A Determinantal Inequality Involving Partial Traces

Minghua Lin

Abstract. Let A be a density matrix in $\mathbb{M}_{m} \otimes \mathbb{M}_{n}$. Audenaert [J. Math. Phys. 48(2007) 083507] proved an inequality for Schatten p-norms:

$$
1+\|\mathbf{A}\|_{p} \geq\left\|\operatorname{Tr}_{1} \mathbf{A}\right\|_{p}+\left\|\operatorname{Tr}_{2} \mathbf{A}\right\|_{p}
$$

where Tr_{1} and Tr_{2} stand for the first and second partial trace, respectively. As an analogue of his result, we prove a determinantal inequality

$$
1+\operatorname{det} \mathbf{A} \geq \operatorname{det}\left(\operatorname{Tr}_{1} \mathbf{A}\right)^{m}+\operatorname{det}\left(\operatorname{Tr}_{2} \mathbf{A}\right)^{n}
$$

1 Introduction

We denote by \mathbb{M}_{n} the set of $n \times n$ complex matrices. The tensor product $\mathbb{M}_{m} \otimes \mathbb{M}_{n}$ is identified with the space $\mathbb{M}_{m}\left(\mathbb{M}_{n}\right)$, the set of $m \times m$ block matrices with each block in \mathbb{M}_{n}. Each element of $\mathbb{M}_{m}\left(\mathbb{M}_{n}\right)$ is also regarded as an $m n \times m n$ matrix with numerical entries. By convention, the $n \times n$ identity matrix is denoted by I_{n}; we use J_{n} to denote the $n \times n$ matrix with all entries equal to one.

In the sequel, a positive (semidefinite) matrix A is denoted by $A \geq 0$. For two Hermitian matrices A, B of the same size, $A \geq B$ means $A-B \geq 0$.

For any $\mathbf{A} \in \mathbb{M}_{m}\left(\mathbb{M}_{n}\right)$, we can write $\mathbf{A}=\sum_{i=1}^{q} X_{i} \otimes Y_{i}$ for some positive integer $q \leq m^{2}$ and some $X_{i} \in \mathbb{M}_{m}, Y_{i} \in \mathbb{M}_{n}, i=1, \ldots, q$. We can define two partial traces Tr_{1} and Tr_{2} :

$$
\operatorname{Tr}_{1} \mathbf{A}=\sum_{i=1}^{q}\left(\operatorname{Tr} X_{i}\right) Y_{i}, \quad \operatorname{Tr}_{2} \mathbf{A}=\sum_{i=1}^{q}\left(\operatorname{Tr} Y_{i}\right) X_{i},
$$

where Tr stands for the usual trace. In other words, the first partial trace Tr_{1} "traces out" the first factor and similarly for the second partial trace Tr_{2}. Clearly,

$$
\begin{aligned}
\operatorname{Tr}\left(\operatorname{Tr}_{1} \mathbf{A}\right) B & =\operatorname{Tr}\left(I_{m} \otimes B\right) \mathbf{A},
\end{aligned} \quad \text { for any } B \in \mathbb{M}_{n} ;
$$

The actual forms of the partial traces are as follows (see [8, p. 12]):

$$
\operatorname{Tr}_{1} \mathbf{A}=\sum_{i=1}^{m} A_{i, i}, \quad \operatorname{Tr}_{2} \mathbf{A}=\left[\operatorname{Tr} A_{i, j}\right]_{i, j=1}^{m}
$$

[^0]A density matrix on a bipartite system (see [8, pp. 4, 53]) is a positive semidefinite matrix in $\mathbb{M}_{m} \otimes \mathbb{M}_{n}$ with trace equal to one. Audenaert [1] recently proved an interesting norm inequality.

Theorem 1.1 ($\left[1\right.$, Theorem 1]) Let $\mathbf{A} \in \mathbb{M}_{m}\left(\mathbb{M}_{n}\right)$ be a density matrix. Then

$$
\begin{equation*}
1+\|\mathbf{A}\|_{p} \geq\left\|\operatorname{Tr}_{1} \mathbf{A}\right\|_{p}+\left\|\operatorname{Tr}_{2} \mathbf{A}\right\|_{p} \tag{1.1}
\end{equation*}
$$

where $\|\cdot\|_{p}$ denotes the Schatten p-norm.
Inequality (1.1) was called out to prove the subadditivity of the so-called Tsallis entropies; see [1] for more details. In this paper, as an analogue of (1.1), we prove the following determinantal inequality.

Theorem 1.2 Let $\mathbf{A} \in \mathbb{M}_{m}\left(\mathbb{M}_{n}\right)$ be a density matrix. Then

$$
\begin{equation*}
1+\operatorname{det} \mathbf{A} \geq \operatorname{det}\left(\operatorname{Tr}_{1} \mathbf{A}\right)^{m}+\operatorname{det}\left(\operatorname{Tr}_{2} \mathbf{A}\right)^{n} \tag{1.2}
\end{equation*}
$$

2 Auxiliary Results and Proofs

A linear map $\Phi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{k}$ is positive if it maps positive matrices to positive matrices. A linear map $\Phi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{k}$ is called m-positive if for $\left[A_{i, j}\right]_{i, j=1}^{m} \in \mathbb{M}_{m}\left(\mathbb{M}_{n}\right)$,

$$
\begin{equation*}
\left[A_{i, j}\right]_{i, j=1}^{m} \geq 0 \Longrightarrow\left[\Phi\left(A_{i, j}\right)\right]_{i, j=1}^{m} \geq 0 \tag{2.1}
\end{equation*}
$$

and Φ is completely positive if (2.1) is true for any positive integer m.
On the other hand, a linear map $\Phi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{k}$ is m-copositive if

$$
\begin{equation*}
\left[A_{i, j}\right]_{i, j=1}^{m} \geq 0 \Longrightarrow\left[\Phi\left(A_{j, i}\right)\right]_{i, j=1}^{m} \geq 0 \tag{2.2}
\end{equation*}
$$

and Φ is completely copositive if (2.2) is true for any positive integer m.
We need the following result.
Proposition 2.1 The map $\Phi: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ defined by $\Phi(X)=(\operatorname{Tr} X) I_{n}-X$ is completely copositive.

Proof One may of course use the approach in [7] to prove this. Here we invoke a standard tool by Choi [4]. It suffices to prove that for any positive integer m,

$$
\left[\Phi\left(E_{j, i}\right)\right]_{i, j=1}^{m} \geq 0
$$

where $E_{i, j} \in \mathbb{M}_{n}$ is the matrix with 1 in the (i, j)-entry and 0 elsewhere. But $\left[\Phi\left(E_{j, i}\right)\right]_{i, j=1}^{m}$ is symmetric, row diagonally dominant with positive diagonal entries, implying

$$
\left[\Phi\left(E_{j, i}\right)\right]_{i, j=1}^{m} \geq 0
$$

The reader may easily observe that $\Phi(X)=(\operatorname{Tr} X) I_{n}-X$ is not 2-positive (see [3]). In the proof of the next proposition, we only use the fact that $\Phi(X)=(\operatorname{Tr} X) I_{n}-X$ is 2-copositive. Proposition 2.2, first proved by Ando [2], plays a key role in our derivation of (1.2). We provide a proof here for the convenience of readers. Our proof is slightly more transparent than the original proof by Ando.

Proposition 2.2 Let $\mathbf{A}=\left[A_{i, j}\right]_{i, j=1}^{m} \in \mathbb{M}_{m}\left(\mathbb{M}_{n}\right)$ be positive. Then

$$
(\operatorname{Tr} \mathbf{A}) I_{m} \otimes I_{n}+\mathbf{A} \geq I_{m} \otimes\left(\operatorname{Tr}_{1} \mathbf{A}\right)+\left(\operatorname{Tr}_{2} \mathbf{A}\right) \otimes I_{n}
$$

Proof The proof is by induction on m. When $m=1$, there is nothing to prove. We prove the base case $m=2$ first. In this case, the required inequality is

$$
\begin{aligned}
&\left(\begin{array}{cc}
(\operatorname{Tr} \mathbf{A}) I_{n} & 0 \\
0 & (\operatorname{Tr} \mathbf{A}) I_{n}
\end{array}\right)+\left(\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right) \geq \\
&\left(\begin{array}{cc}
A_{1,1}+A_{2,2} & 0 \\
0 & A_{1,1}+A_{2,2}
\end{array}\right)+\left(\begin{array}{ll}
\left(\operatorname{Tr} A_{1,1}\right) I_{n} & \left(\operatorname{Tr} A_{1,2}\right) I_{n} \\
\left(\operatorname{Tr} A_{2,1}\right) I_{n} & \left(\operatorname{Tr} A_{2,2}\right) I_{n}
\end{array}\right)
\end{aligned}
$$

or equivalently,

$$
H:=\left(\begin{array}{cc}
\left(\operatorname{Tr} A_{2,2}\right) I_{n}-A_{2,2} & A_{1,2}-\left(\operatorname{Tr} A_{1,2}\right) I_{n} \tag{2.3}\\
\left.A_{2,1}-\operatorname{Tr} A_{2,1}\right) I_{n} & \left(\operatorname{Tr} A_{1,1}\right) I_{n}-A_{1,1}
\end{array}\right) \geq 0 .
$$

By Proposition 2.1,

$$
\left(\begin{array}{ll}
\left(\operatorname{Tr} A_{1,1}\right) I_{n}-A_{1,1} & \left(\operatorname{Tr} A_{2,1}\right) I_{n}-A_{2,1} \\
\left(\operatorname{Tr} A_{1,2}\right) I_{n}-A_{1,2} & \left(\operatorname{Tr} A_{2,2}\right) I_{n}-A_{2,2}
\end{array}\right) \geq 0
$$

and so

$$
H=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)\left(\begin{array}{ll}
\left(\operatorname{Tr} A_{1,1}\right) I_{n}-A_{1,1} & \left(\operatorname{Tr} A_{2,1}\right) I_{n}-A_{2,1} \\
\left(\operatorname{Tr} A_{1,2}\right) I_{n}-A_{1,2} & \left(\operatorname{Tr} A_{2,2}\right) I_{n}-A_{2,2}
\end{array}\right)\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) \geq 0
$$

confirming (2.3).
Suppose the result is true for $m=k-1>1$. When $m=k$,

$$
\begin{aligned}
& \Gamma:=(\operatorname{Tr} \mathbf{A}) I_{k} \otimes I_{n}+\mathbf{A}-I_{k} \otimes\left(\operatorname{Tr}_{1} \mathbf{A}\right)+\left(\operatorname{Tr}_{2} \mathbf{A}\right) \otimes I_{n} . \\
& =\left(\operatorname{Tr} \sum_{i=1}^{k} A_{i, i}\right) I_{k} \otimes I_{n}+\mathbf{A}-I_{k} \otimes\left(\sum_{j=1}^{k} A_{j, j}\right)-\left(\left[\operatorname{Tr} A_{i, j}\right]_{i, j=1}^{k}\right) \otimes I_{n} \\
& =\left[\begin{array}{llll}
\sum_{i=1}^{k-1}\left(\operatorname{Tr} A_{i, i}\right) I_{n} & & & \\
& \ddots & & \\
& & \sum_{i=1}^{k-1}\left(\operatorname{Tr} A_{i, i}\right) I_{n} & \\
& & & 0
\end{array}\right] \\
& +\left[\begin{array}{llll}
\left(\operatorname{Tr} A_{k, k}\right) I_{n} & & & \\
& \ddots & & \\
& & \left(\operatorname{Tr} A_{k, k}\right) I_{n} & \\
& & & \sum_{i=1}^{k}\left(\operatorname{Tr} A_{i, i}\right) I_{n}
\end{array}\right] \\
& +\left[\begin{array}{cccc}
A_{1,1} & \cdots & A_{1, k-1} & 0 \\
\vdots & & \vdots & \vdots \\
A_{k-1,1} & \cdots & A_{k-1, k-1} & 0 \\
0 & \cdots & 0 & 0
\end{array}\right]+\left[\begin{array}{cccc}
0 & \cdots & 0 & A_{1, k} \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & A_{k-1, k} \\
A_{k, 1} & \cdots & A_{k, k-1} & A_{k, k}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\left[\begin{array}{ccccc}
\sum_{i=1}^{k-1} A_{i, i} & & & & \\
& \ddots & & & \\
& & \sum_{i=1}^{k-1} A_{i, i} & \\
& & & 0
\end{array}\right]-\left[\begin{array}{ccc}
A_{k, k} & & \\
& \ddots & \\
\\
& & A_{k, k} \\
\\
& & \\
\hline & & \sum_{i=1}^{k} A_{i, i}
\end{array}\right] \\
& -\left[\begin{array}{cccc}
\left(\operatorname{Tr} A_{1,1}\right) I_{n} & \cdots & \left(\operatorname{Tr} A_{1, k-1}\right) I_{n} & 0 \\
\vdots & & \vdots & \vdots \\
\left(\operatorname{Tr} A_{k-1,1}\right) I_{n} & \cdots & \left(\operatorname{Tr} A_{k-1, k-1}\right) I_{n} & 0 \\
0 & \cdots & 0 & 0
\end{array}\right] \\
& -\left[\begin{array}{cccc}
0 & \cdots & 0 & \left.\left(\operatorname{Tr} A_{1, k}\right)\right) I_{n} \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & \left(\operatorname{Tr} A_{k-1, k}\right) I_{n} \\
\left(\operatorname{Tr} A_{k, 1}\right) I_{n} & \cdots & \left(\operatorname{Tr} A_{k, k-1}\right) I_{n} & \left(\operatorname{Tr} A_{k, k}\right) I_{n}
\end{array}\right]
\end{aligned}
$$

After some rearrangement, we have $\Gamma=\mathbf{P}+\mathbf{Q}$, where

$$
\begin{aligned}
\mathbf{P}: & {\left[\begin{array}{cccc}
\sum_{i=1}^{k-1}\left(\operatorname{Tr} A_{i, i}\right) I_{n} & & \\
& & \ddots & \\
& & & \sum_{i=1}^{k-1}\left(\operatorname{Tr} A_{i, i}\right) I_{n} \\
& 0
\end{array}\right]+\left[\begin{array}{cccc}
A_{1,1} & \cdots & A_{1, k-1} & 0 \\
\vdots & & \vdots & \vdots \\
A_{k-1,1} & \cdots & A_{k-1, k-1} & 0 \\
0 & \cdots & 0 & 0
\end{array}\right] } \\
& -\left[\begin{array}{cccccc}
\sum_{i=1}^{k-1} A_{i, i} & & & \\
& \ddots & & \\
& & \sum_{i=1}^{k-1} A_{i, i} & \\
& & & 0
\end{array}\right]-\left[\begin{array}{ccccc}
\left(\operatorname{Tr} A_{1,1}\right) I_{n} & \cdots & \left(\operatorname{Tr} A_{1, k-1}\right) I_{n} & 0 \\
\vdots & & \vdots & \vdots \\
\left(\operatorname{Tr} A_{k-1,1}\right) I_{n} & \cdots & \left(\operatorname{Tr} A_{k-1, k-1}\right) I_{n} & 0 \\
0 & \cdots & 0 & 0
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{Q}:=\left[\begin{array}{llll}
\left(\operatorname{Tr} A_{k, k}\right) I_{n} & & & \\
& \ddots & & \\
& & \left(\operatorname{Tr} A_{k, k}\right) I_{n} & \\
& & & \sum_{i=1}^{k}\left(\operatorname{Tr} A_{i, i}\right) I_{n}
\end{array}\right] \\
& +\left[\begin{array}{cccc}
0 & \cdots & 0 & A_{1, k} \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & A_{k-1, k} \\
A_{k, 1} & \cdots & A_{k, k-1} & A_{k, k}
\end{array}\right]-\left[\begin{array}{cccc}
A_{k, k} & & & \\
& \ddots & & \\
& & A_{k, k} & \\
& & & \sum_{i=1}^{k} A_{i, i}
\end{array}\right] \\
& -\left[\begin{array}{cccc}
0 & \cdots & 0 & \left.\left(\operatorname{Tr} A_{1, k}\right)\right) I_{n} \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & \left(\operatorname{Tr} A_{k-1, k}\right) I_{n} \\
\left(\operatorname{Tr} A_{k, 1}\right) I_{n} & \cdots & \left(\operatorname{Tr} A_{k, k-1}\right) I_{n} & \left(\operatorname{Tr} A_{k, k}\right) I_{n}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\left(\operatorname{Tr} A_{k, k}\right) I_{n}-A_{k, k} & & & \left.A_{1, k}-\left(\operatorname{Tr} A_{1, k}\right)\right) I_{n} \\
& \ddots & & \vdots \\
& & \left(\operatorname{Tr} A_{k, k}\right) I_{n}-A_{k, k} & A_{k-1, k}-\left(\operatorname{Tr} A_{k-1, k}\right) I_{n} \\
\left(\operatorname{Tr} A_{k, 1}\right) I_{n} & \cdots & \left(\operatorname{Tr} A_{k, k-1}\right) I_{n} & \sum_{i=1}^{k-1}\left(\left(\operatorname{Tr} A_{i, i}\right) I_{n}-A_{i, i}\right)
\end{array}\right] .
\end{aligned}
$$

Now by induction hypothesis, $\mathbf{P} \geq 0$. It remains to show that $\mathbf{Q} \geq 0$.

It is easy to see that \mathbf{Q} can be written as a sum of $k-1$ matrices with each summand *-congruent to

$$
H_{i}:=\left[\begin{array}{cc}
\left(\operatorname{Tr} A_{k, k}\right) I_{n}-A_{k, k} & \left.A_{i, k}-\left(\operatorname{Tr} A_{i, k}\right)\right) I_{n} \\
A_{k, i}-\left(\operatorname{Tr} A_{k, i}\right) I_{n} & \left(\operatorname{Tr} A_{i, i}\right) I_{n}-A_{i, i}
\end{array}\right], \quad i=1, \ldots, k-1 .
$$

Just as in the proof of the base case, we infer that $H_{i} \geq 0$ for all $i=1, \ldots, k-1$. Therefore, $\mathbf{Q} \geq 0$, thus the proof of induction step is complete.

The next corollary is known as a Cauchy-Khinchin matrix inequality in the literature (see [9, Theorem 1]). Here we present a simple proof using Proposition 2.2.

Corollary 2.3 Let $X=\left(x_{i j}\right)$ be a real $m \times n$ matrix. Then

$$
\left(\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}\right)^{2}+m n \sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}^{2} \geq m \sum_{i=1}^{m}\left(\sum_{j=1}^{n} x_{i j}\right)^{2}+n \sum_{j=1}^{n}\left(\sum_{i=1}^{m} x_{i j}\right)^{2} .
$$

Proof Let vec $X=\left[x_{11}, \ldots, x_{1 n}, x_{21}, \ldots, x_{2 n}, \ldots, x_{m 1}, \ldots, x_{m n}\right]^{T}$ be a vectorization of X. Then a simple calculation gives

$$
\begin{aligned}
& (\operatorname{vec} X)^{T}\left(J_{m} \otimes J_{n}\right) \operatorname{vec} X=(\operatorname{vec} X)^{T} J_{m n} \operatorname{vec} X=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}\right)^{2}, \\
& (\operatorname{vec} X)^{T}\left(I_{m} \otimes I_{n}\right) \operatorname{vec} X=(\operatorname{vec} X)^{T} \operatorname{vec} X=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}^{2}, \\
& (\operatorname{vec} X)^{T}\left(I_{m} \otimes J_{n}\right) \operatorname{vec} X=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} x_{i j}\right)^{2}, \\
& (\operatorname{vec} X)^{T}\left(J_{m} \otimes I_{n}\right) \operatorname{vec} X=\sum_{j=1}^{n}\left(\sum_{i=1}^{m} x_{i j}\right)^{2} .
\end{aligned}
$$

Thus the desired inequality is equivalent to

$$
\begin{equation*}
(\operatorname{vec} X)^{T}\left(J_{m} \otimes J_{n}+m n I_{m} \otimes I_{n}-m I_{m} \otimes J_{n}-n J_{m} \otimes I_{n}\right) \operatorname{vec} X \geq 0 . \tag{2.4}
\end{equation*}
$$

Setting $\mathbf{A}=J_{m} \otimes J_{n}$ in Proposition 2.2 yields

$$
J_{m} \otimes J_{n}+m n I_{m} \otimes I_{n}-m I_{m} \otimes J_{n}-n J_{m} \otimes I_{n} \geq 0
$$

and so (2.4) follows.
We require one more result for our purpose.
Proposition 2.4 Let $X, Y, W, Z \in \mathbb{M}_{e}$ be positive. If $X+Y \geq W+Z, X \geq W$, and $X \geq Z$, then

$$
\begin{equation*}
\operatorname{det} X+\operatorname{det} Y \geq \operatorname{det} W+\operatorname{det} Z . \tag{2.5}
\end{equation*}
$$

Proof Without loss of generality, assume that $X=I_{\ell}$ (for we can assume first X is invertible by a standard continuity argument, then pre-post multiply all matrices by $X^{-1 / 2}$). After this, by a unitary similarity, we can further assume that $Y=D$, a
diagonal matrix. Thus, we need to show that if $I_{\ell}+D \geq W+Z$ and $I_{\ell} \geq W, Z \geq 0$, then

$$
\begin{equation*}
1+\operatorname{det} D \geq \operatorname{det} W+\operatorname{det} Z \tag{2.6}
\end{equation*}
$$

By the Hadamard inequality (see [5, Theorem 7.8.1]), (2.6) would follow from

$$
\begin{equation*}
1+\operatorname{det} D \geq \operatorname{det}(\operatorname{diag}(W))+\operatorname{det}(\operatorname{diag}(Z)) \tag{2.7}
\end{equation*}
$$

where $\operatorname{diag}(\cdot)$ means the diagonal part of a matrix.
Let $d_{i}, w_{i}, z_{i}, i=1, \ldots, \ell$, be the diagonal entries of D, W, and Z, respectively. Then $d_{i} \geq 0,0 \leq w_{i}, z_{i} \leq 1$ for $i=1, \ldots, \ell$. We will prove (2.7) by induction. The base case is clear. Assume that (2.7) is true for $\ell=k-1 \geq 1$. When $\ell=k$, there are two cases.
Case I: If $1 \geq \prod_{j=1}^{k-1} w_{j}+\prod_{j=1}^{k-1} z_{j}$, then

$$
1+\prod_{j=1}^{k} d_{j} \geq 1 \geq \prod_{j=1}^{k-1} w_{j}+\prod_{j=1}^{k-1} z_{j} \geq \prod_{j=1}^{k} w_{j}+\prod_{j=1}^{k} z_{j}
$$

Case II: If $\prod_{j=1}^{k-1} w_{j}+\prod_{j=1}^{k-1} z_{j}>1$, then

$$
\begin{aligned}
1+\prod_{j=1}^{k} d_{j} & \geq 1+\left(\prod_{j=1}^{k-1} w_{j}+\prod_{j=1}^{k-1} z_{j}-1\right) d_{k} \geq 1+\left(\prod_{j=1}^{k-1} w_{j}+\prod_{j=1}^{k-1} z_{j}-1\right)\left(w_{k}+z_{k}-1\right) \\
& =1+\prod_{j=1}^{k} w_{j}+\prod_{j=1}^{k} z_{j}+\left(w_{k}-1\right) \prod_{j=1}^{k-1} z_{j}+\left(z_{k}-1\right) \prod_{j=1}^{k-1} w_{j}-\left(w_{k}+z_{k}-1\right) \\
& \geq \prod_{j=1}^{k} w_{j}+\prod_{j=1}^{k} z_{j}+\left(1-\prod_{j=1}^{k-1} z_{j}\right)\left(1-w_{k}\right)+\left(1-\prod_{j=1}^{k-1} w_{j}\right)\left(1-z_{k}\right) \\
& \geq \prod_{j=1}^{k} w_{j}+\prod_{j=1}^{k} z_{j}
\end{aligned}
$$

Thus, (2.7) holds for $\ell=k$, so the proof of the induction step is complete.
We are now in a position to present the proof of Theorem 1.2.
Proof of Theorem 1.2 Let $X=(\operatorname{Tr} \mathbf{A}) I_{m} \otimes I_{n}, Y=\mathbf{A}, W=I_{m} \otimes\left(\operatorname{Tr}_{1} \mathbf{A}\right), Z=$ $\left(\operatorname{Tr}_{2} \mathbf{A}\right) \otimes I_{n}$, respectively. Clearly,

$$
(\operatorname{Tr} \mathbf{A}) I_{n} \geq \operatorname{Tr}_{1} \mathbf{A} \geq 0 \quad \text { and } \quad(\operatorname{Tr} \mathbf{A}) I_{m} \geq \operatorname{Tr}_{2} \mathbf{A} \geq 0
$$

imply that $X \geq W \geq 0$ and $X \geq Z \geq 0$. Moreover, by Proposition $2.2, X+Y \geq W+Z$. That is, the conditions in Proposition 2.4 are met. Therefore,

$$
\begin{aligned}
(\operatorname{Tr} \mathbf{A})^{m n}+\operatorname{det} \mathbf{A} & \geq \operatorname{det}\left(I_{m} \otimes\left(\operatorname{Tr}_{1} \mathbf{A}\right)\right)+\operatorname{det}\left(\left(\operatorname{Tr}_{2} \mathbf{A}\right) \otimes I_{n}\right) \\
& =\operatorname{det}\left(\operatorname{Tr}_{1} \mathbf{A}\right)^{m}+\operatorname{det}\left(\operatorname{Tr}_{2} \mathbf{A}\right)^{n}
\end{aligned}
$$

Taking into account that \mathbf{A} is a density matrix, the desired result (1.2) follows.
Remark 2.5 In [6, Lemma 2.5], the author proved (2.5) under a stronger assumption: $X+Y \geq W+Z, X \geq W \geq Y \geq 0$ and $X \geq Z \geq Y \geq 0$. However, from the present proof of Theorem 1.2, we see that [6, Lemma 2.5] could not be directly applied here.

Acknowledgement The author thanks T. Ando for [2] before its publication. Thanks are also due to a referee whose detailed comments helped improve the readability of this paper.

References

[1] K. M. R. Audenaert, Subadditivity of q-entropies for $q>1$. J. Math. Phys. 48(2007), no. 8, 083507. http://dx.doi.org/10.1063/1.2771542
[2] T. Ando, Matrix inequalities involving partial traces. ILAS Conference, 2014. http://matrix.skku.ac.kr/ILAS-Book/Chapter3Abst.pdf
[3] M. D. Choi, Positive linear maps on C^{*}-algebras. Canad. J. Math. 24(1972), 520-529. http://dx.doi.org/10.4153/CJM-1972-044-5
[4] , Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(1975), 285-290. http://dx.doi.org/10.1016/0024-3795(75)90075-0
[5] R. A. Horn and C. R. Johnson, Matrix analysis. Second ed., Cambridge University Press, Cambridge, 2013.
[6] M. Lin, An Oppenheim type inequality for a block Hadamard product. Linear Algebra Appl. 452(2014), 1-6. http://dx.doi.org/10.1016/j.laa.2014.03.025
[7] \longrightarrow A completely PPT map. Linear Algebra Appl. 459(2014), 404-410. http://dx.doi.org/10.1016/j.laa.2014.07.040
[8] D. Petz, Quantum information theory and quantum statistics. Theoretical and mathematical physics. Springer-Verlag, Berlin, 2008.
[9] E. R. van Dam, A Cauchy-Khinchin matrix inequality. Linear Algebra Appl. 280(1998), no. 2-3, 163-172. http://dx.doi.org/10.1016/S0024-3795(98)00019-6

Department of Mathematics, Shanghai University, Shanghai 200444, China
e-mail: m_lin@shu.edu.cn

[^0]: Received by the editors October 17, 2015; revised November 23, 2015 Published electronically March 17, 2016.
 AMS subject classification: 47B65, 15A45, 15A60.
 Keywords: determinantal inequality, partial trace, block matrix.

