
that resulted in several widespread breaks or changes in
sedimentation. Slightly re-interpreted after Calvo et al. (1993)
and Andeweg (2003), brief episodes of pervasive tectonic
activity thus affected these basins during the mid-Aquitanian
(CRF 15; Castellana/Iberica Phase), Aquitanian-Burdigalian
transition (CRF 16; ‘Altomira’ Phase), Langhian-Serravallian
transition (CRF 19: Guadarrama 1/ Neocastellana Phaée), late
Serravallian (CRF 20: Guadarrama 2 Phase), mid-Tortonian (CRF
22), mid-Messinian (between CRF 23 and CRF 24), Messinian-

Zanclean transition (CRF 24: Iberomanchega 1 Phase) and mid-
Pliocene (CRF 25: Iberomanchega 2 / Rodanica Phase) as well
as close to the Pliocene-Pleistocene transition (CRF 27). With
the exception of the intra-Messinian and terminal Pliocene
pulses, these tectonostratigraphic events are assumed by Calvo
et al. (1993) to be correlative with changes in global sea level
(Encl. 8).

Sardinia Rift

The Sardinia Rift is a N-S trending basin (in its present, post-
rotation orientation) that developed on the southern part of
the Corsica-Sardinia Block during the Oligocene and Miocene,
and which represents the Gulf of Lions conjugate margin
(Fig. 1). The depositional history of the aborted rift segment
reflects various abrupt tectonic and sedimentary facies
changes in response to polyphase stress-field developments,
complexly evolving fault-defined palaeoto-pographies, plate
subduction-related volcanism and fluctuations in relative sea
level (Cherchi & Montadert, 1982; Cherchi & Trémoliéres, 1984;
Assorgia et al., 1997; Sowerbutts & Underhill, 1998; Casula
et al., 2001). Palinspastically restored to their original, pre-
rotation position, the major bounding faults of the rift strike
about NE-SW.

Three rifting phases can be distinguished. The first lasted
from the late Rupelian (CRF 10) to the early Chattian (CRF 12)
and involved the development of an essentially half-graben
palaeotopography in response to N to S rift propagation from the
Rhone Graben area (Sowerbutts & Underhill, 1998). This early
rifting was accompanied by calc-alkaline volcanic activity (from
K-Ar age of 32.1+0.9 Ma: Morra et al., 1994). The predating
tectonic event that initiated the development of the European
Cenozoic Rift System from the Ypresian-Lutetian transition
onwards (Figs 21 and 22) and, more questionably, the climactic
HP Lepontine tectonometamorphic event that straddles the
Bartonian-Priabonian transition on the Alpine European
mainland (Fig. 9; Brouwer, 2000) may have been recorded in
the substratal series of the Corsica-Sardinia Block (resp. CRF 3,
age between 51 Ma and 48 Ma: Cherchi & Montadert, 1982 and
CRF 5 ?, apatite fission-track age of 40.8+2.0 Ma: Mailhe et al.,
1980 (to be rejected cf. pers. comm. J. Kuhlemann, Tiibingen);
see also Jakni et al., 2000). The initial rift-basin fill consists
of continental deposits with marine intercalations. During
their accumulation, the margins of the receiving fault-
bounded depressions were overstepped. The onlapping
deposition of the early syn-rift sediments was governed by the
block-faulted nature of the basinal palaeo relief and
surrounding source areas and a progressive marine flooding of
the graben. A discrete phase of calc-alkaline volcanism occurred
near the Rupelian-Chattian transition (CRF 11; K-Ar age of
29.9+1.5 Ma: cited by Cherchi & Montadert, 1982; K-Ar age of
28.5+1 Ma: Morra et al., 1994). Subsequently, the Corsica-
Sardinia Block with Calabria attached, detached from main
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Europe and began to move away from the European mainland,
from the late Chattian onwards. In the process, faulting
modified the Sardinia Rift into a largely underfilled complex
of grabens, half-grabens and pull-apart basins. In these a
voluminous series of ignimbritic and basaltic volcanics (incl.
pillow lavas) and tuffites accumulated together with marine
sediments (from CRF 12; from about 26 Ma (Wilson & Bianchini
(1999) and the mid-P22 (?) base of the open-marine Ales
Formation onwards; Sowerbutts and Underhill, 1998; Cherchi &
Montadert, 1982; see also Brunet et al. (2000) for a mid-
Chattian (27 Ma) deformation identified in the Alpi Apuane,
northern Corsica). This second-phase structuration of the rift
may be attributed to back-, or intra-, arc extension induced by
the counter-clockwise drift of the Corsica-Sardinia Block
(Fig. 4). This was concurrent with E-W compression in the
Apenninic Arc and NNE-SSW compression in the Maghrebian
Arc. Subsequent to the development of an intra-Aquitanian
hiatus (CRF 15; Assorgia et al. 1997), the first (highly
explosive) ignimbrites poured out in Sardinia around the
Aquitanian-Burdigalian transition (CRF 16; at 20.6+0.2 Ma:
Sowerbutts & Underhill, 1998; Casula et al., 2001), signifying
the onset of oceanic accretion. The second-phase extension
lasted until the mid-Burdigalian (CRF 17; Cherchi & Montadert,
1982; Cherchi & Trémoliéres, 1984; Sowerbutts & Underhill,
1998). In Burdigalian time, the clastic source areas were
transgressed and deeper-marine marlstones accumulated in
the central part of the rift. The marlstones accumulated until
the Langhian. The second main phase of extension terminated
in response to a large-scale change in the stress regime that
is attributed to the collision of Corsica-Sardinia and Apulia,
indicating that the rotation of Corsica-Sardinia and the oceanic
spreading in the Liguro-Provencal Basin were reduced. The
Apulia-Europe convergence rate markedly decreased (Fig. 3).
As calc-alkaline volcanic activity in Sardinia was much
reduced after the collisional event, it may be concluded that
the regional ‘post-collision’ rate of lithosphere subduction was
reduced (Beccaluva et al., 1989). Extension- and subduction-
related, high-Mg basalts extruded while volcanism in general
climaxed (CRF 17; resp. at 18 Ma and between 21 Ma and 18
Ma: Morra et al., 1997; Sowerbutts & Underhill, 1998; see also
Odin et al.,, 1994), and ignimbrites developed in southern
Corsica (K-Ar ages of 18.9+0.4 and 19.3+0.5 Ma: Ottaviani-
Spella et al., 1996). It is nevertheless likely that Corsica-
Sardinia continued to rotate until the Langhian, albeit much
slower. According to Edel et al. (2001) the rotation of Sardinia
ceased during the late Burdigalian (between 18.3 and 17.2
or 16.7 Ma). Around the Langhian-Serravallian transition,
subduction-related calc-alkaline volcanism became extinct
(CRF 19; at K-Ar age of 13.8+0.7 Ma: Morra et al., 1994; see
also Beccaluva et al., 1989). Siliciclastic-carbonate deposition
continued in marine and continental environments of the
arrested basin. Subsequent to Messinian compression (Cherchi
& Trémoliéres, 1984; Casula et al., 2001), the third episode of
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main rifting occurred during the Late Pliocene-Quaternary
(from CRF 25 onwards). It resulted in the superposition of the
Campidano Graben on the southern section of the Sardinia
Rift, in association with pronounced (rift-flank) uplift and
intense (sub)alkaline volcanism all over the island (from CRF 24
onwards; from 5.0-5.3 Ma to 0.1 - 0.2 Ma: Beccaluva et al., 1989;
Fig. 25; Cherchi & Montadert, 1982; Cherchi & Trémoliéres,
1984).

Tyrrhenian Basin

Situated to the southeast of the Corsica-Sardinia Block, the
Calabro-Peloritan Block represents another displaced fragment
of the European Plate. Underlying the triangular Tyrrhenian
back-arc basin in between ENE-WSW trending transfer fault
systems, this block moved to its present position after the
Middle Miocene. It is cross-cut by low-angle detachment planes
and thrusted onto the flanking Apenninic and Maghrebian
chains, thus forming the oroclinal Calabrian accretionary wedge
at the leading edge (Figs 1 and 2). During the approximately
ESE directed movement, similarly-trending back-arc extension
occurred, simultaneously with rotation and translation of
smaller, upper crustal blocks. The outward arc migration may
have been driven mostly by the gravitational pull of the
underthrusting lithospheric plate in association with
lithosphere-slab roll-back at the subduction zone (Fig. 4;
Malinverno & Ryan, 1986; Rehault et al., 1987; Mascle et al.,
1988; Beccaluva et al., 1989).

In addition to numerous late Paleogene and early Neogene
episodes of increased and areally synchronous tectonic
activity in the Sardo-Tyrrhenian domain and in the Apenninic
and Calabrian arcs (Fig. 27; CRF 10 to 12 and 14 to 21), brief
rotation phases affected the area prior to the late Neogene
opening of the southern, principal Tyrrhenian Basin in the
mid-Rupelian (CRF 10), the mid-Burdigalian (CRF 17) and
close to the Burdigalian-Langhian transition (CRF 18 ?) (van
Dijk, 1992; van Dijk & Scheepers, 1995). The extensional
opening of the southern Tyrrhenian Basin occurred in the
Tortonian (CRF 22 ?; between 8.6 Ma and 7.8 Ma: Duermeijer
et al., 1998; 8 Ma: Mauffret et al., 2004). It coincided with a
short-term, counter-clockwise rotation in the Crotone Basin
area (central Calabria; between about 8.6 Ma and 7.6 Ma:
Duermeijer et al., 1998). Most probably, the opening reflects a
plate-kinematic change of the domain'’s stress field. Possibly it
occurred slightly earlier (around 9 Ma ago) if it was coeval
with the most important stress-field change of the Tortonian
(Fig. 27; CRF 22). About that time, Apulia and Europe
decoupled as the result of sinistral strike-slip motion along
the transpressional Giudicarie fault system in the Southern
Alps. Excluding the leading northwestern part of the
microplate, which was deeply indented into the Western Alps,
Apulia became thus relatively independent and discrete. As a
result, its modified mode of convergence relative to Europe
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Fig. 27. Structural developments and tectonosedimentary changes in deposition in the Sardo-Tyrrhenian domain and Apenninic-Calabrian Arc in relation
to the eastward roll-back and slab detachments of the westward-subducting Apenninic-Maghrebian lithosphere (also see Figs 4 and 21). Sardo-Tyrrhenian
domain after Cherchi & Montadert (1982), Beccaluva et al. (1989), Cipollari & Cosentino (1995), Boccaletti & Sani (1998), Sowerbutts & Underhill
(1998) and Argnani & Savelli (1999). Apenninic-Calabrian Arc after van Dijk (1992), Weltje (1992), Hippolyte et al., (1994), van Dijk & Scheepers
(1995) and van der Meulen (1999). Late Rupelian onset of back-arc extension/rollback subduction after Séranne (1999) and Brunet et al. (2000).
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placed the Tyrrhenian Basin in a different plate-kinematic
context (Mantovani et al., 1993). Consistent with the counter-
clockwise rotation of Apulia (Fig. 3), the overall NW-SE
trending convergence of the African and European plates and
the eastward retreat of the Apenninic-Calabrian subduction
zone (Fig. 4), E-W trending extension propagated eastwards
across the Tyrrhenian domain. At the same time, migrating
compression affected the northeastern peri-Tyrrhenian margin
from the intra-Tortonian until the Pleistocene. In response to
the simultaneous occurrence of extension and compression in
adjacent sectors, the northern Tyrrhenian Basin and the
contiguous, inner (Tuscan) part of the Apenninic mountain
belt were progressively transformed into a NNW-SSE trending
horst-and-graben system. E-W trending rifting, as well as
asthenosphere uplift, thinning of the previously (over-)
thickened lithosphere (by the collision of Corsica-Sardinia and
Apulia) and detachment of Calabria from the Corsica-Sardinia
Block presumably began during the Langhian near Corsica
with the opening of the Corsica Basin. Due to crustal shortening
and thickening by E- and NE-verging units of the Apulian
continental margin (Bartole, 1995; Carmignani et al., 1995),
rifting propagated eastwards simultaneous with the emergence
of the early Apenninic thrust-and-fold belt. Within the
northern Tyrrhenian Basin, syn-rift developments ended in
the mid-Pliocene (between 4 Ma and 3 Ma), whereas nearer to
the Apennines syn-rift deposition ceased from later Pliocene
times onwards (Bartole, 1995). During this first-order
structural development of the northern Tyrrhenian-Apenninic
region, brief but widespread compressive pulses correlative
to cover thrust re-activations in the northern Apennines
interrupted post-Tortonian syn- and post-rift deposition. This
happened most notably during the mid-Messinian, mid-
Zanclean, latest Piacenzian (CRF 26) and mid-Pleistocene
(CRF 28) (Fig. 27; Boccaletti & Sani, 1998). Other compression-
related events have been identified in the central Apenninic
foredeep for the mid-Burdigalian (CRF 17), late Serravallian
(CRF 20), Tortonian (CRF 22; near the NN10-NN11 transition)
and at the Tortonian-Messinian ? (CRF 23 ?; mid-NN11),
Messinian-Zanclean (CRF 24) and Zanclean-Piacenzian (CRF 25)
transitions (Cipollari & Cosentino, 1995). The compressive
phases interrupted magmatic activity and thus testify of crustal-
scale geodynamic developments. Late Cenozoic tectono-
magmatic cycles occurred in and around the Tyrrhenian Basin
from 8/8.5 Ma (CRF 22 ?) to 4.5/5 Ma (CRF 24), 4.5/5 Ma to 2
Ma, 2 Ma to 1.6/1.7 Ma (CRF 27) and 1.2 Ma (CRF 28 ?) to
Recent (Argnani & Savelli, 1999). The first and third cycle
respectively include the Vavilov and Marsili seafloor spreading
events, whereas the other two relate to intra-plate volcanism.

Correlative post-Tortonian rotation phases occurred in the
Sicilian Maghrebian-Calabrian Arc during the Messinian (about
6 Ma ago: van Dijk & Scheepers, 1995), earliest Piacenzian
(3.2 Ma ago, close to the transition of the Trubi and Narbone
formations and contemporaneous with an acceleration in the

opening of the southern Tyrrhenian Basin between 3.5 Ma
(CRF 25) and 2 Ma: van Dijk & Scheepers, 1995; Duermeijer &
Langereis, 1998) and in the Pleistocene (CRF 28; 0.7 - 0.9 Ma
ago: van Dijk & Scheepers, 1995). All three rotational events
probably responded to a ‘mediterranean-wide’ change of the
stress regime (Figs 25 to 27). The intra-Messinian event may
be related to a collision of Apulia and the Balkan region in
the Outer Hellenides that modified the drift of Apulia by
a deflection into a more pronounced northerly direction
(Mantovani et al., 1993). The mid-Pliocene deformation event
around 3.5 Ma may be related to the end of oceanic spreading
in the Vavilov Basin (Fig. 25; Argnani and Savelli, 1999). It
was a prelude to a slowdown and almost complete cessation of
the outward migration of the Tyrrhenian-Southern Apenninic
rift-basin thrust-belt foredeep system (Mantovani et al., 1993)
and correlates regionally with a change in deposition
(Duermeijer & Langereis, 1998). At the end of the Piacenzian
or during the latest Pliocene-earliest Pleistocene (around CRF
27), the southern Tyrrhenian Basin collapsed concurrently
with the cessation of oceanic spreading in the Marsili Basin
(Fig. 25; Argnani & Savelli, 1999), whereas the geodynamic
setting of the area was strongly modified from the mid-
Pleistocene (CRF 28) onwards. The latter deformation phase is
particularly represented by an accelerating uplift of the
Southern Apenninic and Calabrian arcs from the end of their
thrust-and-fold belt accretion onwards (Hippolyte et al., 1994;
van Dijk & Scheepers, 1995). These geodynamic changes of the
late Cenozoic have been interpreted to be related to a series
of laterally propagating detachments of the deeper subducted
lithosphere slab (Figs 4 and 27). The phased process of slab
failure in the subducting lithosphere has most likely been
affected by episodic changes in the convergence velocity and
direction of Africa and Apulia relative to Europe and by
related changes of the intra-plate stress regime. The process is
assumed to be reflected by a consecutive series of south-
eastward-directed, discrete jumps of foredeep depocentres
(following periods of stasis) and by an equally episodic, rapid
rebounding of non-detached, relatively shallow lithosphere
(Figs 4 and 27; van Dijk & Scheepers, 1995; van der Meulen,
1999).

|A Correlation with Atlantic Plate-boundary__gvents

Five major phases are distinguished for the Late Paleocene and
later plate-kinematic development of the North Atlantic and
Alpine-Mediterranean domains (see Structural Setting). In
addition to major glacial events (Fig. 23) and changes in abyssal
bottom-water circulation in the North Atlantic, which might
be related to tectonic activity, the following events suggest a
kinematic relationship between the re-organisations of the
Mid-Atlantic seafloor axis (governed by ridge-push forces) and
the plate-boundary events (governed by collision forces) as
recorded in the Alpine-Mediterranean basins (Fig. 28):
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Fig. 28. Proposed kinematic relationship between Mediterranean and Atlantic plate-boundary events, Alpine orogenic phases and CRF sequences and
phases of the North and West Alpine Foreland basins. Horizontal and vertical arrows indicate respectively abyssal circulation changes and uplifts. Stars
signify volcanic events. AR = Aegir Ridge; ECNA = Eastern Central North Atlantic; IL = Iceland; JMR = Jan Mayen Ridge; KT = King’s Trough; MR = Mohn’s
Ridge; NST = North Spanish Trough; RR = Reykjanes Ridge. See text for details.
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- Anomaly 26: 60 - 59 Ma (CRF 1) — Formation of the Porcupine

Microplate (Gulf of Biscay) and the Azores-Biscay Rise
(Srivastava & Tapscott, 1986). First peak of Thulean
volcanism in the Greenland-Scotland region (Srivastava &
Tapscott, 1986; Morton & Parson, 1988).

Anomaly 24: 56 - 55 Ma (CRF 2) — Onset of seafloor spreading
in the Norwegian-Greenland Sea, resulting in the formation
of a triple junction south of Greenland and the opening of
the NE Atlantic (Klitgord & Schouten, 1986). Second peak
of Thulean volcanism in the Greenland-Scotland region
(Morton & Parson, 1988). First development of the King’s
Trough tectonic complex (Kidd & Ramsay, 1986).

Anomaly 21: 50 - 49 Ma (CRF 3) — Major change in central
Atlantic spreading direction and onset of King's Trough
rifting (Klitgord & Schouten, 1986; Srivastava & Tapscott,
1986), probably in relation to a counter-clockwise rotation
of Africa-Tberia relative to Europe (Fig. 3) and in
association with extrusion of basaltic rocks (52 Ma: Kidd et
al., 1982). Formation of a large part of the Iceland-Faroe
Ridge (Srivastava & Tapscott, 1986). Onset of the Late
Pyrénéo-Provencal orogenic phase (Sissingh, 2001).
Anomaly 18: 42 - 41 Ma (CRF 4) — Re-activation of the
Azores-Gibraltar Fracture Zone, resulting in Iberia’s
independence from both Africa and Europe (Roest &
Srivastava, 1991).

Anomaly 17: 39 - 38 Ma (CRF 5) — European-Iberian plate
boundary jumped from Boundary B to the King's Trough-
Azores-Biscay Rise-North Spanish Trough Fracture Zone
(Roest & Srivastava, 1991). Volcanism in the King's Trough
region (37.5 - 38 Ma: Kidd et al., 1982). Rotation of the
intra-plate, compressive stress trajectories of Europe and
Iberia from NW-SE to NNE-SSW (Le Pichon et al., 1988;
Lepvrier & Martinez-Garcia, 1990). End of the Late Pyrénéo-
Provencal orogenic phase and onset of the Alpino-Pyrenean
orogenic phase (Sissingh, 2001).

Anomaly 13: 35 - 34 Ma (CRF 8) — Porcupine Microplate
becomes part of Europe (Srivastava & Tapscott, 1986).
Compression and subduction along the North Spanish Trough
(Srivastava & Tapscott, 1986). Abyssal circulation change
in the North Atlantic and opening of the Norwegian-
Greenland-Arctic Sea (between 37 Ma and 33 Ma: Tucholke
& Mountain, 1986; Berggren & Olsson, 1986; 35-36 Ma:
Miller & Fairbanks, 1985). End of the Alpino-Pyrenean
orogenic phase and onset of the early Alpine orogenic
phase (Sissingh, 2001).

Anomaly 12: 33 - 32 Ma (CRF 10) — Near sea-level volcanism
with extrusion of trachytic rocks in the King's Trough
region (32.2 Ma: Kidd et al., 1982; Kidd & Ramsay, 1986).
Anomaly 10: 30 - 29 Ma (CRF 11) — Abyssal circulation
change (28 - 31 Ma: Miller & Fairbanks, 1985)

Anomaly 7: 26 - 25 Ma (CRF 12) — Extinction of the Aegir
Ridge (Uenzelmann et al., 1992). Increased volcanism at
Iceland and abyssal circulation change (Berggren & Olsson,

1986; 24 - 25 Ma: Miller & Fairbanks, 1985). End of motion
along the King's Trough (?), separation of the Jan Mayen
Ridge from Greenland and onset of spreading across the
Kolbeinsey Ridge (Srivastava & Tapscott, 1986).

- Anomaly 6C: 24 - 23 Ma (CRF 14) — Iberia becomes part of
Europe by the extinction of the King's Trough-Azores-
Biscay Rise-North Spanish Trough Fracture Zone as the
Europe-Iberia plate boundary and the establishment of
the Africa-Europe plate boundary at the Azores-Gibraltar
Fracture Zone (Roest & Srivastava, 1991). Abyssal circulation
change? (Miller & Fairbanks, 1985).

- Anomaly 6: 20 - 19 Ma (CRF 17) — Onset of King’s Trough
rifting (Kidd & Ramsay, 1986). Increase of volcanism in the
East Central North Atlantic domain (from about 18 Ma:
Schmincke, 1982).

- Anomaly 5C: 17 - 16 Ma (CRF 18) — Jan Mayen rift jump
(Klitgord & Schouten, 1986). Abyssal circulation change
(about 17 Ma: Tucholke & Mountain, 1986)

- Anomaly 5AA/AC: 14 - 13 Ma (CRF 19) — Onset of uplift and
rifting of the Reykjanes Ridge (between about 14 - 13 Ma
and 10.5 Ma: Tucholke & Mountain, 1986).

- Anomaly 5: 12 - 11 Ma (CRF 20) — Abyssal circulation change
(about 12 - 11 Ma: Berggren & Olsson, 1986; Tucholke &
Mountain, 1986).

- Anomaly 4A: 9 - 8 Ma (CRF 22) — Plate re-organisation of
spreading in (at least) the Mohn's Ridge region (about 9
Ma: Géli, 1991).

- Anomaly 3A: 7 - 6 Ma (CRF 23) — Plate re-organisation of
spreading and enhanced tectonomagmatic activity in the
Mohn’s Ridge region (between about 6 Ma and 5 Ma: Géli,
1991).

- Anomaly 3: 6 - 5 Ma (CRF 24) — Increase of volcanism in the
East Central North Atlantic domain (from about 5 Ma:
Schmincke, 1982).

- Anomaly 2A: 4 - 3 Ma (CRF 25) — Plate re-organisation along
the entire Atlantic seafloor spreading system (Klitgord &
Schouten, 1986). Uplift of the Reykjanes Ridge (from about
3.5 Ma to 2 Ma) and abyssal circulation change (about 3 - 2 Ma:
Tucholke & Mountain, 1986).

Lgonclusion

This study indicates that, in general, the Alpine, Mediterranean
and North Atlantic tectonic events which affected the Tertiary
development of basins are correlative in time and causally
related through the regional interactions and re-organisations
of the African, Iberian, Apulian and European plates (Figs 21
to 28; Encls 3 to 8). This general conclusion is considerably
strengthened if discrepancies in dating on the order of 0.5 - 1 Ma
are considered as insignificant. Obviously, further investigation
and corroboration of the ages and correlations of the Alpine
Foreland events and the Mediterranean and Atlantic plate-
boundary events is still needed. From the mid-Rupelian
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onwards, polyphase slab roll-back subduction and occasional
detachment of the Maghrebian-Apenninic lithospheric slab
occurred, inducing episodic, eastward progressing back-arc
extension in the western Mediterranean (Figs 4, 9, 25 and 27).
This major formative process was interrupted by repeated
compression and extension induced during the kinematic
evolution of the African-European plate assembly. Time-
equivalent imprints of these events are recorded in the
sedimentary fills of the Alpine Foreland basins and the basins
of the western Mediterranean. Kinematic activity of the
northern Mid-Atlantic Ridge system (governed by North
Atlantic ridge-push forces) and the African-Apulian-Iberian
plate assembly (governed by Indian and South Atlantic ridge-
push forces) and the coeval tectonosedimentary changes in
the Alpine-Mediterranean plate-boundary basins (governed by
African/Apulian collision forces) were geodynamically coupled
through the S to N progression of the opening of the Atlantic
Ocean and its subsequent structural development, and the N-S
convergence of Africa and Europe (Figs 2 and 3). Accordingly,
the Alpine-Mediterranean tectonosedimentary sequences
ultimately reflect activity along seafloor spreading axes
(governed by ridge-push forces).

Sequence stratigraphic correlations imply a causal relation-
ship between tectonic and sedimentary responses in the
Alpine-Mediterranean region and plate-boundary events in the
northern Mid-Atlantic Ridge system and along the northern
edge of the African Plate. However, conclusive proof of iso-
chroneity of the correlations is beyond the resolution of the
current dating methods. In most cases, the responses probably
reflect changes in the motion of Africa relative to Europe. The
main signal events are (Fig. 28):

CRF 1 (60 - 59 Ma) - Formation of the Azores-Biscay Rise
- Opening of the Alpine Foredeep
- Opening of the Norwegian-Greenland

CRF 2 (56 - 55 Ma)
Sea

- Formation of the King's Trough-
Azores-Biscay Rise-North Spanish
Trough Fracture Zone

- Opening of the European Cenozoic
Rift System

-Iberia becomes independent from
Africa and Europe

- Peak of HP Adamello metamorphism
in the Alpine orogen

- Onset of the main rifting phases in
the Rhine and Rhéne grabens

- Peak of HP Lepontine metamorphism
in the Alpine orogen

- Compression and subduction of the
North Spanish Trough :

- Opening of the Alpine Molasse Basin

CRF 3 (50 - 49 Ma)

CRF 4 (42 - 41 Ma)

CRF 5 (39 - 38 Ma)

CRF 8 (35 - 34 Ma)

- CRF 10 (33 - 32 Ma) - Onset of slab roll-back subduction
and back-arc extension in the western
Mediterranean Basin
-End of the main phase of rifting in
the Rhine and Rhone grabens
- Peak of HT Lepontine metamorphism
in the Alpine orogen
- Onset of thrusting along the North
Giudicarie Fault (Insubric Line)
- CRF 14 (24 - 23 Ma) - Iberia becomes part of Europe again
- CRF 16 (22 - 21 Ma) - Onset of oceanisation of the Algéro-
Provencal Basin
- End of rifting in the Rhone Graben.

Based on current datings, some regional CRF phases are
synchronous with, but not necessarily causally related to,
global changes of climate. These are driven, or triggered, by
tectonic processes, orbital rhythms and so-called aberrations,
i.e. brief and effective anomalous developments standing out
well above the normal background variability (Zachos et al.,
2001). The following listing highlights the correlation between
short-lived tectonostratigraphic phases in Western Europe and
abrupt changes in Earth’s climate. Despite the chronostrati-
graphic correlations, the cause of the climate changes remains
a matter of debate (ages after Zachos et al., 2001):

- CRF 1: Onset of pronounced warming event (59 Ma)

- CRF 2: Late Paleocene Thermal Maximum (55 Ma)

- CRF 3: End of Early Eocene Climatic Optimum (50 Ma)

- CRF 4: Middle Eocene Climatic Optimum (41.5 Ma: Bohaty &

Zachos., 2003)

- CRF 5: Appearance of small-ephemeral ice sheets in the

Southern Hemisphere (between 36 Ma and 38 Ma)

- CRF 8: Early Oligocene Glaciation (35-34 Ma)
- CRF 12: Oligocene Glacial Maximum, succeeded by the Late

Oligocene Warming Event (27 - 26 Ma)

- CRF 14: Early Miocene Glaciation (24 - 23 Ma)

- CRF 18: Mid-Miocene Climatic Optimum (17 - 15 Ma)

- CRF 20: East Antarctic ice-sheet expansion (~12 - 10 Ma)

- Between CRF 23 and CRF 24: West Antarctic ice-sheet
expansion (6 Ma)

- CRF 25: Onset of glaciation in the Northern Hemisphere

(~3.2 Ma)

Given the assumption of long-distance correlations of
tectonic events (Figs 23 and 25 to 28; Encls 7 and 8) and the
(partial) plate-kinematic control on the sequence stratigraphy
of the Alpine Foreland basins, the following concepts are
plausible:

1. Isochronous syn-kinematic correlation of stress regimes and
depositional changes — The crustal properties of the Africa-
Apulia-Iberia-Europe plate assembly allowed collisional
stress to be transmitted over great distances across
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convergent plate boundaries, generally with relatively
homogeneous directions of the maximum horizontal
stresses. Accompanying compression from the Mediterranean-
Atlantic domains affected large parts of the Alpine
Foreland. Temporally, the far-field, kinematically-induced
changes of the stress regime and associated tectono-
sedimentary settings occurred simultaneously. However,
depending on relative plate setting, this results in possibly
different correlative ‘stress-field facies’ This is analogous to
Walther's ‘law of isochronous correlation of different
sedimentary facies' Areally, changes in stress regime across
plate boundaries were causally linked.

2. Intermittent syn-kinematic detachment of subducted slabs —
The timing of the Maghrebian, Apenninic and Alpine slab
detachments was influenced by compressional plate-
kinematic interactions associated with the convergence of
Africa and Europe. The syn-collisional break-off of
mechanically weakened subducting lithosphere (e.g. by
exceeding its strength through gravitational slab-pull
extension) may have been triggered by a change in
convergence rate and/or convergence direction via a change
in the state of stress of the slab. At upper crustal levels
above the line of slab break-off, the sedimentary develop-
ment of the Alpine Foreland and western Mediterranean
basins was probably affected (almost) instantaneously upon
slab detachment. The decrease of the slab-pull force induced
by the sinking of the detached slab into the mantle
increased the buoyancy of the shallow part of the slab and
induced rebound uplift of the crust. The occurrence of
coeval geological imprints at great distance from the zone
of slab detachment indicates the likely occurrence of a
brief collisional event at the convergent plate boundary.
Consequently, lithosphere rupture (lithosphere tearing,
slab detachment) may have been an important process in
determining the tectonostratigraphic architecture of basins.

3. Punctuated syn-kinematic development of plate-boundary
basins — Overall, the basins of the Alpine Foreland and
western Mediterranean developed under influence of long-
term geological processes such as persistent flexuring,
rifting and sediment loading. This study shows that these
processes were repeatedly interrupted or modified by brief
tectonic events related to punctuated plate-kinematic
forcing of the evolving African-Apulian-Iberian-European
plate assembly. These events appear to be also correlative
to changes in eustatic sea level. Thus, the sequence strati-
graphic development of the Alpine-Mediterranean plate-
boundary basins was probably controlled by coeval, episodic
changes in plate-kinematics and eustacy. In other words,
the shorter-term, kinematics-related evolution of these
basins presumably proceeded under combined tectonic and
eustatic control.
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