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1. Introduction. For various discrete commutative rings a concept of uniform
distribution has already been introduced and studied, for example, for the ring of rational
integers by Niven [9] (see also Kuipers and Niederreiter [2, Ch. 5]), for the rings of
Gaussian and Eisenstein integers by Kuipers, Niederreiter, and Shiue [3], for rings of
algebraic integers by Lo and Niederreiter [4], [7], and for finite fields by Gotusso [1] and
Niederreiter and Shiue [8]. In the present paper, we shall show that a satisfactory theory
of uniform distribution can also be developed in a noncommutative setting, namely for
matrix rings over the rational integers.

In general, given a sequence of elements of a discrete ring, one considers the way in
which they are distributed among the residue classes modulo a left ideal of finite index. If
each residue class contains asymptotically the same share of terms, the sequence is called
uniformly distributed modulo the left ideal. In case this property is satisfied for all left
ideals of finite index, the sequence is said to be (left) uniformly distributed in the ring.
Analogous notions can, of course, be based on right ideals. In order to obtain the explicit
character formulas needed for effective versions of the so-called Weyl criterion, one has to
work with a concrete ring. Matrix rings over the rational integers have been chosen since
they form standard examples of noncommutative rings but still allow a fairly rich theory.

2. Definitions and preliminaries. For a ring R and a positive integer m, let Matm(R)
denote the full matrix ring of m x m matrices over R. We collect some information about
the matrix ring Matm(Z), where Z is the ring of rational integers. Proofs of the following
two results can be found in Newman [5, Ch. II].

LEMMA 2.1. For any A in Matm(Z), there exist two unimodular matrices U and V such
that UAV is a diagonal matrix.

LEMMA 2.2. Every left ideal of Matm(Z) is principal.

If a matrix AeMatm(Z) is given in terms of its entries ai(, l ^ i , j^m, we write
A = (ay). The diagonal matrix with entries bu...,bm on the main diagonal is denoted by
diag^t , . . . , bm). For a nonsingular G e Matm(Z), the following description of a complete
residue system modulo G (i.e., modulo the principal left ideal generated by G) was given
by Shiue and Hwang [10].

LEMMA 2.3. Let G £ Matm(Z) be nonsingular, and let U and V be unimodular matrices
such that UGV is a diagonal matrix, say UGV = diag(g!,..., gm). Then {(rit) V"1: rti e Z,
0 ̂  riy -< ] g,-1 for l < i , / < m } forms a complete residue system of Matm(Z) modulo G.
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COROLLARY 2.4. For a nonsingular G e Matm(Z), the cardinality of a complete residue
system of Matm(Z) modulo G is |detG|m.

Thus, the principal left ideal generated by a nonsingular GeMatm(Z) is of finite
index in Mat^Z). On the other hand, it is easily seen that the principal left ideal
generated by a singular GeMatm(Z) is not of finite index in Matm(Z).

Let {X,,}, n = 1,2,. . . , be a sequence of elements of Matm(Z). Then for a positive
integer N and B, GeMatm(Z) we use A(N, B, G, {Xn}) to denote the number of n,
l<n<iV, such that Xn = B mod G, i.e., such that Xn — B lies in the principal left ideal
generated by G.

DEFINITION 2.5. Let GeMatm(Z) be nonsingular. Then the sequence {Xn}, n =
1,2,. . . , of elements of Matm(Z) is called uniformly distributed modulo G (abbreviated
u.d. mod G) if

holds for every B
It is clear that it suffices to require (1) for every B from a complete residue system of

Matm(Z) modulo G.

DEFINITION 2.6. The sequence {Xn}, n = 1,2,. . . , of elements of Matm(Z) is called
uniformly distributed in Matm(Z) (abbreviated u.d. in Matm(Z)) if it is u.d. mod G for all
nonsingular GeMatm(Z).

LEMMA 2.7. If the sequence {X,,} of elements of Matm(Z) is u.d. mod G, then the
following holds.

(i) {Xn+X} is u.d. mod G whatever the choice of XeMatm(Z).
(ii) {X,,+h} is u.d. mod G for every nonnegative integer h.

(iii) {XnV} is u.d. mod UGV for any unimodular U, VeMatm(Z).

Proof. All three properties follow easily from the definition.

An equivalent characterization of a u.d. sequence mod G is the following one.

THEOREM 2.8. The sequence {Xn} of elements of Matm(Z) is u.d. mod G if and only if
for any two matrices B, CeMatm(Z) we have

. A(N,B,G,{Xn})
H Z 1 (2)

Proof. The necessity is obvious. For the proof of the sufficiency, we fix CeMatm(Z)
and write (2) in the form

A(N, B, G, {Xn}) = A(N, C, G, {XJ)+o(A(N, C, G, {Xn})).
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If 3 is a complete residue system of Matm(Z) modulo G, we get

N= £

and since 0<A(N, C, G, {Xn})<N, we conclude that

There will be several occasions to exploit relations to uniform distribution of
sequences of lattice points. For this reason, we recall the relevant definitions as given by
Niederreiter [6]. For a positive integer fc, let Zk be the set of fc -dimensional lattice points.
Let m = (mu . . . , mk) be a fc-tuple of natural numbers. For elements a = (a-i,..., ak) and
b = (bi,...,bk) of Z \ we write a = bmodm if aj^fymodm, for l</<fc . Given a
sequence {xn}, n = 1,2,. . . , of elements of Zk and a positive integer N, let
A(N, b, m, {xn}) denote the number of n, B n < N , such that xn=bmodm.

DEFINITION 2.9. Let m = (m1,..., mk) be a fc-tuple of natural numbers. Then the
sequence {xn}, n = 1, 2,..., of elements of Zk is called uniformly distributed modulo
(m, , . . . , mk) (abbreviated u.d. modCm^ . . . , mk) or u.d. modm) if

lim
N m i . . . mk

holds for every b e Zfc.

DEFINITION 2.10. The sequence {xn}, n = l , 2 , . . . , of elements of Zk is called
uniformly distributed in Zk (abbreviated u.d. in Zk) if it is u.d. mod m for all possible m.

3. Uniform distribution modulo a left ideal. A standard criterion for uniform
distribution is the Weyl criterion which, in a suitably general form, reads as follows (see
[2, Chapter 4] for the proof and the definition of uniform distribution in a compact
group).

LEMMA 3.1. Let H be a compact abelian group and H its character group. Then a
sequence {/v}, n = 1, 2 , . . . , of elements of H is u.d. in H if and only if

for all nontrivial

For a nonsingular GeMatm(Z), we write (G) for the principal left ideal generated by
G and view Matm(Z)/(G) as a compact additive abelian group in the discrete topology. A

6A
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sequence {Xn} of elements of Matm(Z) is then u.d. mod G if and only if the sequence
{Xn + (G)} is u.d. in Matm(Z)/(G) in the sense referred to in Lemma 3.1. Therefore, in
order to obtain an explicit version of the Weyl criterion for uniform distribution mod G, it
is necessary to find a formula for the characters of Matm(Z)/(G). As a matter of
convenience, we describe these characters as functions on MatmCZ). Then, of course, we
have to verify that the function values only depend on the residue class mod G. We write
exp(x) = e2irix for real x and tr(C) for the trace of CeMatm(Q), where Q is the field of
rational numbers.

THEOREM 3.2. Let GeMatm(Z) be nonsingular, and let U and V be unimodular
matrices such that UGV is a diagonal matrix, say L7GV = diag(g1,..., gm). Then the
distinct characters of the group Matm(Z)/(G) are given by

U-1)) for AeMatm(Z), (3)

where R =(ri()eMatm(Z) with OfSr^lgJ for l < i , j<m.

Proof. First of all, the functions XR are really functions on Matm(Z)/(G) since one
checks easily that *R(A) = XR(B) whenever A=B mod G. Furthermore, for any A, Be
Matm(Z) one has XR(A+B) = XR(A)XR(B). TO complete the proof, we note that the
abelian group Matm(Z)/<G) of order |det G\m has |det G|m characters, so that it suffices to
show that the |det G\m characters XR given by (3) are distinct. Suppose that xR = Xs, where
R = (r-,-), S = (Sy) with 0 < ry, sfj < |g;| for 1 < i, j < m. Let En be the m x m matrix having 1
in the 0,0 entry and 0 elsewhere. Then XR(£jiV~1) = exp(rijgr1) and Xs(£,iV~1) =
expCsjjgr1), and so gf divides r£j- — stJ-. But —|& I < r(J — sy < |gt |, hence r ^Sy for l < i , / < m ,
that is, R = S.

THEOREM 3.3. (Weyl Criterion). Let GeMatm(Z) be nonsingular, and let U and V be
unimodular matrices such that UGV is a diagonal matrix, say [/GV = diag(g1,..., gm).
Then the sequence {Xn} of elements of Matm(Z) is u.d. mod G if and only if

1 N

lim - X exp(tr(RXnG-1(/-1)) = 0
N->°°JV n = 1

holds for all R = (rjy) 6 Matm (Z) with R + 0 and 0 < rtj < |& | for 1 < i, j < m.

Proof. This follows from Lemma 3.1 and Theorem 3.2.

The character formula (3) can also be used to investigate the relationship between
distribution properties modulo different left ideals. First we note a simple result in this
direction.

THEOREM 3.4. Let F,GeMatm(Z)with Fnonsingular and Fe(G). Then a sequence of
elements of Matm(Z) is u.d. mod G whenever it is u.d. modF.
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Proof. Let {Xn} be a u.d. sequence modF and B eMatm(Z). Then

A(N, B, G, {Xn}) = I A(N, C, F, {XJ),

where the summation is taken over all distinct cosets C + (F) such that C = B mod G.
There are |det F\m |det G\~m such cosets. It follows that

,. A(N,B,G,{Xn}) l v . m _ c / v , ,
lun = hm — 2. A(N, C, F, {Xn})

|det F\m 1
|detG|m |detF|m

1

~ | d e t G | m '

and so {Xn} is u.d. mod G.

THEOREM 3.5. Let 2F be a nonempty set of nonsingular matrices in Matm(Z) and let
3? = {GeMatm(Z): G nonsingular, F£(G) for all FeSF}. Then there exists a sequence of
elements of Matm(Z) which is u.d. modF for all F e f and, for each G e S , is not u.d.
mod G.

Proof. We apply the following theorem of Zame [11]. Let H be a locally compact
abelian group with countable base, and let Sf^ 0 and ?T be countable collections of
closed subgroups of H such that: (i) finite intersections of elements of SfUST are of
compact index; (ii) for each SsZf and TeST, we have S£T; (iii) for each TeUT, there
exists a character XT of H such that XT is trivial on T but is nontrivial on each S € if. Then
there exists a sequence of elements of H which is u.d. mod S for all S e if and, for each
T&3~, is not u.d. mod T. Now let H = Matm(Z) with the discrete topology, if =
{(F):Fe&\, and 2T = {<G>: G e CS). Then conditions (i) and (ii) are easily checked (note
that every principal left ideal generated by a nonsingular matrix has finite, thus compact,
index). As to condition (iii), let (G)e3~ be given and choose R = Im, the mxm identity
matrix, in the character formula (3). This character x is trivial on (G). For Fe£F let
FG-'LT1 = (<*;,), where U, V are unimodular such that UGV is a diagonal matrix. Since
F<£(G), we have FG'1 £Matm(Z), and so FG"1 C/"1 ̂ Matm(Z). Then some aio)(i^Z, hence
x(EJoi<F) = exp(aioJo) ^ 1. Therefore x is nontrivial on (F). Thus x satisfies the properties in
(iii), and the theorem follows.

We consider now the connection between uniform distribution mod G of sequences
of elements of Matm(Z) and uniform distribution of sequences of lattice points.

THEOREM 3.6. Let GeMatm(Z) be nonsingular, and let U and V be unimodular
matrices such that UGV is a diagonal matrix, say (7GV = diag(g1,..., gm). / / {Xn} is a
sequence of elements of Matm(Z) with XnV = (x[")) for n = l , 2 , . . . , then {XJ is u.d.
modG if and only if the sequence {(xff,..., xft, x&\ . . . , x & , . . . , x £ i , . . . , x(±)},
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n = 1, 2 , . . . , of elements of Zm2 is u.d. mod flgj , . . . , |gm|, | g j | , . . . , | g j , . . . , |g,|,
Iftnl).

Proof. For any matrix A = (aij)eMatm(Z), let ip(A) denote the lattice point
(a u , . . . , a l m , a2 1 , . . . , a2m, ...,aml,..., amm)eZm\ Put g = ( |g, | , . . . , | g j , |g , | , . . . ,
lg»l, • • •, Igil, • • •, Ifinl) e Zm2. Then A (AT, B, diag(g l , . . . . , gm), {XJ) = A(N, i{,(B), g,{^(Xn)})
for any B eMatm(Z). This implies that the sequence {t|/(XnV)} is u.d. mod g if and only if
{XnV} is u.d. moddiagCgj,..., gm). The latter is equivalent to {Xn} being u.d. mod G,
because of Lemma 2.7(iii).

We obtain an alternative form of the Weyl criterion for uniform distribution mod G if
we use the criterion in Theorem 3.6 together with the Weyl criterion for uniform
distribution modg (see Niederreiter [6, Theorem 2.1]).

THEOREM 3.7 (Weyl criterion). With the notation of Theorem 3.6, the sequence {Xn} is
u.d. mod G if and only if

holds for all R = (rij)eMatm(Z) with R^O and 0^r; j <:Ig,| for l < i , ; < m .

Once the connection with uniform distribution of sequences of lattice points is
established, other criteria for uniform distribution mod G can be obtained, for instance by
combining Theorem 3.6 above with Theorem 4.8 in Niederreiter and Lo [7].

For certain rings, such as rings of algebraic integers, there exist elements for which
suitable integral multiples form a sequence which is uniformly distributed modulo a
nontrivial left ideal (see Niederreiter and Lo [7, §4]). It is interesting to note that, apart
from the case m = 1, this cannot happen for Matm(Z).

THEOREM 3.8. Let G e Matm(Z), where |det G\ > 2 and m > 2. Then no sequence of the
form {xnA} with {*„} being a sequence of rational integers and A eMatm(Z) can be u.d.
mod G.

Proof. Suppose {xnA} were u.d. mod G. Let U and V be unimodular matrices such
that UGV is a diagonal matrix D = diag(g1;..., gm). Then {xnAV} is u.d. modD by
Lemma 2.7.(iii). Setting AV = B, we note that faB} must contain elements from every
residue class modD, and so the additive group Matm(Z)/(D) is cyclic with generator
B+(D). It is easily checked that C = (cfj)eMatm(Z) is = OmodD if and only if citt =
Omod|g,| for l < i , ;<m. Now for the matrix B we have |det G\B = | g , . . . gm| B =
0 mod D, and so the order of B + (D) in Matm(Z)/(D) is at most |det G\, which is less than
|det G|m = |detD|m, the order of Matm(Z)/(D). Thus B+(D) cannot be a generator, and
we have arrived at a contradiction.

4. Uniform distribution in Matm(Z). The following auxiliary result is useful when
checking uniform distribution in Matm(Z).
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LEMMA 4.1. Let s be a given positive integer. Then the sequence {Xn} of elements of
Matm(Z) is u.d. in Matm(Z) if and only if {Xn} is u.d. mod tslm for all positive integers t,
where Im is the mXm identity matrix.

Proof. The condition is certainly necessary. As to sufficiency, let GeMatm(Z) be
nonsingular. Then {Xn} is u.d. mod |det G\ slm, and so u.d. mod G by Theorem 3.4 and
the fact that (det G)Im = G*G, where G*eMatm(Z) is the transpose of the matrix of
cofactors of G. Since G is an arbitrary nonsingular matrix, {Xn} is u.d. in Matm(Z).

THEOREM 4.2. (Weyl Criterion). The sequence {Xn} of elements of Matm(Z) is u.d. in
Matm(Z) if and only if

lim-J- £ exp(tr(PXn)) = 0

holds for all PeMatm(Q) with P£Matm(Z).

Proof. To show the necessity, we choose P as above. Then there exists a positive
integer d such that Q = dPeMatm(Z), where not all entries of Q are divisible by d. We
write Q = dA + R with A, KeMatm(Z) and R = (rtj) with O^r^Kd for l < i , / < m and

. Since {Xn} is u.d. in Matm(Z), the sequence is u.d. mod dlm, and so

exp(tr(PXJ)= lim -j- £ exp(tr(i RXn))
N-~oNn=i \ \a II

lim 1
V

= lim \-

= 0

by Theorem 3.3.
Conversely, suppose the condition of the theorem is satisfied. According to Lemma

4.1 it suffices to show that {Xn} is u.d. mod tlm for all positive integers t. Such a ( being
chosen, we note that because of Theorem 3.3 it remains to prove that

holds for all K = (rfJ)eMatm(Z) with K / 0 and 0<rf ]<f for l < i , / < m . However, this
follows from the given condition with P = (l/t)i?.

The above criterion can be used to reduce the question of uniform distribution in
Matm(Z) to one of uniform distribution of sequences of rational integers.

THEOREM 4.3. The sequence {Xn} of elements of Matm(Z) is u.d. in Matm(Z) if and
only if for all B e Mat^Z) with relatively prime entries the sequence {trCBXJ} is u.d. in Z.
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Proof. Suppose {Xn} is u.d. in Matm(Z), and take B eMatm(Z) with relatively prime
entries. We have to show that for every integer s >2 the sequence {tr(BXn)} is u.d. mod s.
Let j be an arbitrary integer with 1 ^ / < s. Then we can write j/s = q/r, where q and r are
relatively prime integers with r> 1. the matrix P = (q/r)B is then in Matm(Q), but not in
Matm(Z) because of the condition on B. It follows from Theorem 4.2 that

lim ̂  I exp^ttfBXjU lim ^

and so {tr(BXJ} is o.d. mod s by [2, p. 306, Theorem 1.2].
To show the sufficiency, take PeMatm(Q) with P^Matm(Z). If s is the least common

denominator of the entries of P, then s > l . We can write P = (l/s)B with BEMatm(Z)
having relatively prime entries. Since {tr(BXn)} is u.d. mod s by assumption, we get

1 £ 1 £ /I \
lim — £ exp(tr(PXJ) = lim — £ exp(-tr(BXJJ = O

because of [2, p. 306, Theorem 1.2]. Thus, according to Theorem 4.2, the sequence {Xn} is
u.d. in Matm(Z).

The connection between uniform distribution of sequences of matrices and uniform
distribution of sequences of lattice points, already used in the previous section, can be
exploited further. Let i/r be the mapping defined in the proof of Theorem 3.6, i.e.,
«A(A) = ( a n , . . . , alm, a2 1, . . . , a2 m,. . . , aml,..., c ^ J e Zm2 for A = (ay) e Matm(Z).

THEOREM 4.4. The sequence {Xn} of elements of Matm(Z) is u.d. in Matm(Z) if and
only if the sequence {t/f(XJ} is u.d. in Zm2.

Proof. We first show the necessity of the condition. Since {Xn} is u.d. in Matm(Z), the
sequence is, in particular, u.d. mod slm, where s is an arbitrary positive integer. Then
Theorem 3.6 implies that {i/>(Xn)} is u.d. mod(s, s , . . . , s), and so by Niederreiter [6,
Theorem 2.4] the sequence {t/»(Xn)} is u.d. in Zm2.

As to the sufficiency, if {iMXJ} is u.d. in Zm2, then {iMXJ} is u.d. mod(f, t,..., t) for
any positive integer t, and so Theorem 3.6 implies that {Xn} is u.d. mod tlm for any
positive integer t. It follows from Lemma 4.1 that {Xn} is u.d. in Matm(Z).

An alternative version of the Weyl criterion can be based on Theorem 4.4. If
a = (au ...,On*) and b = (bu..., bm*) are two vectors of the euclidean space Rm\ then

a*b= £ ajbj denotes their standard inner product.

THEOREM 4.5. (Weyl Criterion). The sequence {Xn} of elements of Matm(Z) is u.d. in
Matm(Z) if and only if

for all r = (rl3..., rmi) with all rt being rationals, but not all r{ being integers.
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Proof. This follows from Theorem 4.4 and the Weyl criterion for uniform distribution
in Zm2 given by Niederreiter [6, Theorem 2.2].

2m) 'EXAMPLES 4.6. (i) If the real numbers 1, a n , . . . , a l m , a2\, •. • ,a2n

a m l , . . . , amm are linearly independent over the rationals, then the sequence
n = 1, 2 , . . . , is u.d. in Matm(Z), where [t] denotes the integral part of teR. This
follows from Theorem 4.4 and a result of Niederreiter [6, p. 480].

(ii) The elements of Matm(Z) can be arranged into a u.d. sequence in Matm(Z). This
is achieved by first employing the so-called cube method of Lo and Niederreiter [4, § 3] to
arrange all elements of Zm2 into a u.d. sequence in Zm2, which is possible by [4, Theorem
3.3], and then applying the inverse of the mapping i/» to get a sequence containing all
elements of Matm(Z) without repetition. This sequence is u.d. in Matm(Z) by Theorem
4.4.

The second example above raises the question of characterizing those subsets of
Matm(Z) whose elements can be arranged into a u.d. sequence in Matm(Z). This is settled
by the following result.

THEOREM 4.7. The elements of the subset % of Matm(Z) can be arranged into a u.d.
sequence in Matm(Z) if and only if every coset of every left ideal (G) with G = Matm(Z)
nonsingular contains at least one element of %.

Proof. The condition is obviously necessary. To prove the sufficiency, we transfer
the problem into a suitable setting. Let K be an algebraic number field of degree m2 over
Q and let 0 be the ring of algebraic integers in K. Furthermore, let a>x, w 2 , . . . , <om2 be an
integral basis for 0. We set up an injective mapping T from Matm(Z) onto C by putting

m

T(A)= £ <V»(j-i)m+;
U = l

for A = (Oj,)eMatm(Z). We claim that T(&) has the property that every coset of every
nonzero integral ideal of O contains an element of T(S£). TO see this, let J be a nonzero
integral ideal of C and consider a coset 0 + J with 0 e 0. Let h be a positive integer with
heJ, e.g., h can be taken to be the norm of J. Let B e Matm(Z) be such that T(B) = 0. By
the condition on %, there exists a n £ e ? with E^B mod hlm. One checks easily that this
implies T(E) = 0 mod hO, and so r(E)efi + J. Thus T(8 ) has the property claimed above.
It follows then from [4, Theorem 4.5] and [7, Theorem 3.9] that the elements of T(8 ) can
be arranged into a u.d. sequence in 0, say {riEn)} with £„ e % for w = 1, 2 , . . . . However,
by combining Theorem 4.4 with a remark from [4, p. 193], one obtains that a sequence
{Xn} of elements of Matm(Z) is u.d. in Mat^Z) if and only if {T(XJ} is u.d. in C.
Consequently, the sequence {En} is u.d. in Matm(Z) and is therefore the desired sequential
arrangement of the elements of %.

COROLLARY 4.8. The nonsingular matrices in Matm(Z) can be arranged into a u.d.
sequence in Matm(Z).
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Proof. It suffices to show that the set % of nonsingular matrices in Matm(Z) satisfies
the condition of Theorem 4.7. Let B+(G) be a coset with B, GeMatm(Z) and G
nonsingular. Choose an integer t which is not an eigenvalue of BG~l. Then B — tG =
(J3G"1 — tIm)G is a nonsingular matrix contained in B + (G).

On the other hand, it is clear that the unimodular matrices in Matm(Z) cannot be
arranged into a u.d. sequence in Matm(Z) since there is no unimodular t/eMatm(Z) with
U = 0mod2Im.
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