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1. Introduction

Let g: (C"*1,0) — (C,0) be a holomorphic function germ defining an isolated
hypersurface singularity Z = ¢g~1({0}). The Milnor fibre M has the homotopy type
of a wedge of n-dimensional real spheres, see [14]. In particular, the reduced homol-
ogy of M is concentrated in degree n. Since its appearance, this result has been
subject to several generalizations and modifications. We are interested in the con-
nections between two modifications of the original setup, which we refer to as the
fibration setup and the parametrization setup.

The fibration setup generalizes the original one in two ways. In the first one, Z is
a higher codimension complete intersection with isolated singularity. It is a result
of Hamm [7] that M still has the homotopy type of a bouquet of spheres of real
dimension dim Z. Alternatively, one can ask Z = g=1({0}) to be a hypersurface but
let the singular locus have dimension d. Kato and Matsumoto showed in [11] that
the Milnor fibre of g is at least (n — d — 1)-connected. The fact that this holds also
for nonisolated complete intersection singularities has been part of the folklore. For
lack of a reference, we give a proof in §4.3.

In the parametrization setup, the space Z is the image of a finite holomorphic
map germ f: (C",0) — (CV,0), and one would like to understand the changes

© The Royal Society of Edinburgh 2020. This is an Open Access article, distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://
creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution,
and reproduction in any medium, provided the same Creative Commons licence is included and
the original work is properly cited. The written permission of Cambridge University Press must

https://doi.org/10.101 bﬁr%w%ﬁsﬁmﬁkfﬁﬂﬂ% University Press
1


mailto:gpenafort@bcamath.org
mailto:mazach@uni-mainz.de
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2019.76&domain=pdf
https://doi.org/10.1017/prm.2019.76

2 G. Penafort Sanchis and M. Zach

in topology after perturbing f to a stable map. The map germs with isolated
instabilities are the A-finite map germs, and the image of a good representa-
tive of a stabilization of f is called a disentanglement. Thinking of the fibrations
and parametrization settings as different instances of the general deformation
theory reveals interesting connections. Milnor’s original setting, dealing with iso-
lated hypersurface singularities, corresponds to that of A-finite parametrization
f:(C",0) — (C"1 0). D. Mond showed in [15] that the disentanglement has the
homotopy type of a bouquet of n-spheres. The number of spheres in the bouquet
is called the image Milnor number pr(f). Another illustrating example is Mond’s
conjecture. It claims the inequality p;(f) > A.—codim(f) — motivated, by analogy,
from the trivial inequality p > 7 for the Milnor and Tjurina numbers of hyper-
surfaces with isolated singular locus. Moving to higher codimension, the setting
of Hamm’s result corresponds to that of A-finite map germs (C",0) — (CV,0)
with N > n+ 1. The degrees containing the nontrivial rational homology were
determined for corank one germs by Goryunov and Mond in [6]; the result being
generalized to arbitrary corank by Houston in [10]. In this work, we show the
analogue of Kato and Matsumoto’s result for disentanglements.

The restriction we have to make is to consider only the case of corank 1 germs
with multiple point spaces of the expected dimension. In this situation the latter
are complete intersections and we can study their induced deformations by means
of the generalized Kato—-Matsumoto Theorem. Then, we apply a spectral sequence
argument due to Goryunov and Mond [6] to compute the rational homology of the
disentanglement.

Just as in [6], passing through the spectral sequence looses the information about
the homotopy type of the disentanglement as well as its integer homology groups.

2. Overview and results

We briefly outline the main theorem of this article and recall the common definitions
of the objects involved. Consider a finite, holomorphic map germ

f+(C"0) — ((CN,O).

Let (Inst(f),0) € (CV,0) be the instability locus of f (see definition 3.1) and let
d = dim(Inst(f),0). We will mostly be concerned with nonisolated instability, i.e.
the case d > 0. We may choose an unfolding

F: (C"0) x (C,0) — ((CN,O) x (C,0), (x,u) v (fu(x),u)

of f = fo and a good, proper representative F': X x U — Y x U thereof in a sense
made precise below (cf. definition 3.2 and §4.1). Using stratification theory and
Thom’s isotopy lemmas one can show that the image F(X) is a topological fibre
bundle with fibre f,(X) over all u # 0 in some small disc D C U around the ori-
gin. In case that F is a C%-stabilization (see definition 3.1) of f, we call the space
Zy := fu(X) a disentanglement of f. However, since our considerations also involve
multiple point spaces and their induced deformations, we will have to chose the
representatives accordingly. Also note that, contrary to the case of isolated insta-
bility, our notion of Milnor fibre really depends on the chosen unfolding F' and not
only on the map germ f.
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THEOREM 2.1. In the setup described above, the reduced homology with rational
coefficients Hy(Z,,,Q) of a disentanglement Z,, = f,(X) of a dimensionally correct
corank 1 map germ f: (C",0) — (CN,0) can only be nonzero in degrees q with

g=k(n+1)—(k—1)N—3s

for1 <k < |N/(N—=n)| and 0 < s < dimInst(f). In the particular case N = n +
1 one has

n—dimInst(f) <g<n

as the range for possibly nonzero Betti numbers.

Two more points in the statement of this theorem need clarification. The first one
is the notion for a map germ f to be dimensionally correct. This means that the mul-
tiple point spaces of f have the expected dimension, as explained in definition 3.7.
The second one is the condition on f to have corank 1. The corank of a map germ
centred at the origin is defined as

corank f = n — rank df(0), (2.1)

where, as usual, df denotes the differential of f. The dimensionally correct and
corank < 1 conditions in the statement of theorem 2.1 ensure that the multiple point
spaces are complete intersections of the expected dimensions, with singularities only
over the instability locus; and that the multiple point spaces of a stable perturbation
are smoothings of these complete intersections. This is explained in [12], which,
together with [6], forms the basis of this article. We close this section by giving
some introductory examples:

EXAMPLE 2.2. The Cuspidal Edge

Soo: (x,u) — (xQ,x?’,u)

admits deformations to the germs
St (z,u) = (22,23 +uP e u), k>0

and to their stable perturbations, see figure 1. For each k, these deformations may
be obtained by taking suitable curves in the parameter space of the unfolding

(z,u,a,b) — (22,23 + z(a + buF*Y), u, a,b).

The curve with parameter ¢ given by ¢t — (a,b) = (0,t) gives a family with generic
fibre S, and special fibre S, . Fixing a = t? and b = t produces stable perturbations
of S, with a different second Betti number for each k. The statement on the Betti
numbers follows from the fact that the generic maps on these families are precisely
the stable perturbations of Sy (the ones obtained by fixing a small enough b # 0
and letting a = t). Since Sy has A.-codimension k, and Mond’s conjecture holds
for germs (C2,0) — (C?,0), the second Betti number of the image of these stable
perturbations is k.
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Figure 1. Unfoldings of the Cuspidal Edge.

The germ S, also admits deformations to the “nodal edge”
(z,u) — (22, 2% + to, u),

which can be retracted to a simple node curve. This gives a stable perturbation
of a germ of a parametrized surface singularity having nontrivial homology in
dimension 1.

ExampPLE 2.3. The singularity
Boo: (z,u) — (22, vz, u)
admits deformations to the A-finite singularities

By: (z,u) — (2%, u%x + 2% w), k> 1,

see figure 2. Each Bj has codimension k, and thus admits a deformation to a
singularity whose image has the homotopy type of a wedge of k spheres of dimension
two. We shall illustrate this by taking suitable curves in the parameter space of the
deformation

2

(z,u) — (2%, v%x + z(a + ba* + cat), u),

with coordinates (a,b,c) € C3.

The curve t — (a,b,c) =t-(1/10,—1,1) gives, for a small nonzero parameter ¢,
a stable perturbation f;, depicted at the left top corner of figure 1, which exhibits
nontrivial homology in dimensions 1 and 2.

t+— (0,t,0) yields, for each ¢ # 0, a singularity of type Bj. The curve ¢+
(—t,1,0) gives stable perturbations of B; which exhibit two cross-caps and

homology in dimension 2. The curve t — (—t,¢,0) is similar, but it collapses to
B.

https://doi.org/10.1017/prm.2019.76 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2019.76

Kato—Matsumoto-type results for disentanglements )

|
\@

Figure 2. Some adjacencies around Boo.

Similarly, the curve t — (0, 0,¢) yields a singularity of type Bs for each t # 0. The
curve t — (—t,0,1) consists of stable perturbations of By, with two cross-caps and
rank of Hy(Z;) = 2. (One of the cycles cannot be seen on the real numbers. You may
think of this cycle, however, as obtained by glueing two disks by their boundaries,
along the nonvisible curves that continue the visible double-point curves after the
cross-caps.)

In all the processes above, one always chooses a suitable representative of the
unfolding and a Milnor ball B, which in turn restricts the range of admissible
parameters in the unfolding. This will be made precise in § 4, but is already indicated
in the illustrations in figure 1. We would like to remark on the importance of
the choices of neighbourhoods for the different disentanglements. Suppose the ball
B around the origin in Zy C C® has been chosen to allow the necessary range
t €[0,1] C R in the deformations to B; and Bs individually. Then, nevertheless,
the curve

[0,1] — C3 t (a,b,c) = (t(t —1),1 —t,1)

cannot be an admissible family with the given choice of B. Over t € (0,1) one
has only stable fibres, which suggests that restricted to this range of parameters
one has a trivial family. However, this is not the case: As we saw before, one has
ho(Z; N B) =1 for t close to 0, but ho(Z; N B) =2 for ¢ close to 1. In fact, one of
the two cycles generating the second homology group grows as t decreases from 1
to 0 and eventually leaves the chosen ball B.

The nodal edge as a stable perturbation of the cuspidal edge is a particular case
of the following construction:

EXAMPLE 2.4. One can produce map germs f: (C*,0) — (C"*1,0) with instability
locus of dimension d and a stable perturbation f; having nontrivial homology at
dimension n — d, as follows: Choose any A-finite unstable germ g: (C"~4,0) —
(C"=4+1 0) of corank one and g, a stabilization of g. Now let f and f, be d-
parametric trivial unfoldings of g and g,. Since ¢ is A-finite but not stable, it
follows that the instability locus of ¢ is the origin. On the one hand, the space
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T = C? x {0} corresponding to the trivial parameters of f must be contained in
the instability locus of f, because it is nontrivially unfolded by fs, just as g is
nontrivially unfolded by gs at the origin. On the other hand, unfoldings of stable
germs are stable, because their unfoldings are also unfoldings of the original germ
and hence trivial. From this it follows that the instability locus of f is T', and that
fs is a stabilization of f.

Since (gs, s) is a stabilization of a finitely determined nonstable map, the asso-
ciated stable perturbation has the homotopy type of a bouquet of spheres of
dimension n — d. Our claim follows because (fs, s) is a trivial unfolding of (gs, s),
and therefore the image of g, is a deformation retract of the image of f,.

3. Preliminaries

3.1. A-equivalence and unfoldings

In this work, maps and (multi-)germs of maps are considered up to .A-equivalence,
i.e. biholomorphisms in source and target. Standard references for this are [2]
and [3].

Throughout the text, a (multi-)germ is a germ of the form f: (C",S) — (CV,y),
where S is a finite set and f(S) = {y}. Two map germs

fr9:(C",8) — (CV,0)
are called A-equivalent if there exist germs of biholomorphism
®: (C",8) — (C",8), W¥:(CN,0)— (CV,0),

such that the following diagram commutes:

(€, 8) —~ (¥, 0).

(€, 8) —= (CN,0)

Given such a germ f: (C™,0) — (CV,0) an unfolding of f on r parameters is a map
germ

F: (C"xC",(0,0) — (CN x C",(0,0)), (z,u) — (fulz),u)

such that for w =0 we obtain fy= f. Two unfoldings are called A-equivalent
as unfoldings if they are A-equivalent via two germs of biholomorphism of the
form ¢ = ¢ x ider and ¥ = 1) x ider. An unfolding F of f is called trivial if it is
A-equivalent, as an unfolding, to the trivial unfolding f x idg¢-.

There are obvious analogous statements for finite maps f: X — Y between com-
plex manifolds. Also, replacing biholomorphisms by homeomorphisms, we obtain
the definitions of topological A-equivalence and topologically trivial unfoldings.
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DEFINITION 3.1. A multi-germ f: (X,S) — (Y,0) is stable if every unfolding F
of f is trivial. A finite map f: X — Y is stable at a point y € Y if the germ
[+ (X, fY({y})) — (Y,y) is stable. Finally, a finite map is stable if it is stable at
every point. Topological stability is defined in the obvious analogous manner.

The instability locus Inst(f) of a finite map is the subspace of points y € Y where
the multi-germ of f at S = f~!({y}) is not stable. It is well known that Inst(f) is
a closed complex subspace of Y.

DEFINITION 3.2. A stabilization of a germ f is a one-parameter unfolding of f,
having a representative

F=(fyu): XxU—-YxU

so that fs is stable for all s € U\ {0}. Topological stabilizations are defined
analogously.

Let Z = F(X x U). By shrinking X,Y and U, we may ask F to satisfy the
following conditions:

i) the family 7: Z — U is a locally trivial fibration over U \ {0},
ii) the central fibre 7~1({0}) is contractible,
iii) the space Z retracts onto the central fibre fo(X).

Such a mapping F' is called a good representative of the stabilization, and each of
the mappings fs: X — Y is called a stable perturbation of f.

It is well known that for (n, N) in the nice dimensions of Mather [13], with
n < N, all finite multi-germs admit a stabilization (observe that finite is equivalent
to K-finite whenever n < N). Away from the nice dimensions, every multi-germ
admits a topological stabilization.

3.2. Multiple point spaces

Here we introduce the main objects needed for our result: the multiple point
spaces of a finite map. Our exposition is close to [17] in spirit, but its contents can
be extracted from previous work like [12].

DEFINITION 3.3. A strict k-multiple point of f: X — Y is a point (z(1), ... () ¢
XF* such that f(z() = f(x)) and £ # 20) for all i # j.
The k-th multiple point space of a stable map f: X — Y is the analytic closure

DF(f) = {strict k-multiple points of f}.

The space D*(f) is taken with the reduced analytic structure and the definition
extends to stable multi-germs by taking representatives.
The multiple point space of a finite multi-germ f: (C",S) — (CV,0) is

D*(f) = D*(F)n (C" x {0})",

for a stable unfolding F': (C" x C", S x {0}) — (CN x C",0) of f. The multiple
point space D¥(f) of a finite map f: X — Y is obtained by gluing the k-multiple
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point spaces of the multi-germs of f at f~!(y), for all y € Y. We write D¥ = D*(f)
whenever f is understood.

For every k, the projection which drops the i-th coordinate takes strict multiple
points to strict multiple points. For any finite map X — Y, one can see that these
projections induce maps

k. Dk — pk-1,

For formal reasons, it is convenient to extend this notation to the spaces D' = X
and DY =Y, to the maps €?: D?> — X dropping the i-th coordinate, and to the
map el = f: X — Y. We also write

=k o. .ol DF Ly,

The following well-known result makes precise which diagonal points are added
when defining double points via passing to a stable unfolding. A proof which is
consistent with this approach can be found in [17].

LEMMA 3.4. The double point space D? of any map f: X — Y consists of
(1) strict double points (v,2') € X2, with 2’ # x and f(z') = f(z),
(2) diagonal singular points (z,x) € AX, such that f is singular at x.

The k-th multiple point space D¥(F) of a finite map F: X x U — Y x U, of
the form F(z,u) = (fu(z),u), can be embedded in X* x U. This embedding makes
DF(F) into a (possibly nonflat) family of spaces D¥(f,), in the sense that

D*(fy) = DF(F) N {u =t}

In the case of corank one germs, the multiple point spaces can be computed directly
without taking stable unfoldings. Every corank one map germ (C™,0) — (CP,0) can
be taken, by a suitable change coordinates in the source and target, to a map of
the form

flx,u) = (fulu,2),..., fn(u,x),u), ueC" ' zeC.

A set of generators for the ideal defining D* for such a map was given by Marar
and Mond in [12] (see proposition 2.16). These generators are as follows:

LEMMA 3.5. In the setting above, the multiple point space D*(f) is defined in CF x
C™ ' by the vanishing of the iterated divided differences

fj[xlvaau]afj[x17x2a'r37u]7'"afj[l'l,'--;xkvu}v fO’f’j:TL,...,N.
The divided differences are defined as
_ Jilwe,u) = fi(x,u)

fj[ﬂ:l,.ﬁﬂQ,U] T — 21 )

fj[xlaxi%u] *fj[xlax%u]
xr3 — T2

filer, xe, x3,u] =
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and, iteratively,

fj[5017~-~7517k—279€k,u] *fj[ﬂfl,---’xk—z,ivk—l,u]

Ty — Tk—1

fj[JL‘l,...,I‘k,’UJ} =

Having explicit generators for monogerms, we can deduce the following:

LEMMA 3.6. Let f: X =Y be a finite map between holomorphic manifolds of
dimension n and N respectively. If D* is nonempty, then dim D¥ > kn — (k — 1)N.
If f has corank one and dim D* = kn — (k — 1)N, then D* is locally a complete
intersection.

DEFINITION 3.7. We say that the multiple point space D of map f: X — Y as
above has the expected dimension if it is empty or has dimension kn — (k — 1)N.
A map is called dimensionally correct if all its multiple point spaces have the
expected dimension.

Observe that, to check if a finite map is dimensionally correct, it is enough to
check dimensions from D? to the smallest k such that D* = (). This is because
DF = () forces the higher multiplicity spaces to be empty, and hence to have the
expected dimension.

We gather some results from [6] and [12] describing the relation between stability
and multiple point spaces in the corank one setting.

THEOREM 3.8. A corank one map f is stable if and only if every D* is smooth
of dimension kn — (k—1)N or empty. In this case, the following properties are
satisfied:

(1) Every D is the closure of the set of strict k-multiple points.

(2) The maps ¢"*: D* — DK=L are corank one stable maps.

(3) The multiple point spaces satisfy the iteration principle
DF(e,) = D+h—1,

via isomorphisms which commute with the maps D" (e;) — D" 1(ex) and
prtk _, pr+k-1

LEMMA 3.9. For every finite map f, the maps €"*: D*¥ — DF-1 and €*: D*¥ — Y
are finite.

Proof. Tt suffices to show the claim for €, because every €* is a composition of
those. Recall that the spaces D* are obtained by glueing the corresponding spaces
for representatives of multi-germs at S = f~1({y}), and thus it suffices to show the
claim for multi-germs. Observe that the restriction of a finite map is finite and the
maps e are restrictions of those of any unfolding. Hence, since every finite multi-
germ admits a stable unfolding, we may assume that f is a stable finite multi-germ.
In this case, the maps D¥ — D*~! are stable maps from a manifold of dimension

kn — (k — 1)N to another of dimension (k — 1)n — (k — 2)N, hence finite. O
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COROLLARY 3.10. Let X andY be complex manifolds of dimensionn and N respec-
tively. For any finite and dimensionally correct corank one map f: X — Y, with
instability locus of dimension d, the spaces D* are locally complete intersections of
dimension kn — (k — 1)N, if not empty, with singular locus of dimension at most d.

COROLLARY 3.11. For any finite dimensionally correct corank one map f: X —Y
as above, the union of the projections to X of the singular loci of the DF is equal
to the instability locus of f. In particular, if the instability locus has dimension d,
then there is at least one space D* having a d-dimensional singular locus.

4. Milnor fibrations and disentanglements

In this section we shall discuss two setups in parallel which may be seen as two
branches of a common theoretical trunk: Smoothings of nonisolated singularities
and disentanglements for finite map germs. Both setups fit into the commu-
tative diagram (4.1) below: In the first case we consider (Zy,0) C (CV,0) as
a nonisolated singularity and (Zy,0) — (Z,0) LR (C,0) a smoothing of it over
(C,0) with total space (Z,0). In the other case, (Zy,0) appears as the image
of a finite holomorphic map germ f: (C",0) — (CV,0). Passing to an unfolding
F: (C"0) x (C,0) — (CY,0) x (C,0), we can easily verify that also F is finite and
hence has an analytically closed image (Z,0) C (CV*1,0) equipped with a projec-
tion A to the base of the unfolding. Forgetting about F' we obtain a deformation of
(Zy,0) over (C,0) in the classical sense.

(CN,0)¢ (CN+1)0) (4.1)
(Z0,0) € (Z,0) u
. N
{0} ¢ (C,0)

We will usually write 3 for the standard coordinates of (CV,0) and (y,u) for those
of (CN+1,0) with u the deformation parameter. The function h is the restriction of
u to the total space (Z,0) of the deformation.

4.1. The fibration theorems

Next, we will make precise what we understand to be the Milnor fibre in this
situation closely following [20]. By abuse of notation we will denote by Zy, Z and
h a set of representatives of the corresponding germs defined on some product
Y x A c CN*! =C» x C with Y an open neighbourhood of 0 in CY and A an
open disc around the origin in the deformation base C.

One starts out by endowing (Z,0) with a Whitney stratification ¥ = {S, }oc4,
in which (Zp, 0) appears as a union of strata. For the existence of complex analytic
Whitney stratifications see e.g. [21]. If (4.1) is a smoothing of (Z,0), then Z \ Z,
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is itself necessarily smooth in a neighbourhood of the origin and in this case we
have a unique open stratum which we will call Sy := Z \ Zy. Whenever (4.1) arises
from an unfolding F : (C™ x C,0) — (CV x C,0) of a finite holomorphic map germ
f=fo:(C"0)— (CN,0), the open stratum Sy might not coincide with Z \ Zj,
since the deformation of the image (Zy,0) induced from the unfolding F' does not
have to be a smoothing of (Zj,0). In either case we may utilize the Curve Selection
Lemma to verify that the restriction of h to any stratum S, outside Zy does not have
a critical point in a neighbourhood of 0 € Z. After shrinking our representatives,
we may therefore assume that h|g, is a submersion at any point p € S, p ¢ Zp and
write

T,h*({h(p)}) = kerdhls, C TpSa

for the tangent space of its fibre h=*({h(p)}) through p. Note that by construction
the restriction of h to any stratum S, C Zj in the central fibre is the constant map.
Therefore at any point p € S, C Zo the spaces T,,S, and T,h~'({h(p)}) coincide.

As a second step one refines the stratification in order to also fulfil Thom’s aj-
condition. This is the crucial ingredient in order to establish the fibration theorems,
see [19]. The existence of such refinements in the complex analytic setting has been
shown in [9].

DEFINITION 4.1. Let h: (Z,p) — (C,q) be a holomorphic map germ and X =
{Sa}aca a Whitney stratification of (Z, p) as above. Consider a sequence of points
(pi)ien in a stratum S, converging to p € Sz such that the sequence of tangent
spaces

1), 80— Too D T,Sp
also converges. From this one also obtains the sequence of relative tangent spaces

K= Tmh_l({h(pi)}) C Tp;Sa-

Passing to a subsequence, we may assume that also the K; converge to a limit
K. CT. We say that the stratification X satisfies the aj-condition at p, if for
any such sequence one has

Koo D T~ ({h(p)}) (4.2)
where T,h~({h(p)}) = kerdhls,(p) C T,S3.

In a third step we restrict to proper representatives by choosing a Milnor ball.
Suppose

F=(fu,u): X xA—-CVxA

is a representative of the unfolding F' as above defined on some open neighbourhood
X C C" over a small disc A C C. Let F(X) be its image in CV. We may choose
the open neighbourhood 0 € Y € CV such that Z := F(X)NY x A is analytically
closed in Y x A. A Milnor ball is now chosen as follows: Consider the squared
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distance function from the u-axis in CV+1!

p:(y,u) — |y

This is a real analytic function. We can apply the Curve Selection Lemma to deduce
that p has no critical values on some small interval (0, o] with respect to the strat-
ification ¥ in a neighbourhood of the origin. We may assume this neighbourhood
to be Y x A again. Consequently,

Z:=7Znp H([0,e0]) and Zo:=ZoNp~([0,0])
are again Whitney stratified spaces. Let
0Z :=ZNp *{eo}) and 9Zg:=ZoNp *({e0})

be their boundaries. They inherit a Whitney stratification 9% from X by intersecting
each stratum S, with p=1({eo}). Moreover, the restriction

hl7:Z — A
is proper and, as a consequence of Thom'’s first Isotopy Lemma applied to p on Zj,

one has:

COROLLARY 4.2 Conical structure. The inclusion {0} — Zy is a deformation
retract.

In this setup, Lé provided the following fibration theorem, cf. [20], theorem 1.1
and remark 1.3 (b):

THEOREM 4.3. There exists g > 1 > 0 such that the restriction
h: ZO0h™ Ay \ {0}) — A, \ {0}
is a topological fibration, where A, is the disc around the origin of radius 1.

DEFINITION 4.4. In a given deformation of a space (Zy,0) as in (4.1) and
theorem 4.3, we call

A {tHnZ, teA,\{0}

the Milnor fibre of h on (Z,0). If (4.1) arises from a stabilization F' of a holomor-
phic map germ f, then we will speak of the disentanglement of f(X) in the given
unfolding F.

The reader should verify that with the particular choices for our representatives
made in this section, the requirements on a good representative in definition 3.2
are indeed satisfied.

REMARK 4.5. The notions of this section are mostly of topological nature. A priori,
the space germs (Z,0) and (Zy,0) are germs of complex spaces, i.e. they might
have a nonreduced scheme structure. However, when considering their Whitney
stratifications, we only consider their reduced models and the reduced structure
of the strata and consequently everything that follows is to be understood purely
topologically.
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4.2. Induced deformations of multiple point spaces

In the setting we will encounter when dealing with the multiple point spaces, we
do not have the freedom to choose the shape of Z inside Z since multiple point
spaces and their deformations appear as preimages of the canonical projections to
the unfolding of the original map germ, which had been chosen beforehand: Suppose
as usual that we are given a representative

F=(fou):XxA—-YxAcCNxC

of an unfolding of a finite holomorphic map germ f = fy. Let Z C Y x A be its
image and D* the multiple point spaces:

7 =F— DU - D2 - D3 (4.3)
s %
A —

Consider the squared distance p from the u-axis in CV*1 as before. On all the spaces
DF this already fixes the function with respect to which our proper representatives
are about to be chosen:

pp=pock:DF SR (4.4)

From the finiteness and analyticity of all the maps ¥ we easily deduce the following
three properties of all the py:

(1) pi. has an isolated zero on the central fibres D = D* N {u = 0}, resp. Z x
{0}, at the origin.

(2) There exists €9 > 0 such that for each 0 < € < gg and all k& > 0 the restriction
w:D" =D pt([0,20]) — A

is proper.

(3) Furthermore, €y > 0 can be chosen small enough such that each pj is a
stratified submersion on D& N p;.((0, £¢]).

We will from now on assume that ¢ has been chosen small enough to fulfil all
these requirements simultaneously with those formulated in the previous section.

Recall theorem 3.8, corollary 3.10 and corollary 3.11: If (4.3) is a stabilization of a
dimensionally correct map germ fj of corank one with instability locus of dimension
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d = dim Inst(fy), then the induced deformations

DA
are smoothings of the complete intersection singularities
(Dlgvo) - (Dk N {u = 0}70)’

which have nonisolated singular locus of dimension at most d. The only difference to
the classical case is the unconventional choice of the Milnor balls via the functions
pr. But as we shall see below, this does not alter the theory and we can apply the
usual machinery to get to know their topological invariants. The induced deforma-
tion of one of the multiple point schemes is what the reader should have in mind
when progressing to the next section.

4.3. Nonisolated complete intersection singularities

Suppose we are given a smoothing of a nonisolated singularity (Z,,0) C (CV,0)
as in (4.1). There are essentially two different ways to construct transversal, iso-
lated singularities from nonisolated ones. In the first case one considers the singular
part of the link 0Zy = p~1({e0}) N Zy as e.g. in [18] and also the original work by
Kato and Matsumoto [11]. In the other case, which is for example exhibited in
[20], one takes hyperplane slices at the central point 0 € Zy, which are transverse
to the singular locus. A detailed description of the sense of transversality under-
lying this choice is outlined in [8, Section 2]. Unfortunately, the article only deals
with hypersurfaces, but the methods applied there carry over naturally: We are
considering functions h: (Z,0) — (C,0) on an arbitrary reduced, complex analytic
space (Z,0) C (CN*1,0), rather than functions on smooth spaces. All the choices
of stratifications and their refinements in [8] can easily be adapted to the situa-
tion in diagram (4.1) and one eventually obtains the following theorem by Lé, [20],
theorem 2.1:

THEOREM 4.6. There is an open Zariski dense set ) in the space of affine hyper-
planes of CN at 0 such that if | =0 belongs to 2, there exists an analytic curve
Co C W C C?% in an open neighbourhood W of 0 € C2, such that for any € >0
small enough and n > 0, € > n, the mapping

(h,0): ZN B.N (h, )" (B, \ Co) — B, \ Co
is a topological fibration.

As usual, B. and B,, denote the balls of radius £ and 1 in C" and C? respectively.
It is evident from the proof that we can replace B. by p, '([0,€]) for a suitable
real analytic function pj, which fulfils the requirements formulated in §4.2. The
verification of this fact along the lines of [20] is left to the reader. See also [8].

The curve C is the image of the so-called Polar curve of the linear form [ relative
to hon Z:

I'={yeZ\ Z: kerdh(y) C {l =0}}. (4.5)

For a fixed value t € C, [t| small enough, the restriction of [ to the interior of
Zy = p~1([0,€]) N A= ({t}) has only isolated critical points — the intersection points
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of T with A=1({t}). One can furthermore show (see [8]) that for a generic choice of
[ these critical points are Morse critical points. But we shall not need that fact.

What is more important for our purposes, is the fact that the set €2 of admissible
hyperplanes L = {l = 0} is Zariski open. Let Q' be the set of hyperplanes, which
are transversal to the stratification ¥ of the total space Z at 0. By this we mean
that the restriction of the linear form [ to any stratum of positive dimension is a
submersion and that at an arbitrary point p € Z it does not annihilate any limiting
tangent space of adjacent strata. Since the intersection of two Zariski open sets is
again Zariski open and in particular nonempty, we may choose L € QN Q'. With
this choice it is easy to see that, since Z; is a union of strata, the transversal
singularity given by

Z0 = ZyNL (4.6)

is nonsingular at every nonsingular point of Zy. Moreover, [ is a nonconstant
function on every irreducible component of any stratum Sz C Sing(Zy) of pos-
itive dimension and hence dim Sing(Z{') = dim Sing(Zy) — 1, whenever Z, has
nonisolated singularities. This yields an induction argument on d = dim Sing(Zy):

THEOREM 4.7. Suppose h:(Z,0) — (C,0) as in (4.1) is a smoothing of
an n-dimensional, nonisolated singularity (Zo,0) C (CN,0) with singular locus
Sing(Zy) of dimension d at 0 and L = {l = 0} is a hyperplane meeting the require-
ments of theorem 4.3 with transversal singularity (Zg“,O). Let p be a nonnegative
real analytic function on a neighbourhood of the origin in C, which defines a good
proper representative h: Z — A of the deformation of Zy = h=1({0}) N p~1([0,¢])
and the associated transversal singularity 7?. Then up to homotopy we obtain the

- —h
space Zy from Z, by attaching handles of real dimension n.

The idea behind the proof of this theorem is to use the squared distance function
A := |l|?> from the hyperplane L as a real Morse function on Z;. The latter is a
manifold with boundary and we therefore have to pass to stratified Morse theory.
Perturbing the equation [ slightly, we may assume that the complex function [ has
only Morse critical points on the interior of Z; \ 79 and it is easily seen that outside
LN Z,, the function A has real Morse singularities of index n = dim¢ Z; precisely
at the critical points of [. The difficulty in the proof does therefore not arise from
the critical points of A in the interior of Z; \72, but from critical points of A on the
boundary 0Z;. More precisely: The hardest part of the proof is to show that these
critical points do not contribute to changes in the homotopy type when passing
through their associated critical values.

In order to understand why this is the case, recall the following notions of Morse
theory on manifolds with boundary. Let f: M’ — R be a smooth function on a
manifold M’ and let M C M C M’ be an open submanifold with boundary M. For
a point p € 9M choose a smooth function ¢: (M’ p) — (R, 0) defining the boundary,
ie.

(0M,p) = (t7'({0}),p) and (M,p) = (t""((~00,0]),p).
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DEFINITION 4.8. We say that p € OM is a boundary critical point for f on M, if p
is a regular point of f on M’ and a critical point of the restriction f|gas, i.e. if in
the tangent space T, M’ the equation

df(p) = a-dt(p) (4.7)

holds for some a # 0. The point p is an outward (resp. inward) critical point of f
on M if the coefficient a in (4.7) is positive (resp. negative). Moreover, a boundary
critical point p is a Morse point if the restriction f|,5; has a Morse critical point
at p.

The following lemma can easily be deduced from stratified Morse theory, see [4].

LEMMA 4.9. Let f: M' — R be a smooth function on a manifold M’ and M C M C
M’ a submanifold with boundary OM such that the restriction of f to M is proper.
Suppose p € OM is a boundary Morse critical point with critical value b € R and
no further critical points in the fibre M 0 f~1({b}).

If p is an outward critical point of f, then there exists an € > 0 such that the
space f~1((—o0o,b —€]) is a strong deformation retract of f~1((—o00,b+ €l).

If p is an inward critical point of f, then up to homotopy we obtain f~'((—oo,
b+e]) from f~1((—o0,b—¢]) by attaching a cell of dimension i, where i is the
Morse index of the restriction f|yg;z.

EXAMPLE 4.10. Consider “Kenny’s head” (figure 3), the manifold M given by the
intersection of the sphere S? C R? with the half space {y < 1/v/2}. As usual we
take the height function z as a Morse function on M. There are four critical points
of z on M: Two on the interior of M inside Kenny’s throat and on the top of
his head and two boundary critical points close to his chin and on his forehead.
Consider the spaces

M. :=z""((~o0,c)n M

for varying c. It is easily seen that passing through the critical value —1/+/2 of the
boundary critical point at Kenny’s chin does not change the homotopy type of M..
Indeed, this is an outward critical point.

On the other hand, when we approach ¢ = 1/v/2, the critical value coming from
the critical point on the forehead, we attach a l-cell to M._.. This is the case,
because the critical point on the forehead is inward pointing and the Morse index
of the restriction of z to OM is 1.

LEMMA 4.11. In the setting of theorem 4.7, let A = |l|? be the squared distance from
L. We say that p € 0Z Nh=1(As \ {0}) is a relative boundary critical point of X, if
it s a boundary critical point on the fibre

Ze=h="({hp)}) N p~ ([0,€])

of h over t = h(p). We can choose an € > 0 small enough such that

i) there are no relative boundary critical points in a neighbourhood of 0Z ;
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Figure 3. Slicing Kenny’s head.

ii) there exists a § > 0 such that whenever p € BZ is a relative boundary critical
point, then it is an outward critical point of Zp ).

From the proof of this lemma we first extract a further technicality as a statement
of its own.

LEMMA 4.12. Let V' be a finite dimensional vector space over a field K with K =R
or C. Let (Wy)nen be a sequence of subspaces in V' converging to a limit space W
and let (Py,)nen and (Uy,)nen be linear forms on V- converging to linear forms ®
and ¥ respectively with W # 0. Suppose we have for each n € N

(I)n|Wn =0ap \Iln|Wn

for some sequence of numbers (an)nen in K. Then (an)nen converges to some a € K
and

(I)|W =a- \IJ|W

Proof. Let v € W be a vector with ¥(v) # 0 and choose a sequence of vectors
(n)nen with v, € W, and lim,,_, o, v, = v. Then due to continuity

an -V (vy) = Bp(v,) =3 ®(v) = a- V(v)
for some a € K. We immediately deduce that for n big enough

S D, (v,) o0 D(v) .
", (vy) U(v) ’

so in particular (a,)nen converges. It follows a posteriori that therefore also
Pl =a- Vlw
as linear forms on V. O

Proof of lemma 4.11. We may choose the representative Z so that we can assume
that h has no critical points on Z outside Zy and also p does not have critical points
on Z outside {p = 0}. Since Zj is a union of strata and the hyperplane L is chosen
transversal to the stratification, this holds in particular for Z, and Z{)ﬁ. For a point
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p € Sq C Zlet Zyyy = h™'({h(p)}) be the fibre of h through this point. We denote
its tangent space by

K(p) = kerdhls, (p) = Tyh™ " ({h(p)}) = T, Zn(p)-

In particular K (p) = T,S., whenever p € Zy, since h is constant on Z,. The as-
condition moreover assures that for any sequence of points (p,,)nen C S, converging
some p € Sg one has

lim K(p,) D> K(p)

n—oo

whenever the limit exists.
We first show ). Certainly dA(p) =0 at any p € L. However, by the choice of

. —mM
L and e with respect to Z we have that for any p € 07, p € Sz C Zp, the real
differentials

Rdi(p), Sdi(p) and dp(p)

are linearly independent over R on 7,53. This is equivalent to saying that
di(p) and  d““p(p)

are linearly independent over C, where d°p(p) is the holomorphic part of the
differential of p considered as a map to C. Now suppose there was a sequence
(pn)nen of points in some adjacent stratum S, converging to p and such that at
each p; one has

dlpa)lK(pn) = en - 4" p(Pn) o)

for some sequence of complex numbers ¢,. Passing to a subsequence, if neces-
sary, we may assume that the limit lim,,_,, K(p,) = K exists. Applying lemma
4.12 we obtain a contradiction to the linear independence of di(p) and d*°p(p) on
T,S3 C K. We infer that there exists an open neighbourhood U of 87? in Z such
that for each stratum S, and every point g € U N S, the differentials di(q) and
d%p(q) are linearly independent over C.

It is now easy to see from the formula

dX = 2R(1 - dI)

that on this open neighbourhood also d\ and dp must be linearly independent,
whenever [ # 0, i.e. outside L. The points on L N Z N U on the other hand cannot
be relative boundary critical points, since they are critical points of A on the fibre
Zy already.

Concerning #4): It has been shown in [22], lemma 2.3.8, that we can choose € > 0
small enough such that on Z, the following holds: Whenever in a point p € 9Zo,
p € Sg, we have a linear dependence

dX(p)|T,s, = a-dp(P)|1,s,, (4.8)

then a > 0 with equality if and only if p € 8?(?.
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We briefly recall the argument. It can be shown that

C™ ={p€dZy:d\p)|r,s, = a-dp®)|r,s,,a <0}

is a real semi-analytic set. If the point 0 € Z was in C'~, then we can choose a real
analytic path v :[0,¢;) — C~ with 4(0) =0 and v(t) ¢ C~ N L for all 0 < ¢ < ¢;.
Comparing the integrals

A(v(#) = /0 dA(y(7))¥(r)dr and  p(y(t)) = /0 dp(y(7))¥(7) dr

we see that

has a Laurent expansion at 7 = 0 and hence either a(7) or 1/a(7) extends to a real
analytic function « on [0,¢1). Since both A and p only assume nonnegative values,
the leading coefficient of this function must be positive — a contradiction to a < 0
in the construction of C~.

We can now finish the proof of ii). Suppose there exists a point p € Zg, which
is the limit point of a sequence (p,,)nen of relative boundary critical points in the
open stratum Sy. Then at each point p,, we have

d)‘(pn)|Tpn So = Qn - dp(pn)|Tp,,L So

with a, < 0. Another application of lemma 4.12 shows that in this case we would
have

APz, s, = a-dp(p)|z,s.

S, the stratum containing p and a = lim,, . a, < 0. If @ < 0 this is a contradiction
0 (4.8). If a =0, then dA(p) = 0. But then p € L and we saw in ¢) that p cannot
be a limit of relative boundary critical points.
We deduce that there exists an open neighbourhood V of 9Z in Z such that no
point in V' is a relative inward boundary critical point. Choose § > 0 small enough
such that 9Z N h~1(As) is contained in V. O

Proof of theorem 4.7. Fix an € >0 and choose § > 0 as in lemma 4.11. Choose
t € Ay, t # 0 and consider A = |I|? on Z;.

Taking a slight perturbation [ of the equation [, we may assume that A= |l|2
a Morse function on the manifold with boundary Z;, see [4][Chapter 1, Example
2.2.4]. We may also choose a regular value [y of [ on Z, close to 0 and recentre [ at ly

so that 7? is smooth, while retaining the Morse properties. Furthermore, since all
the boundary critical points of A on Z; were outward and A can be chosen arbitrarily
close to A in the Whitney topology of smooth functions, also the boundary critical
points of X are outward. With these choices we replace [ by [ and A by A in what
follows.
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Since [ : Z; — C is proper, the set of critical values is closed and we find 1 > 0
such that

117N A)NZ — A,

is a trivial bundle A~1([0,7]) N Z, %7:] x A,. For any c € [,00) denote Z; N
A~1([0,¢]) by Z5°.

As remarked earlier, the real valued function A has real Morse singularities of
index n = dim¢ Z; at each of the complex Morse points of [ in the interior of Z;.

—<
Consequently, up to homotopy, we attach an n-cell to Z, “ each time ¢ passes
through one of the critical values of these points. On the other hand, whenever c
crosses a critical value of a boundary critical point p € 9Z;, the homotopy type
<S¢ . . .
of Z, does not change according to lemma 4.9, because p is an outward critical
point. This finishes the proof. O

COROLLARY 4.13. Suppose h: (Z,0) — (C,0) as in theorem 4.7 is the smoothing
of a complete intersection singularity of dimension n. Then the associated Milnor
fibre Z, has the homotopy type of a bouquet of spheres of real dimension in the
range from n—d to n. In the extremal case n = d this means we allow finitely
many components.

Proof. We proceed by induction on the dimension d of the singular locus of (Zy, 0).
If d=0, then (Z,0) is an isolated singularity and this is nothing but Hamm’s
result [7]. In the particular case where n = d = 0, the map h: (Z,0) — (A,0) is a
branched covering and Z; consists of finitely many points.

Now suppose the theorem has been established for d in the range 0 < d < k for
some k and we are given a nonisolated singularity (Zp,0) with singular locus of

dimension k. According to theorem 4.7 the space Z; has the homotopy type of
h . . . . —h . .

Z, with attached handles of real dimension n. Since Z, is the Milnor fibre of a
nonisolated complete intersection singularity with singular locus of dimension k£ — 1,
the claim follows. g

REMARK 4.14. Note that corollary 4.13 gives bounds on the homology of nearby
fibres Z; in any smoothing of a given complete intersection singularity (Zo,0),
while the detailed topology of these fibres Z; will depend on the choice of such a
smoothing, i.e. on the embedding of (Zp,0) in the family

(Zo,0) — (Z,0) - (C,0).

Once this family has been chosen, we find ourselves in the convenient setting of
a hypersurface singularity given by the function h on a singular ambient space
(Z,0) and it makes sense to speak of the Milnor fibration of h on (Z,0) as stated
in corollary 4.13. We may then apply theorems 4.3, 4.6 and 4.7 in the provided
setting.

5. Alternating homology

In this section we finally proof our main theorem 2.1. A key ingredient will be
a spectral sequence coming from the alternating homology of the multiple point
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spaces, which we now recall. The original construction of [6] uses cohomology. In
[5] there is a version for homology. See also [16] and the recent preprint [1]. The
homological and the cohomological versions are dual to each other when using
coefficients in a field (Q in our case), so we have chosen homology, as it is more
visual. We restrict our exposition to the objects which are needed for the proof of
our main theorem.

5.1. The spectral sequence for the homology of the image

Given a finite map f: X — Y, let C’q(Dk ) be the module of g-dimensional singular
chains on the multiple point space D, with coefficients in Q. Recall that, for
convenience, this includes the case of X = D'. For k > 2, the natural action of
the symmetric group S, on D* by permutation of the factors of D* C X* induces
a linear action on C,(D*). The submodule of k-dimensional alternating chains of
C,(D¥) is defined as

CéAlt(Dk) _ {h c (Jq(Dk) | 0% h =sign(c) - h, forall o € Sk}.

For k =1, we set CJ (DY) = Cy(DY).
We also have two morphisms from each C’q(D’~c ): the usual boundary operator

0: Cy(DF) — Cy 1 (DY),
and the morphism
p: Cy(D*) — Cy(DM),
fjflfge:nDl)lcy;p ;k;ii:l(fl)i(ei’k)ﬂ, where (e7*)f are induced on chains by the maps

It is easy to see that @ and ¢ take CMY(DF) to CM%(DF) and CME (DR,
respectively. These restricted morphisms give rise to a double complex

CéAlt(Dl) 590 Cé“t(D2) 5<p Cé“t(Ds) <

C{Mt(Dl) ;Sa ClAlt(D2) Ey; Cif\lt(DB) <
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Associated to this double complex there is a spectral sequence F, o, whose first
page has as entries the homology groups

Ezl),q _ Hé\lt(D;DJrl) = Hq (C:Ut(Derl),a)

of the column complexes. Since we are working over Q, we may form the alternating
projection operator

1
Alt : Cy (D) — C’;M‘;(Dk)7 we g Z sign(o) - o * w,
: €Sk

and, because Alt commutes with the boundary operator 0, we have a natural
extension of Alt to the homology groups H,(D¥). Let Alt H,(D*) be subgroup
of alternating homology groups — the image of Alt in H,(D¥). Then we have
isomorphisms

Alt H,(D*) = H}M(DF). (5.1)

The fact that we can regard Hé“t (D*) as a subobject of H,(D") leads to a crucial
observation:

Hf‘lt(Dk) is zero if D* has trivial homology in dimension q.

REMARK 5.1. The identification of Hé“t (D*) with a subgroup of Alt H,(D") relies
on the choice of the coefficients in a field of characteristic zero so that the alternating
operator Alt can be defined as an idempotent operator. For multiple point spaces
of A-finite maps of corank 1, which are ICIS with a finite group action, Goryunov
proved in [5] that (5.1) also holds over the integers for their stabilizations. However,
his proof relies on the singularities being isolated, which can not be assumed to be
the case in our setup.

The importance of the alternating homology becomes clear in the next theorem.

THEOREM 5.2. Let f: X — Y be a finite stable map with image Z CY . Then the
spectral sequence

E, ,=HM(D') = H,.y(Z)

in alternating homology from the double complex above converges to the homology
of Z.

For different proofs see [5, 6], and [1].

While computing the spectral sequence explicitly might be quite involved, we can
give estimates for the vanishing of the rational homology of Z from information
about the first page.
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5.2. Proof of theorem 2.1

Let f:(C",0) — (CN,0) be a finite, dimensionally correct holomorphic map
germ of corank 1 with nonisolated instability of dimension d = dim Inst(f) and

F=(fu,u): XxA-=YxA

a representative of a topological stabilization thereof. Choose a Milnor ball B =
p~1([0,€]) C X for this representative according to §4.1 and 4.2 so that, possibly
after shrinking A, we can pass to the associated proper representatives h: Z — A
and u : DF(F) — A.

From theorem 3.8, corollary 3.10 and corollary 3.11 we know that the induced
deformations in the multiple point spaces

w: DF(F) — A

are smoothings of complete intersection singularities (D*(f),0) = (u~1({0}),0)
with singular locus of dimension < d. From corollary 4.13 we know that the asso-
ciated Milnor fibres D" (fs) have the homotopy type of a bouquet of spheres S of
dimensions ¢ within the range from dim(D§,0) — d to dim(D%,0). Since the alter-
nating homology groups H‘f“ (Ek(fs), Q) are subgroups of H, (Ek (fs),Q), equation
(5.1), this gives immediate bounds on the nonzero terms of the first page of the
spectral sequence from theorem 5.2.
Observe that, as long as the inequality

N —d
k< |y —]

is satisfied, the singular locus of (D¥(f),0) is of strictly smaller dimension than

dim(D¥(f),0), and hence all the ﬁk(fs) are connected. For any o € Sy, the points
o(z) and x can be connected by a path ~, so that [x] — ox[z] = 0. This implies
that the action of S is trivial on the degree zero homology, and hence that the
alternating homology vanishes in degree zero. On the other hand, within the range

N —d N
<k <
’VNn-‘ {NnJ

the ﬁk (fs) may have several components, which allows alternating homology in
degree zero.

The result follows from the computation of the spectral sequence: Each homology
group H,(Z,) has a filtration, whose successive quotients are isomorphic to quo-
tients of subspaces of entries in the r-th anti-diagonal in (5.2). The given bounds

on nonzero homology groups come from the first and the last possible intersection
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of the anti-diagonals with the area of possibly nonzero terms.

G. Penafort Sanchis and M. Zach

2n— N +1
2n— N X e X X
In—N—-d+1|x e e X X X X
2n— N —d X e X X X
2n—N—d—1| x o o X X X
. . (5.2)
: : ° X X X
4 X X ° ° X X
3 X X i e X
2 X X X ° ° X
1 X X ° X
0 e X X X ° ° X
N—d N
123 4 [ E=3

The vertical index in this diagram is ¢, the horizontal one k. We write x for a
zero term and e for a possibly nonzero term.

5.3. Revisiting an example

Consider the deformations fg 5 . of B, given by

(z,u) = (z

2

x4+ ax + b + cx® ),

O

as in example 2.3. The divided differences of the function fo(z,u) = 22 are

fg[l',l'/,u] =T +.’L‘/7 and f2[$,$/7.'1,‘”,u] =1

Therefore D" (f) = 0, for r > 3. The coordinate 2’ may be eliminated, replacing it
by —x. This takes D?(f, ) isomorphically to the plane curve

u? + bx? + et = —a,

and turns the action of the generator of Sy on D?(f, ) into @ — —z. Writing

Ao = HYM(D*(fap.e)) and Ay = HMY(D?(fope)),

the first page of the spectral sequence looks as follows:

X :
Hy(Y) x x x
Hi(Y)| x A x
Ho (Y) Q AO X

X D* 0
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Figure 4. The spaces D? (f) of some singularities adjacent to Bso. Dashed lines
correspond to phenomena which are not visible over the reals.

Now we study the double point spaces of the singularities considered in
example 2.3. These are depicted in figure 4, placed as in figure 1.

Take the map f;/10,—¢,¢ on the top-left corner of the figure. Its double point space
has two connected components C7 and Cs, each containing a 1-cycle. Each of these
components is the image of the other by the generator ¢ € S5. Consequently, for
any point a € C7 and any 1-cycle generating H;(C), the cycles a,0a and ¢,oc
generate Ho(D?) and Hy(D?), respectively. It follows that Hy'(D?) and HPM(D?)
are generated, respectively, by the nonzero cycles a — oa and ¢ — oc. Hence Ay =
Q and A; = Q are responsible for the homology in dimensions one and two we
observed.

Now look at the double spaces of the other maps. Since they are connected, their
homology in dimension 0 is generated by any point, say a € D?. Since a and oa
are contained in the same connected component, they represent the same homology
class. This means that Ho(D?) is Sp-invariant, hence Ag = 0 for all these maps.

For 1-dimensional homology, observe that D? is contractible for By (top-right),
while its stable perturbation (bottom-right) contains a 1-dimensional cycle that
switches orientation with the action of S;. This cycle is the generator of A; =
H{MY(D?) for the mentioned stabilization. Similar considerations can be made for
the remaining singularities in the example. Recall that the difference between the
two stable perturbations relies on the choice of good representatives, not depicted
here.

The argument we gave to study Ag = H{(D?(fap.)) for the left-top example
generalizes immediately to the following result:

PROPOSITION 5.3. A stable perturbation of a map germ C™ — C™, with2 < n <m
has nontrivial 1-dimensional homology if and only if D? has at least one connected
component not fized by S.
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