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Abstract. We consider interval exchange transformations T for which the lengths
of the exchanged intervals have linear rank 2 over the field of rationals. We prove
that, for such T, minimality implies unique ergodicity. We also provide an algorithm
which tests T for aperiodicity and minimality.

1. Introduction
Two results of the paper are related to interval exchange transformations (iets for
briefness) of (rational) rank 2. We also introduce, for an arbitrary iet T, a finite set
C = C(T) which determines completely the minimal and periodic decomposition
of T. An iet is said to be of (rational) rank k if the lengths of exchanged intervals
span a k-dimensional space over Q (the field of rational numbers). The first result
has been announced in [1, Theorem 4.1].

THEOREM 1.1. A minimal rank 2 interval exchange transformation must be uniquely
ergodic.

We derive Theorem 1.1 as a simple corollary of Veech's recent result ([15, Theorem
1.2], see Theorem 3.5 below) which establishes a sufficient condition for a minimal
iet to be uniquely ergodic. This condition is weaker than the condition 'Property
P', used in [1] to show that most (in a sense) of the minimal iets of rank 2 are
uniquely ergodic. The derivation of Theorem 1.1 (the end of § 5) from Veech's result
leads to a significant shortening of my original proof (which will not be published).
Besides, Veech's criterion provides one 'reason' for Theorem 1.1 to be true, while
my first proof uses different arguments for the cases of irrational parameters with
different diophantine properties. (Note that Veech's result has answered in the
affirmative an important, but special case of my question [1, Question 1 in § 3]
stated in the more general context of arbitrary symbolic flows. The answer in the
general case is still unknown.)

The second result of the paper is an algorithm which decides, for a given iet T
of rank 2, whether T is minimal (and hence also uniquely ergodic, by Theorem
1.1). We show how to establish the minimal decomposition of T if T is aperiodic,
and how to find a periodic point of T if such points exist (§ 8). In fact, using our
approach, one can effectively partition the domain of T onto minimal and periodic
components.
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As we show, for an arbitrary iet, it suffices to establishes upper estimates for the
possible periods and, more generally, for the lengths of possible connections (see
the next paragraph and Remark 2.18). We can do it (see Theorem 7.9) for an iet T
of rank 2 when using both ingredients of T: (a) discrete pattern, and (b) irrational
parameter. (For precise definitions see § 5, in particular, (5.2) and (5.3).) An
interesting open question is whether those upper estimates are possible in terms of
(a) only. (For a consequence of the affirmative answer to the above question see
the last two paragraphs of the paper.) As a corollary, we deduce that such properties
as minimality (equivalently, unique ergodicity) and aperiodicity, as well as the
numbers of periodic and minimal components, are stable under small perturbations
of the irrational parameter of an iet of rank 2 (see Theorem 9.1).

In § 2 we set notation and discuss general properties of iets. We introduce the
notions of a T-connection (a finite piece of a T-orbit, connecting the formal
discontinuities of T, see Definition 2.7), associated with a given iet T. We show that
the union of all T-connections C{T) (which must be finite) determines a partition
of the domain of T so that every subinterval of this partition belongs to one (periodic
or minimal) component (Theorem 2.17). Although the fact that every iet can be
decomposed into a finite number of minimal and periodic components is well known,
Theorem 2.17 shows that this decomposition can easily be explicitly obtained
provided that the set C(T) is given. Note that Theorems 2.17 and 2.19 generalize
Keane's sufficient condition (C(T) = 0, stated as Theorem 2.6 below) for the
minimality of an iet (see Keane [6] where the systematic study of iets has been
initiated).

In § 3 we discuss the property of unique ergodicity, state Veech's sufficient
condition for a minimal iet to be uniquely ergodic and state Proposition 3.8 that
this condition is always fulfilled for iets of rank 2. This proposition implies Theorem
1.1. The proof of Proposition 3.8 is provided at the end of § 5. For completeness in
§ 4 we provide a short proof of Veech's criterion (which is close in spirit to Veech's
original proof)- Some of the intermediate results in the proof (Lemmas 4.4, 4.5 and
the Identity (4.2)) are of independent interest and may prove to be useful in the
further study of iets.

In §§ 6 and 7, for a rank 2 iet T, we bound the length of the minimal period and,
in the case of aperiodicity of T, the length of possible T-connections (Theorem 7.9).
Using these bounds, we show (§ 8) how to test T for aperiodicity and minimality.
From the description of the algorithm it follows that the tested properties (aperiodic-
ity, minimality) are stable under small perturbations of the irrational parameter
(Theorem 9.1).

Some open questions are stated at the end.

2. Interval exchange transformations and minimality
Recall the definition of an interval exchange transformation. Let Ar denote the
positive cone in Rr:

Ar = {A=(A,,A2,...,Ar)|A,>0}, r > l . (2.1)
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For AeA r , set /80 = 0, /3 ,= i ; = 1 A, , AT, =[£,_,,/3,)(1< «< r) and X = | J X , =
[0, fir). Let Sr be the set of permutations of the set { 1 , 2 , . . . , r}. Given A e | Ar and
o-eSr, set A' = ( A 2 , . . . , A'r)e Ar, where A^.(I) = A,. Form corresponding /?', and AT,
and consider the map T: X -* X defined by

T(x) = x+yh for xeX,, l<i<r, (2.2)

where

7t = P'^t)-i-Pi-i- (2-3)
Thus T exchanges the semi-intervals X, according to the permutation a: T(X,) =

X'a{i), is one-to-one and right-continuous at any point x e X. T is called the (A, o-)-iet.
We sometimes write (A, a) to denote T. T is said to be of (rational) rank k if
A,, A 2 , . . . , Ar span a fc-dimensional space over Q (the field of rational numbers).

T = (A, cr) is called minimal if the T-orbit

OT(x) = {Tn(x)\n>0} (2.4)

of any point x e X is dense in X = [0, /3r). T is said to satisfy the infinite distinct
orbit condition (idoc) if

(a) O( Pi) are infinite sets for all i = 1,2 r -1,
and (2.5)

(b)

THEOREM 2.6. (Keane [6]). If T satisfies the idoc and if r (the number of exchanged
intervals) is at least two, then T is minimal.

As a corollary of Theorem 2.6, Keane proves that, if all A< are linearly independent
over Q (the field of rational numbers), if r > 2 , and if a is irreducible (no subset
{1,2 k}, 1 < fc< r — 1, is invariant under cr), then T is minimal.

DEFINITION 2.7. For an iet T = (\,<T) denote by D = D(T) the set D =

{)8i, / 3 2 , . . . , Pr-i) of formal discontinuities of T. A finite sequence xlt x2,..., xk of
points in X = (0, fir), k > 1, is called a T-connection if the following two conditions are
met:

(a) xI+1 = T(xi), 1 < i < k - 1 , (2 8)
(b) both xx and xk belong to D = D(T).

Sometimes the set {xl,...,xk} itself is called a T-connection. By C = C(T) we
denote the union of all T-connections.

Clearly C is always finite, and C = 0 if and only if T satisfies the idoc (see (2.5)).
C is a distinct union of its maxima] T-connections. Two points in C belong to the
same maximal T-connection if and only if they belong to the same T-orbit. Note
that C may contain or not contain 0.

PROPOSITION 2.9. Let Tbe an iet which does not satisfy the idoc (so that C = C(T)^0
and therefore C\{0}# 0 ) . Let ct,c2,... ,c, be the list of all points in C\{0} in the
increasing order:

O = c o < c , < c 2 < - • • < c , < c , + 1 = 0 r , r s l ,
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where c0 = 0 and cr+1 = j3r are added for convenience. Let

X = \JYJ, Yj = [cj,cj+1), 0 < j < f .

Then, for anyj = O, 1 , . . . , / , the induced by T (first return) map Tj\ Y}-* Yj is either
the identity map or an iet which satisfies the idoc and is therefore minimal (by Theorem
2.6).

Proof. The induced map 7} is known to be an iet of s intervals, 1 < s < r+2 (where
r is the number of the intervals exchanged by T; see e.g. [3, Ch. 5.3]). We may
assume that s>l because otherwise 7} is the identity map.

Denote by B} the set of discontinuities of 7}:

B,c(c,,c,+1)c:Y,., |B,|>1. (2.10)

For yeYj, denote by n(y) the minimum positive integer such that T"(y)e Y}.
Thus Tj(y) = Tniy)(y). For b e Bj9 at least one of the following three conditions is
satisfied:

(a) Tk(b)eD for some k, 0<k<n(b),
(b) Tk(b) = cj+l for some k, ^<k<n(b), (2.11)
(c) Tj(b) = T"w(b) = Cj*0.

For b e Bj, let « = u(b) = min U, where the set

U=U(b) = {k>0\Tk(b)eCvD} (2.12)

is easily seen to be non-empty in each of the cases (a), (b) and (c). Moreover, the
inequalities

0<u = u(b)<n(*>), (2.13)

clearly take place. (Note that (b) implies _/<* —1, cj+l&C, and that (c) implies

For be Bj, the relation

Tu(b)eD (2.14)

holds (for, if u = 0, then beCvD but b& C since BjnC = 0, and if u> 1, then
Tu(b) e C u D but Tu~\y) iCuD).

We have to show that 7} satisfies the idoc. Assume to the contrary that there
exists a 7}-connection yi,y2,-- • ,ym, where wi>2 and both yx,ym belong to Bj.
Then «(>»,), n(yt) are defined for both i = 1, m. It is clear that

ym=Tk(yi), (2.15)

for some k>n(yt). From t> = fc — M(>-1), p = u(ym) + v, Xi = Tu(yi\y1) and x2 =
Tu(y-\ym).

We claim that »>1 . Indeed, if u(yx)< n(y{), we obtain u = fc-M(j1)> fc-n^Js
0. Otherwise (if u(y{) = n(yx), see (13)), we observe that the only possibility in (11)
for b = yt is (c), and therefore y2 = 7}(^,) = c, g B,, whence m > 3 and fc > n(.yi) (see
(15)), and the required inequality follows: v = k-u(yl) = k-n(yl)>l.

Thus we have 1 ̂  v ̂  p. By (14), both x,, x2 belong to D. One easily verifies that
x2= Tp(xt) and that ym = r"(x1). It follows that ym e C, which is impossible since
ym e Bj and BjnC = 0 . The contradiction completes the proof. •

https://doi.org/10.1017/S0143385700004521 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004521


Rank two interval exchange transformations 383

The following theorem follows directly from Proposition 2.9.

THEOREM 2.16. Let T,C = C(T), f > 1, Y} and 7](0<j< t) be as in Proposition 2.9.
For anyxeX = {J Yj, let A(x) be the set

(see 2.4) and define the component ofx to the set

comp(x) = U YjezX.
jeA(x)

The relation z e comp (x) is an equivalence relation on X(x, z e X). Thus comp (x)
is the equivalence class corresponding to x. For any fixed x e X, one of the two possibilities
takes place:
(1) x is periodic (relative to T) with a period p> 1. Then comp (x) is a distinct union

of p intervals Yj, and T cyclically exchanges those intervals.
(2) x is aperiodic. Then OT(x) is dense in comp (x). Moreover, OT(z) is also dense

in comp (x) = comp (z), for any z e comp (x).

Remark. The results of this section clearly remain true if D (in Definition 2.7) is
taken to be the set D' of actual discontinuities of T (rather than of all formal
discontinuities), or any finite set containing D'.

A component comp (x) is called periodic (respectively, minimal) if x is periodic
(respectively, aperiodic) relative to T. (Note that the periodicity property of x
determines which one of the two possibilities in Theorem 2.16 takes place.)

Theorem 2.16 can be restated in the following way.

THEOREM 2.17. The set C(T) determines a partition of the interval X = [0, )8r) so that
every subinterval of this partition belongs to one (periodic or minimal) component.

As we have noted in the Introduction, Theorem 2.17 allows us to determine the
partition of X into minimal and periodic components, provided that the set C =
C(T) (which must be finite) is known. First we consider the partition X = (J Yjt

Yj = [Cj,Cj+1), 0<j<f, of X determined by C (see notation in Proposition 2.9).
Next we define the ordered graph G with the set of vertices G = {0 ,1 , . . . , t}. The
ordered pair {u,v}eGxGis said to form an arrow in G if T( Yu)n Yv ^0.

By Theorem 2.17, each of the subintervals Yj belongs as a whole to one (periodic
or minimal) component. We thus obtain a one-to-one correspondence between the
(minimal and periodic) components of X and the connected components of the
graph G. Those components of G which form distinct cycles correspond to periodic
components of X, the rest of the components of G correspond to the minimal
components of X.

Remark 2.18. Let T: X -* X be an iet and assume that some upper bound L on the
lengths of all possible T-connections is known. Then one can find all T-connections
(simply computing the T-orbits of the discontinuities pJt l < ; < r - l , up to the
length L). Following the procedure described in the preceding two paragraphs, one
can effectively find the decomposition of X into minimal and periodic components.

Let <&(T) be the family of all maximal T-connections and 4>i(r)<= 4>(T) be the
subfamily of non-periodic maximal T-connections (which do not form a T-orbit).
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Every minimal component which is not exactly of the form Yo = [0, c,) must contain
a maximal non-periodic T-connection, and every such T-connection contains at
least two discontinuities in D. Therefore the number of minimal components does
not exceed card (<&,(T)) + l < ( r - l ) / 2 + l = (r+l) /2, where card(- • •) stands for
the cardinality of the set in brackets. If, moreover, the permutation cr in T = (A, <r)
is irreducible (no subset {1,2, . . . ,k}, l < f c < r - l , is invariant under cr), then
Yo = [0, Ci) cannot be invariant under T, and the number of minimal components
does not exceed ( r - l ) / 2 . (To make the estimate more accurate, r could be taken
for the number of actual discontinuities only, rather than of all formal discontinuities
ft.)

In particular, every aperiodic iet (A, cr) of 4 intervals with irreducible a must be
minimal. Similar arguments lead to the following result (which strengthens Keane's
minimality criterion, Theorem 2.6).

THEOREM 2.18. If (A, cr) has at most one maximal T-connection, and if or is irreducible,
then either T is minimal, or all points of X are periodic with the same period and the
T-orbit of 0 contains all (formal) discontinuities of T.

3. Minimality and unique ergodicity
An iet T: X -* X is said to be uniquely ergodic if there exists only one Borel
probability measure on X: the Lebesgue measure. The unique ergodicity of T implies
the minimality; the converse is true for r = 2,3 (r is the number of exchanged
intervals), but not for any r > 3 . The first counterexample (with r = 5) is due to
Keynes and Newton [8]; it is based on the work of Veech [11]. Keane [7] produced
a counterexample with r = 4, the smallest possible. Note that the minimality (even
the aperiodicity) of T implies that the number of T-invariant normalized ergodic
measures on X is finite. (The best estimates are given in [5] and [13]; see also [6],
[10], [3, Section 4]. In [2] the finiteness of the set of ergodic measures is established
in the more general setting of symbolic flows with a linear block growth.)

Masur [9] and Veech [14] independently proved that if ere Sr is irreducible, then
for Lebesgue almost all AeA, the (A, o-)-iet is uniquely ergodic (Keane's conjecture).

Let T: X -* X be an iet, T = (A, cr). Denote by D the set

(3.1)

of formal discontinuities T (see § 2 for notation). For all n > 1 define

A, = ( l J T-T>)u{0}. (3.2)

Each set Dn defines a partition of X = [0, pr):

O = po(n)<pl(n)<- • •</3r(n)_1(«)<)8r(n)(M) = /3r, (3.3)

where /3j(n), 0< i< r (n ) , are elements of Dn. We write en = en(T)>0 for the
minimum separation of this partition:

<r(/j)). (3.4)
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THEOREM 3.5. (Veech [15]). Let Tbe a minimal iet which is n'ot uniquely ergodic. Then

limnen(T) = 0. (3.6)
n-*oo

Theorem 3.5 provides us with a sufficient condition for a minimal iet to be uniquely
ergodic:

limsupnen(T)>0. (3.7)
n-»oo

Note that in [1] another sufficient condition, called 'Property P', has been intro-
duced and applied
(a) to obtain a new proof of Keane's conjecture (see the second paragraph in this
section),
(b) to show that 'most' (in a sense) of the minimal rank 2 iets satisfy Property P
and therefore are uniquely ergodic,
(c) in the study of finite group extensions of irrational rotations,
(d) in the study of 'rational billiards' dynamical systems.

Veech's (sufficient) criterion for unique ergodicity (see (3.7)) turns out not only
to be easier to formulate or verify than Property P, but it is also weaker: the condition
(3.7) is always fulfilled for rank 2 iets (although not all rank 2 iets satisfy Property P).

PROPOSITION 3.8. For every rank 2 iet the condition (3.7) holds.

Thus the condition (3.7) seems to be the 'right' one to be used in the framework
of the topics studied in [1]. The analog of Metric Theorem (see § 5 in [1]) becomes
trivial if Collective Property P (Definition 5.1 in [1]) is replaced by the condition

lim[liminf u(n,e)] = 0. (3.9)

The proof of Proposition 3.8 is supplied at the end of § 5. It is similar to that of
Theorem 4.5 in [1] (which establishes Property P for 'most' of the iets of rank 2).

4. Proof of Veech''s Theorem 3.5
Let T = (A, o-) be a fixed iet, let D = D( T) = {/3,, 0 2 , . . . , /3r_,} be the set of formal
discontinuities of T (for notation see the beginning of § 2). For « a l , define
Dn = Dn(T) and en = en(T) as in (3.2) and (3.4). (The set Dn contains the formal
discontinuities of T" and the number 0, and en(T) is the minimum separation of
the partition Dn. Finite subsets of the set X = [0, fir) are identified with the partitions
of X they determine.)

For positive integers m, n define Dmn = Dm(T)uDn(T" ' ) and let emn be the
minimum separation of the partition Dmn. Observe the relations

(a) Dn(T-1)=Tn(Dn(T))
m,n>0 (4.1)

(b) Dm + n(T)=T-"(Dm,n).

It is clear that T~" is linear on each subinterval of Dmn and that T" is linear on
each subinterval of Dm+n, even on each subinterval of Dn (all intervals are assumed
to be left closed and right open). Therefore T" makes a one-to-one correspondence
between the subintervals of Dm+n and Dm n. In particular,

£m,n = em+n, for m, n > 0. (4.2)
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By similar arguments, (4.1, a) implies

en(T-1), forn>0. (4.3)

Recall (Definition 2.7) that C = C{T) denotes the union of all T-connections. C
is always a finite set.

LEMMA 4.4. Let « > 1 , let Y = [u, v) be a subinterval of X = [0, (2r) and assume
that \Y\<en and that Y n C = 0 (| Y\ stands for the length of the interval Y). Denote
byp the maximal integer, O s p < n , for which all the maps TJ, O^j^p, are continuous
on Y. Denote by q the maximal integer, Osq<n, for which all the maps T~J, 0 ^ j ^ q,
are continuous on Y. Then p + q>n-l.

Proof. By definition of p and q, there are points a e Dn Tp{ Y) and j8 €
. Clearly, •y=r- ( p + 9 ) (a) belongs to Dp +,+ 1. Since j8eD(T-1))T-1()3)eD,.

So that 8 = T~'(p) e D either for i = 1 or for i = 2.
Assume that j8 = y. Then both a and 8 belong to D and Tp+q+i(8) = Tp+q(P) =

Tp+q{y) = a. Therefore Tq+i(8) = Tq{ j8) e V belongs to a T-connection (connecting
8 and a) , contrary to the assumption Yr\C = 0 . We conclude that /$ and y are
different points of Dp +,+ 1u D ( r ~ ' ) c A>+,+i,,, so that, in view of (4.2), |/3--y|s:
£P+<;+I,I

 = £p+q+2- On the other hand, j8 and y belong to the interval T~q( Y) of the
length \Y\, so that e n > | y | > | j 8 - y | = ep+,+2- Therefore n < p + q + 2. •

LEMMA 4.5. For any xe X and for any integer n either T"(x) = xor \ T"(x) — x\ s 6|n|+i.

Proof. We may assume that n > 0 and that d = T"(x) - x # 0. We have to show that
| T"(x) - x \ > en+1. Let V = [u, v) be the subinterval of Dn which contains the point
x. Clearly T" is a linear isometry on Y and therefore T"{u)-u = d. Because ueDn,
u=T~k(a) for some non-negative integer fc</i-l and some a e 0,(7"). Clearly
then T"(u)eDn_k(T~l) and therefore |d| = \T"(u)-u\>ek+l n_fc = en+1, in view of
(4.2). ' •

From now on we assume that T=(A, a) is minimal. It follows from (3.7) that
for some e > 0 the set

S(e) = { n > 0 | n £ n > e } (4.6)

of integers is infinite. Fix such an e and the corresponding set S = S(e). We have
to prove that T is uniquely ergodic. Denote by fi Lebesgue measure on R.

LEMMA 4.7. T is ergodic relative to fj..

Proof. Let A c X be a measurable set such that T(A) = A. We have to prove that
n(A) = 0 or 1. For an arbitrary 8 such that 0< 5<min (1/2, e), there are y > 0 and
a measurable set K c X with the following properties: fi{K)> / 3 r - 5 = fi(X)-8
and the relation

d(J) = vL(JnA)/n(J)£[8,l-8] (4.8)

holds for every interval / satisfying J n K ̂  0 and M ( / ) < y.
Fix a subinterval / of the partition C = C(T) (see Definition 2.7). Select an integer

n so that « + l € 5 = 5(e) and en+1<min (y, |/|), where |/| = /*(/). (The minimality
of r implies limk̂ oo ek = 0.) Let Y = [M, U) be a subinterval of / of the length en+1.
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Let p, q be defined as in Lemma 4.4. Then p + q>n. (We use the fact that (u, t>)<= /
is disjoint with C.) By definition of p and q, the sets Tk(Y), -q<k<p, form (left
closed and right open) intervals of equal lengths, \Tk(Y)\ = \Y\ = en+1. Consider the
set

M= U" Tk(Y). (4.9)
k=-q

All the intervals in the union (4.9) are pairwise disjoint by Lemma 4.5. It follows
that fi(M) = (n + l)en+1>e>8, and hence KnM*0 since fi(K)>n(X)-8.
Therefore, for one of the intervals Y' = Tk( Y) in the union (4.9), Y' n K * 0 . Since
| Y'\ = | Y\ = en+1 < y, by definition of K, the interval J = Y' satisfies (4.8). Therefore,
so does the interval J = Y, because A is invariant under T. Since d{Y) depends
continuously on the endpoint of Y, we may assume (replacing A by its complement
X\A if needed) that d( Y) < 8 (equivalently, fi(YnA)< 8en+i) holds for all subin-
tervals Y of / with | y| = en+1.

Clearly the interval / can be covered by m subintervals, each of length en+1, where
m<|/ | /en + I + l<2|/ | /en + 1. It follows that /j.(lnA)<m8en+1 <2\l\8. We conclude
fi(lnA) = 0 because 5e(0, min (1/2, e)) is arbitrary. The minimality implies

0. •

Let i) be any ergodic T-invariant Borel probability measure. For n > 1, x e X and
a subinterval YcX, denote by N(Y,n,x) the number of i = 0, l , . . . , n - l for
which T'(x)e Y. There exists a point xeX (generic for 77) such that

lim

for every subinterval Y<=-X. On the other hand, by Lemma 4.5, N(Y,n,x)<
l + \Y\/en. For all n e 5 = S(e) (see (4.6)) we obtain N( Y, n, x)/n < | Y\/e + 1/n and
therefore TJ( Y) < | Y\/e = /i( Y)/e, so that T\ is absolutely continuous relative to (JL.
In view of Lemma 4.7, 17 = ft. The proof of Theorem 3.5 is completed.

5. Rank two interval exchanges
We shall write rank (T) = n to denote the fact that the rational rank of T is n (see
the Introduction). Given an iet T = (A, a), rank (T) = 2, A € Ar and creSr (see § 2),
the system of equations

A.^Aia + Aj/3, l < i < r ,

has a (non-unique) solution (A,, A,, A2, A2,. . . , Ar, Ar, a, j8), where A,, AjSZ (the
set of integers) and x, y € R (the set of reals). By change of scale (and the signs of
A, if necessary) one can make /3 = 1 and a >0. Thus we obtain

A,=A,a+Aj, l < i < r , (5.1)

where A,, A, e Z and a > 0 is irrational since rank (T) = 2. Clearly T is completely
determined by its discrete pattern

(A1,A1,A2,A2,...,Ar, Ar, o-) (5.2)

and by its irrational parameter a > 0:

T = (A,, A,, A2) A2,. . . , Ar, Ar, <r; a). (5.3)
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Consider the set
«eZ}<=R. (5.4)

Since a is irrational, the integers u = 5,(M) and u = S2(w) are uniquely determined
by aeL(a) . For every T defined by (5.3), all the quantities A,, j3f, y,, A|, /3|, en,
as well as the points in the sets Dn and Dm „ (see § 2, (3.2) and the beginning of
§ 4), belong to L(a). Denote

Al, max |%|), (5.5)
l i

where 0, = S,(/3,) and y, = S,(y,).
By induction on n one easily verifies that |M| S «fco for any ue Dn. This immediately

implies the inequality
en>||a,2nfc0||, (5-6)

where by definition
||a,m||= min \\ia\\; m = l , 2 , . . . , (5.7)

and | | j | | denotes the distance from yeU to the closest integer.
For every irrational aeU and n > 1, it is well known from the theory of continued

fraction representations that the relation

holds, where qn stands for the nth denominator in the sequence of convergents
Pn/<ln to a. Let s(n) = [(qn — l)/2k0], where, for real y, [y] denotes the largest integer
less than or equal to y. Then the inequalities

hold for all n large enough (such that qn > 1 + 2fco).
Since lim,,^ s{n) = +oo, we conclude that

limsupnen(T)>l/(8fc0)-
n-*oo

This completes the proofs of Proposition 3.8. Now, Theorem 1.1 in the introduction
follows immediately from Veech's criterion of unique ergodicity (3.7).

6. Upper estimates on the length of minimal period
Let T = (A, a) be a fixed iet. For every n > 1, T" is also an iet and we shall always
assume that the exchanged intervals

Xj(«) = [)31_1(n),)8I(«)), l < i < r ( " ) , (6.1)

are determined by the partition Dn = Dn(T) of the interval X = [0, /3r) (see (3.2)),
even if T" is continuous at some of the points in Dn. We employ notation similar
to that in the beginning of § 2.:

(a) rn=(A(/i),o-(n)), A(n) = (A1(n),A2(n),...,Ar(n)(«))GAr(n),
and (6.2)

(b) )80(«) = 0, p,(n)=Z \j{n), l< /<r ( / i ) .
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Thus A,(/i) = |X,(n)|, /3r = /3r(n)(«) = jX|, and r(n) denotes the number of the
intervals (6.1) exchanged by T".

For every n > l , denote by y{n) the function

{y{n)){x) = y{n,x)=Tn{x)-x, (6.3)

and by y,(n) the constant value of this function on the interval Xt(n):

T"(x) = x + yi(n), for xeX&n), l<j<r(n), (6.4)

where y,-(n) = j8('o.(n))(l)_x(n) - /3,-_1(/i), by analogy with (2.3). The following identities
are self-evident:

(a) y(m + n,x) = y(m, T"x) + y(n,x), m , n > l , x e X
and (6.5)
(b) y,(l) = y,, l<i==r.

Recall that en = en(T) stands for the minimum separation of the partition Dn:

en=min(A,(n)|l < i < r ( n ) ) (6.6)

(see (3.4)).
Now assume that T = (A, o-) = (Als Al5 A2, A2 , . . . , Ar, Ar, a; a) is of rank two

(see § 5). Then all the values A,(n), f}t(n), y,(n), y(n, x), en,... belong to L(a) (see
(5.4)). Therefore, for any of these values u, the integers w = Si(u) and u = S2(u) are
denned.

LEMMA 6.7. Assume that, for some m & 1, either y(m, x) > Oforallx e X, or y(m, x) <
OforallxeX. Then Tis aperiodic (does not have periodic points; y(m,x) stands for

Proof. Assume to the contrary that Tp(x) = x, for some x e X and p > 1. It follows
from (6.5, a) that

P

y(mp, x) = t y(m, Tm('~l)(x)) * 0,

and hence Tmp(x) — x = y{mp, x ) ^ 0 , a contradiction with the assumption
T"{x) = x. D

Let lto = W r ) be defined by (5.5). Clearly k<>> 1.

LEMMA 6.8. Under the assumptions of Lemma 6.7, the length of any T-connection
does not exceed (m2 + 2m)ko.

Proof. Let x , , x 2 , . . . , x n be a T-connection (see Definition 2.7) and assume that
n>(m2 + 2m)fco+l. The contradiction is obtained as follows.

Denote u = [(n- l) /m] and v = n -um -1 ([y] denotes the maximal integersy e
U). Clearly u>(m + 2)ko and 0 < u < m - l . It follows from (6.5, a) that

l

i y(m,
i = l

Since |y(l, x)| < fc0 for all x 6 X, it follows that

"f y(i,x,)
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Therefore

\xn - x , | > \xum+l - x , | - |xn -xu m + 1| > u - (m - \)ko>3fco> 2fco,
which is impossible since |xi|, |xn| do not exceed kf, by definition of fco (see (5.5)
and (2.8, b)). D

For every n>\, define the partition of X = [0,/Jr):

X = X+{n)vX_(n)uX*(n), (6.9)

where X+(n) = {xeX|f(n, x)>2fco}, X_(n) = {xeX|r(n,x)<0}, X*(n) =
{x€X|0<f(n, x)<2fco-l} and fco is as above (see (5.5)).

LEMMA 6.10. Assume that for some m > 1 X^{m) = 0 . 77ie« each of the sets X+(m),
X_(m) is invariant under T.

Proof. Denote xn = S,( r"(x)), x e X, n > 0, and observe that y(m, T(x)) = xm+, - x , ,
that y(m, x) = x m -x 0 , and that |xn+I-xn|<fco for all «>0. The lemma follows
immediately from the inequality

\y(m, T(x))-f(m,x) |< |xm + 1-xm| + |x1-x0|s2/c0. D

LEMMA 6.11. Assume that for some m > l XJ|!(m) = 0 . 77ien Tis aperiodic, and the
length of any T-connection cannot exceed (m1+2m)k0.

Proof. The arguments used in the proofs of Lemmas 6.8 and 6.10 work under the
present conditions. •

In the following two lemmas we bound the lengths of minimal periods and the
lengths of T-connections, in terms of the growth of the sum Z l s , s H e,(T).

LEMMA 6.12. With the notations as above, assume that

l), (6.13)

for some H > 1 (| Y\ stands for the Lebesgue measure of the set VcR). Then either
T possesses a periodic point xe X of period < H or there exists a positive integer m<H
such that Xij.(m) = 0.

Proof. Assume that X%(i) # 0 for all i = 1,2,..., H. Since every set X^(i) is measur-
able relative to the partition Dt, it follows from the definition of e, (see (3.4) or
(6.6)) that IXJ0IaS | = e,(T). Denote

It is clear that
**(0= U

1 3/32*0

Therefore the inequality

U i •

holds, where the indices i a n d j run over the sets { 1 , 2 , . . . , H} and { 0 , 1 , 2 , . . . , 2fco

1}, respectively. For some j=j0, the inequality
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is fulfilled. It follows that, for some xoe X, the cardinality of the set

S = {ie{\,2,...,H}\xoeY(i,jo)}

is at least |X| +1. For every ie S, y(i, x0) = Siiyii, x0)) =j0, whence

where y(i, xo) = S2(y(i, x0)) (see (5.4)). Therefore, for every pair u, veS, the
inequality

\y{u, x0) - y(v, xo)\ = \y(u, x0) - y(v, xo)\ = | Tu(x0) - Tv(x0)\ < \X\

takes place. Since the cardinality of 5 is at least |X| +1 , and since all y(i, x0), ie 5,
are integers, there exists a pair of different u,veS such that y(u,xo) = y(v,xo).
Then T"(x0) = Tv(x0), whence T"(x0) = x0 forp = \u - v\. Clearly 1 < p < H-1. This
completes the proof of the lemma. •

LEMMA 6.14. Under the conditions of Lemma 6.12, either Tis aperiodic, and the length
of every T-connections does not exceed (H2 + 2H)ko, or there exists a T-periodic point
xeX of period < H.

Proof. Assume that there are no T-periodic points of period < H. Then, by Lemma
6.12, for some positive integer m < H, the relation X^m) = 0 holds. Therefore, by
Lemma 6.11, T must be aperiodic and (m2+2m)ltc< (H2 + 2H)kois an upper bound
on the lengths of possible T- connections. •

7. Asymptotic growth of the sum Z l s ( s H et.
We shall see that Zi^ i s H e,(T)->oo as H-*oo. Moreover, we shall establish a lower
estimate on the growth of this sum, in terms of arithmetical data on the irrational
parameter a (Lemma 7.8). This allows us to find H satisfying (6.13), thus providing
(see Lemma 6.14) an upper estimate on the lengths of possible periods and connec-
tions (Theorem 7.9).

It follows from (5.6) (see also (5.7) for notation) that

I e,-> I ||«,2«*o||. (7.1)
isisH lsjsH

Let a = [a0, at, a2,...] be the continued fraction representation of a (recall that
a is an irrational positive number, and thus the integers an = a n ( a ) > l and the
sequence of convergents pn/qn are defined). The denominators qn of the convergents
satisfy the recurrence

«n+i = an+i9-. + 9n-i, n^O, (7.2)

where by definition q_, = 0 and qo=\. The sequence \\a, k\\, fcs 1, is non-increasing
(see (5.7) for notation), and, for k>l, \\a, k\\> \\a, k + l\\ if and only if k = qn-l
for some n > 1. For every n > 1 the following inequalities are fulfilled:

1) < ||a, qn\\ = \\a, qn+l - 1 | | = ||a<jn|| = \qna -pn\ < l/qn+l (7.3)

The facts quoted in the preceding paragraph are basic in the theory of continued
fraction representations of real numbers.
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LEMMA 7.4. For every n >0, the following inequality holds:

I ||a,i||>l/4. (7.5)

iVoo/

I ||a, i|| s ( 9 n + 2 - ^ ) | | a , ( 9 n + 2 - 1)|| >(qn+2/2)(l/(2qn+2)) = 1/4.

We used the inequality (7.3) and the fact that qn+2>2qn. D

LEMMA 7.6. For every fc> 1, the following inequality holds:

Proof. Sum up (7.5) for n = 0 ,2 , . . . , (2k - 2). •

LEMMA 7.7. Let bx, b2,... be a non-increasing sequence of positive numbers. Let n
and u be positive integers. Then

I 6ta&l/u("(_z\)-&i.

Proof.
n u(n + l) /u(n+l) u \ /u(n + \)

V h — 1 / I V h V h l 1 / 1 V

LEMMA 7.8. Let R>0 be real, let t>Sk0L+4k0 be an integer, denote H =
t(92«~l)/(2feo)] (where [y] denotes the largest integer<yeU). Then the inequality

lsisH

takes place.

Proof. We apply in succession the inequality (7.1), Lemma 7.7 (with u = 2fco and
bt = ||a, i\\) and Lemma 7.6:

||
lsisH lsisH i = l

>t/(Sko)-l/2SiR. a

THEOREM 7.9. Let t>l6(ko)2\X\(\X\ + l) + 4ko be an integer, denote H =
[(<72<-l)/(2fco)]. Then either T is aperiodic and the lengths of all T-connections
are < (H2 + 2H)ko or there exists a T-periodic point x e X of period < H.

Proof. Taking R=2k<i\X\(\X\ + \) in Lemma 7.8, we obtain inequality (6.13). It
remains to apply Lemma 6.14. •

8. Tests for aperiodicity and minimality
Through this section we assume that a rank 2 interval exchange transformation T
is given in the form (5.3). We shall describe an algorithm to test T for aperiodicity
and minimality.

One computes the integers ko= fco(T) > 1 (see (5.5)), t (the minimal integer which
is > 16(feo)2|AT|(|Ar| + l)+4feo) and H = [(q2l - l)/(2*o)] (see Theorem 7.9; qn stands
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for the «-th denominator in the sequence of convergents pn/qn to a.). Note that
inequality (6.13) holds (see the first sentence in the proof of Theorem 7.9).

For m = 1,2,... in succession, one tests the following two conditions:
(cl) Tm{x) = x, for (at least) one of the discontinuities x = /3,-(l <7 < r - 1 ) of T.
(c2) X*(m) = 0(see(6.9)).

One stops testing when one of the conditions, either (cl) or (c2), is fulfilled.
Lemmas 6.12 guarantees that this happens when m = mo< H. If (cl) is fulfilled,
then T has a periodic point. If (c2) is fulfilled, then, by Lemma 6.11, T is aperiodic.

One may test only the condition (cl) for m = l,2,...,H. If the condition fails
for all m, one concludes (in view of Lemma 6.14) that T is aperiodic. This method
is easier to describe, but it is normally less effective if T is aperiodic since H could
be very large.

The condition (c2) means that y(m, x)£{0,1, . . . , 2fco-l}, for all xeX. This
condition in the above described algorithm can be replaced by the weaker one:
(c3) There is a set S of 2k0 successive integers containing 0 and such that y(m, x) & S,

for all x e X.
If T is found to be aperiodic, one has an upper bound ((m0)

2 + 2mQ)k0 one the
lengths of possible T-connections (see Lemma 6.8). (If the value of m0 is not known,
the a priori upper estimate {H2 + 2H)k0>{(m0)

2 + 2m0)k0 on the lengths of possible
7"-connections can be used). Given an upper bound on the lengths of possible
T- connections, the decomposition of X onto minimal and periodic components can
be found (see Remark 2.18).

We have proved slightly more. If the rank two iet T is found to be aperiodic, the
problem of minimal decomposition of T can be effectively solved. In particular,
one can decide whether T is minimal (equivalently, uniquely ergodic).

Note without proof that in the remaining case (T has periodic points) the problem
of finding an upper bound L on the lengths of possible T- connections can also be
effectively solved using our approach. From the above discussion it is only clear
that the length of the minimal period does not exceed H.

9. Concluding remarks
Assume that a rank 2 interval exchange transformation T is given in the form

(5.3). T is completely determined by its discrete pattern (5.2) and its irrational
parameter a > 0. The following theorem follows from the algorithm presented in
the preceding section.

THEOREM 9.1. The following properties of Tare not affected by small perturbations of
the irrational parameter a:
(1) aperiodicity;
(2) minimality (equivalently, unique ergodicity);
(3) the numbers of minimal and periodic components.

Proof. We can test T for the Properties (1) and (2) in the way described in the
preceding section. Clearly the results of the tests will not be affected by small changes
of a. The above argument works also for (3) assuming that T is aperiodic.
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In the remaining case (T has periodic points) similar arguments can be used to
prove that the numbers of minimal and periodic components are invariant under
small changes of a (we omit the details; see the last paragraph in §8). D

One can try to generalize Theorem 9 for the case rank( T) = n > 2 (so that T is
determined by its discrete pattern and by (n-1) linearly independent over Q
parameters). However, the obvious version of such generalization turns out to be
wrong already for n = 3.

We have established an upper bound on the length of minimal period and (in
aperiodic case) on the lengths of possible T-connections (Theorem 7.9). These
bounds depend only on fco, \X\ and the irrational parameter a. We conjecture that
such bounds are possible in terms of the discrete pattern of T only (that is, that
the bounds may be independent of a). The conjecture would imply, for a given
discrete pattern of a rank 2 iet, that with a monotonic change of a, the validity of
the Properties (1) and (2) in Theorem 9.1 changes only a finite number of times.
Our results imply that the changes are possible only at rationals.

Another interesting problem is whether spectral properties of a rank 2 iet T (like
weak mixing) are also stable under small perturbations of the irrational parameter.
More generally, one would like to have a systematic way to examine spectral
properties of T (assuming that T is minimal).
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