ON SOME CRITERIA FOR A SET TO BE OF CLASS $N_{\scriptscriptstyle \mathfrak{B}}$

NOBUYUKI SUITA

1. Let D be a plane domain containing the point at infinity and E its complementary closed set. As to a sufficient condition for a compact set E to be of class $N_{\mathfrak{B}}$, Pfluger-Mori's criterion is well-known (Pfluger [10], Mori [6]). Various relations between the conditions of this type and the Hausdorff measure of the set E have been investigated recently by Kuroda and Ozawa (Kuroda [5], Ozawa and Kuroda [8], Ozawa [7]). For example they showed that Pfluger-Mori's condition implies that the set E is of one dimensional measure zero under some additional conditions (cf. [7], [8]). In the present paper we shall give an alternative proof of Pfluger-Mori's criterion and another criterion using analytic module and, further, prove some criteria for the set E to be of one dimensional measure zero.

2. We consider a set of doubly connected domains $R_n^{(k)}$ $(k = 1, 2, ..., \nu(n) < \infty$; n = 1, 2, ...) satisfying the following conditions;

(i) the closure of $R_n^{(k)}$ is contained in D,

(ii) the boundary of $R_n^{(k)}$ consists of two rectifiable closed Jordan curves $C_{1n}^{(k)}$ and $C_{2n}^{(k)}$,

(iii) $C_{1n}^{(k)}$ contains $C_{2n}^{(k)}$ in its interior and the point at infinity in its exterior $F_n^{(k)}$,

(iv) the interior $G_n^{(k)}$ of $C_{2n}^{(k)}$ contains at least one point of E and the set E is contained in $\bigcup_{k=1}^{\nu(n)} G_n^{(k)}$,

(v) $R_n^{(j)}$ lies in $F_n^{(k)}$ for any $k \neq j$,

(vi) each $R_{n+1}^{(k)}$ is contained in a certain $G_n^{(k)}$ and

(vii) $\{D_n\}$ is an exhaustion of D, where D_n is defined by $\bigcap_{k=1}^{\nu(n)} (F_n^{(k)} \cup R_n^{(k)})$. Let $\log \mu_n^{(k)}$ be the modulus of the ring domain $R_n^{(k)}$ and $\mu_n = \min_{1 \le k \le \nu(n)} \mu_n^{(k)}$. Pfluger-Mori's criterion can be stated as follows.

THEOREM 1. If there exists an exhaustion $\{D_n\}$ of D satisfying

Received April 17, 1961.

NOBUYUKI SUITA

(1)
$$\limsup_{m\to\infty}\left(\sum_{n=1}^m\log\mu_n-\frac{1}{2}\log\nu(m)\right)=+\infty,$$

then the set E is of class $N_{\mathfrak{B}}$.

We give a proof of this theorem using the following

LEMMA (Golusin [4]). Let R be a bounded ring domain whose outer boundary C_1 and inner boundary C_2 are both closed Jordan curves and let A_1 and A_2 be areas of domains bounded by C_1 and C_2 respectively. Then it holds

$$\mu^2 \leq \frac{A_1}{A_2},$$

where $\log \mu$ is the modulus of R.

Proof of Theorem 1. Let $E_{1m}^{(k)}$ be the complement $F_m^{(k)^c}$ of $F_m^{(k)}$ and $E_{2m}^{(k)}$ be $G_m^{(k)}$ and put $E_{jm} = \bigcup_{k=1}^{\nu(m)} E_{jm}^{(k)}$ and $D_{jm} = E_{jm}^c$ (j = 1, 2). Consider a meromorphic function f(z) which is univalent in D_{2m} and normalized at infinity:

$$f(z) = z + \text{terms in } z^{-1},$$

and which gives the maximal area of the complementary set of $f(D_{2m})$. The existence of such a function is well-known (cf. [2], [11]) and the value of the maximal area equals $\frac{\pi}{2}S(E_{2m})$, where S(M) is the span of the component of M^c containing $z = \infty$ for a compact set M.

Let $A_{1m}^{(k)}$ and $A_{2m}^{(k)}$ be areas of the images $f(E_{1m}^{(k)})$ and $f(E_{2m}^{(k)})$ respectively. Then, by Lemma, we have

$$(\mu_m^{(k)})^2 \leq \frac{A_{1\,m}^{(k)}}{A_{2\,m}^{(k)}}$$

for any k and m, because of the conformal invariance of $\mu_m^{(k)}$. Hence we get

(2)
$$\mu_m^2 \leq \frac{\sum_{k=1}^{\sum_{k=1}^{N(m)} A_{1m}^{(k)}}}{\sum_{k=1}^{\sum_{k=1}^{N(m)} A_{2m}^{(k)}}} \leq \frac{S(E_{1m})}{S(E_{2m})}.$$

since

$$\sum_{k=1}^{\nu(m)} A_{2m}^{(k)} = \frac{\pi}{2} S(E_{2m}) \text{ and } \sum_{k=1}^{\nu(m)} A_{1m}^{(k)} \leq \frac{\pi}{2} S(E_{1m}).$$

Next we consider the family \mathfrak{B} consisting of functions g(z) regular in D_{2m} and normalized at infinity:

190

$$g(z) = \frac{a}{z} + \text{higher terms in } z^{-1},$$

and whose moduli are bounded by one. There exists a function $g_{0m}(z)$ which gives the maximum α_m of |a| and maps D_{2m} onto the $\nu(m)$ sheeted unit disc (cf. [1], [2], [3]). Evidently

$$\iint_{D_{2m}}|g'_{0m}(z)|^2dx\,dy=\nu(m)\pi.$$

On the other hand, in the family \mathfrak{D} of functions h(z) being regular in D_{2m} and satisfying

$$\iint_{D_{2m}} |h'(z)|^2 dx \, dy \leq \pi.$$

The quantity $\underset{h \in \mathfrak{D}}{\text{Max}}(\lim_{z \to \infty} |zh(z)|)$ is equal to $\sqrt{\frac{1}{2}}S(E_{2m})$ (cf. [2], [11]). Since $g_{0m}(z)/\sqrt{\nu(m)}$ is in \mathfrak{D} , we have

(3)
$$\alpha_m \leq \sqrt{\frac{1}{2}\nu(m)\,S(E_{2m})}$$

and, by (2),

$$\sqrt{2} \alpha_m \leq \frac{\sqrt{\nu(m)} \sqrt{S(E_{1\,m})}}{\mu_m}$$

Since E_{1m} is contained in $E_{2,m-1}$, it holds

$$\mathcal{S}(E_{1\,m}) \leq \mathcal{S}(E_{2,\,m-1})$$

by the monotonicity of span and hence we obtain

$$\sqrt{2} \alpha_m \leq \frac{\sqrt{\nu(m)} \sqrt{S(E_{1,m-1})}}{\mu_m \mu_{m-1}} \cdot$$

We continue this procedure and finally get

$$\sqrt{2} \alpha_m \leq \frac{\sqrt{\nu(m)} \sqrt{S(E_{11})}}{\prod_{n=1}^m \mu_n}$$

Therefore, our assumption (1) implies that $\lim_{m \to \infty} \alpha_m = 0$, i.e., *E* belongs to the class $N_{\mathfrak{B}}([1], [2], [3])$.

Next we turn to a metrical test. Let $r_m^{(k)}$ be the outer mapping radius of $E_{2m}^{(k)}$ and $f_m^{(k)}(z)$ be a regular function which maps the domain $E_{2m}^{(k)^\circ}$ univalently

onto the unit disc under the normalization $\lim_{z\to\infty} z f_m^{(k)}(z) > 0$. At infinity, $f_m^{(k)}(z)$ has the expansion

$$f_m^{(k)}(z) = \frac{r_m^{(k)}}{z} + \text{higher terms in } z^{-1}.$$

By Minkowski's inequality we have

$$\left(\iint_{D_{2m}} \left| \sum_{k=1}^{\nu(m)} f_m^{(k)'}(z) \right|^2 dx dy \right)^{1/2} \leq \sum_{k=1}^{\nu(m)} \left(\iint_{D_{2m}} |f_m^{(k)'}(z)|^2 dx dy \right)^{1/2} \\ \leq \sum_{k=1}^{\nu(m)} \left(\iint_{E_{2m}^{(k)^c}} |f_m^{(k)'}(z)|^2 dx dy \right)^{1/2} = \nu(m) \sqrt{\pi} \,.$$

Thus we see that $\sum_{k=1}^{\nu(m)} f_m^{(k)}(z)/\nu(m)$ is contained in \mathfrak{D} and

$$\sqrt{2} \sum_{k=1}^{\nu(m)} r_m^{(k)} \leq \nu(m) \sqrt{S(E_{2m})} .$$

The inequality (2) and the same procedure as in the proof of Theorem 1 yield

$$\sqrt{2}\sum_{k=1}^{\nu(m)} r_m^{(k)} \leq \frac{\nu(m)\sqrt{S(E_{11})}}{\prod_{n=1}^m \mu_n}$$

If $d_m^{(k)}$ is the diameter of $E_{2m}^{(k)}$, then $d_m^{(k)} \leq 4 r_m^{(k)}$. Hence, if $\limsup_{m \to \infty} \left(\sum_{n=1}^m \log \mu_n - \log \nu(m)\right) = +\infty$, then $\lim_{m \to \infty} \sum_{k=1}^{\nu(m)} d_m^{(k)} = 0$. Thus we have the following

THEOREM 2. If there exists an exhaustion of D such that

$$\limsup_{m \leftarrow \infty} \left(\sum_{n=1}^m \log \mu_n - \log \nu(m) \right) = + \infty,$$

then E has one dimensional measure zero.

3. We consider now suitable domains conformally equivalent to members of the exhaustion $\{D_n\}$ in 2 satisfying the condition (1). Let $f_m(z)$ be a meromorphic function in D_{2m} which is normalized at $z = \infty$:

$$f_m(z) = z + \text{terms in } z^{-1}$$

and maps D_{2m} univalently onto a domain bounded by $\nu(m)$ circumferences. Denote by $\rho_m^{(k)}$ the diameter of $f_m(E_{2m}^{(k)})$ and by $A_{1m}^{(k)}$ the area of $f_m(E_{1m}^{(k)})$. Then, we get

$$\mu_m^{(k)} \leq \frac{2\sqrt{A_{1m}^{(k)}}}{\sqrt{\pi} \ \rho_{1m}^{(k)}} \,.$$

Schwarz's inequality yields

$$\mu_{m}^{(k)} \leq \frac{2\sum_{k=1}^{\nu(m)} \sqrt{A_{1m}^{(k)}}}{\sqrt{\pi} \sum_{k=1}^{\nu(m)} \rho_{m}^{(k)}} \leq \frac{2\sqrt{\nu(m)}}{\sqrt{\pi} \sum_{k=1}^{\nu(m)} \rho_{m}^{(k)}} \leq \frac{\sqrt{2}}{\sqrt{\nu(m)}} \sqrt{\frac{\nu(m)}{\sqrt{S(E_{1m})}}} \leq \frac{\sqrt{2}}{\sum_{k=1}^{\nu(m)} \rho_{m}^{(k)}} \leq \frac{\sqrt{2}}{\sum_{k=1}^{\nu(m)} \rho_{m}^{(k)}}} \leq \frac{\sqrt{2}}{\sum_{k=1$$

whence follows

$$\sum_{k=1}^{\nu(m)} \rho_m^{(k)} \le \frac{\sqrt{2} \sqrt{\nu(m)} \sqrt{S(E_{11})}}{\prod_{n=1}^{m} \mu_n}$$

by the same argument as in the proof of Theorem 1. Thus we have

THEOREM 3. If there exists an exhaustion $\{D_n\}$ satisfying the condition (1), then we can select a sequence of mapping functions $\{f_{n\nu}\}$ corresponding to a subsequence $\{D_{n\nu}\}$ of $\{D_n\}$ and make one dimensional measure of the boundary of the image $f_{n\nu}(D_{n\nu})$ arbitrarily small with ν tending to infinity.

4. We consider an exhaustion $\{D_n\}$ of D in the usual sense. The set $D_n - \overline{D_{n-1}}$ consists of a finite number of multiply connected domains $G_{n-1}^{(k)}$ $(k = 1, 2, \ldots, (n-1))$. We denote the outer boundary curve of $G_{n-1}^{(k)}$ by $C_{(k)}^{n-1}$ and inner boundary curves by $C_n^{(k)}$ respectively; both of them are oriented positively with respect to $G_{n-1}^{(k)}$. Then the analytic module $\sigma_n^{(k)}$ of $G_{n-1}^{(k)}$ is defined by

$$\sigma_n^{(k)} = \inf_f \left(\int_{c_{n-1}^{(k)}} f \, \overline{df} \middle/ \int_{c_n^{(k)}} f \, \overline{df} \right),$$

where f(z) is analytic in $G_{n-1}^{(k)}$ and $\int_{C_{n-1}^{(k)}} f \, df > 0$ (see [9]).

Put $D_m^c = E_m$ and $\sigma_m = \underset{\substack{1 \le k \le v(m)}}{\min} \sigma_m^{(k)}$. Considering the same function meromorphic in D_m as in 1, which is univalent and normalized at infinity and gives the maximal area of the complementary set of the image of D_m , we obtain an inequality

$$\sigma_m \leq \frac{S(E_{m-1})}{S(E_m)}$$

from the definition of σ_m . Hence, we get

$$A_n^2 \leq \frac{\nu(m) S(E_1)}{\prod\limits_{n=1}^m \sigma_n}$$

by the inequality (3). From this follows

THEOREM 4. If there exists an exhaustion $\{D_n\}$ of D such that

$$\limsup_{m\to\infty}\left(\sum_{n=1}^m\log\sigma_n-\log\nu(m)\right)=+\infty,$$

then the set E is of class $N_{\mathfrak{B}}$.

We can also get the corresponding metrical criterion:

THEOREM 5. If there exists an exhaustion $\{D_n\}$ of D satisfying the condition:

$$\limsup_{m\to\infty}\left(\sum_{n=1}^m\log\sigma_n-2\log\nu(m)\right)=+\infty,$$

then the set E is of one dimensional measure zero.

References

- [1] Ahlfors, L. V., Bounded analytic functions. Duke Math. J., 14 (1947), 1-11.
- [2] Ahlfors, L. V. and Beurling, A., Conformal invariants and function-theoretic nullsets. Acta Math., 33 (1950), 101-129.
- [3] Garabedian, P., Schwarz's lemma and the Szegö kernel function. Trans. Amer. Math. Soc., 67 (1949), 1-39.
- [4] Golusin, G. M., Sur la representation conforme. Recueil Math., 1 (1936), 272-282.
- [5] Kuroda, T., A criterion for a set to be of 1-dimensional measure zero. Jap. Journ. Math., 29 (1959), 48-51.
- [6] Mori, A., A note on unramified abelian covering surfaces of a closed Riemann surfaces. J. Math. Soc. Japan, 6 (1954), 162-172.
- [7] Ozawa, M., Supplements to "On Pfluger's sufficient condition for a set to be of class N₂₃". Kôdai Math. Sem. Rep., 13 (1961).
- [8] Ozawa, M. and Kuroda, T., On Pfluger's sufficient condition for a set to be of class $N_{\mathfrak{B}}$. Ibid., **13** (1961).
- [9] Pfluger, A., Über das Anwachsen eindeutiger analytischer Funktionen auf offene Riemannschen Flächen. Ann. Acad. Sci. Fenn. A.I., 64 (1949), 18 pp.
- [10] Pfluger, A., Sur l'existence des fonctions non constantes, analytiques, uniformes et bornées sur une surface de Riemann ouverte. C. R. Paris 230 (1950), 166-168.
- [11] Schiffer, M., The span of multiply connected domains. Duke Math. J., 10 (1943), 209-216.

Department of Mathematics Tokyo Metropolitan University