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Abstract

The main results of this article are
(I) Let B be a homogeneous Banach algebra, A a closed subalgebra of B, and / the largest closed ideal

of B contained in A. We assert that P{A)B = l + JB for some closed subalgebra J of B.
Furthermore, under suitable conditions, we show that A is an R-subalgebra if and only if J is an R-
subalgebra. A number of concrete closed subalgebras of a homogeneous Banach algebra therefore
are R-subalgebras-For the definition of P(A) and that of an R-subalgebra, see the introduction in
Section 1.

(II) We give sufficient and necessary conditions for a closed subalgebra of B (G), 1 < p < oo, to be an
J?-subalgebra.

1980 Mathematics subject classification (Amer. Math. Soc.): 43 A 15, 43 A 45, 46 J 30.

1. Introduction

Throughout this article, let G be an infinite compact abelian group with character
group T and Tthe circle group. Rudin (1962), Chapter 9, began to investigate the
structure of closed subalgebras of L\G) by a synthesis method, called Rudin
synthesis or simply R-synthesis. As a matter of fact, Rudin's synthesis method can be
applied to homogeneous Banach algebras.

DEFINITION 1.1. Let G be an infinite compact abelian group. By a homogeneous
Banach algebra on G, we mean a subalgebra B(G) of L'(G) which is itself a Banach
algebra under suitable norm || • ||B with || • ||B ^ || • ||,, convolution as multiplication
and possessing the following homogeneous properties :

(I)If/eB(G), xeG, then fxeB(G) and | | / J |B = | | / | |B where fx(y) =f(y-x).
(II)For each / in B(G), x -*fx is a continuous map of G into (B(G), || • ||B).

The research in this paper was partially supported by the National Science Council, Republic of
China.

407

https://doi.org/10.1017/S144678870002156X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002156X


408 Rong-song Jih and Hwai-chiuan Wang [2]

A homogeneous Banach algebra B(G) is called a Segal algebra if B(G) is dense in
(L'(G), || • H,). For properties of homogeneous Banach algebras, see Silov (1954),
Reiter (1968, 1971) and Wang (1972, 1977).

A closed subalgebra A of a homogeneous Banach algebra B(G) induces an
equivalence relation ~ on F where y, ~ y2 if and only if/O^) =/(y2) f°r all/ in A.
Denote the equivalence classes by (Aa) called the Rudin classes (or simply, the R-
classes) induced by A. By the Riemann-Lebesgue lemma, each Ax is finite except
possibly for Ao where Ao = {yeT :f(y) = 0, V / e / 1 } . Let P(A) be the subalgebra
generated by the trigonometric polynomials Px, a # 0, such that Pa = xA,, the
characteristic function of Aa, and

A*™ = {feB(G): /(Ao) = 0, / (AJ = constant, a * 0}.

Rudin (1962), Chapter 9, proved that PjA)B and AB(G) are the minimal and the
maximal closed subalgebra of B(G) inducing the same R-classes (AJ.

DEFINITION 1.2. A closed subalgebra A of a homogeneous Banach algebra B(G) is
called an K-subalgebra if P(A)B = A = AmG) or equivalently, if each/eB(G) with
/(Ao) = 0, / = constant on Aa, a # 0, can be approximated by trigonometric
polynomials P such that P are constant on Aa, a # 0. We say that Rudin synthesis (or
simply, /^-synthesis) holds for B(G) if every closed subalgebra of B(G) is an R-
subalgebra. Otherwise we say that Rudin synthesis fails for B(G).

Kahane (1965) and Rider(1969) proved that R-synthesis fails for L\T) and LP(T),
1 < p < 2, respectively. Tseng-Wang (1975) proved that, for the ,4p(T)-algebras, R-
synthesis holds for 1 < p < 2 and fails for 2 < p < oo. In this article, we study R-
synthesis of homogeneous Banach algebras through their largest closed ideals. For a
closed subalgebra A of a homogeneous Banach algebra B(G), we first assert that
P(A)B = I + JB where / is the largest closed ideal of B(G) contained in A and J a
closed subalgebra of B(G). Various characterizations of / are given. A number of
concrete closed subalgebras of homogeneous Banach algebras therefore are R-
subalgebras. Stimulated by the ideas of Friedberg (1970), we give sufficient and
necessary conditions for a closed subalgebra A of L"(G), 1 < p < oo, to be an R-
subalgebra. Finally, we give a simple and different proof of Edward's result: R-
synthesis holds for L2(T).

2. Rudin synthesis for homogeneous Banach algebras

Let {/J be the family of all ideals of B(G) contained in the closed subalgebra A, £1,,
the ideal of all finite sums/, +... +fn,fielx.. Then the B-closure / of 1.1 x is the largest
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closed ideal of B(G) contained in A. Let (Aa) be the R-classes induced by A, Z{1) the
zero set of /, Px = {Px \ a # 0, Aa is a singleton}, and P 2 = {Pa | a =£ 0, A. is not a
singleton}. Then we have

THEOREM 2.1. (I) let J be a closed ideal ofB(G), then J is the closed linear space of the
set, say K, of characters it contains. In particular, ideals of B(G) are R-subalgebras.

(II) The zero set Z(J) of a closed ideal J of B(G) is the complement of K in F.

The proof follows from Wang (1977), Theorem 9.1.

THEOREM 2.2. Let Abe a closed subalgebra of a homogeneous Banach algebra B(G),
I the largest closed ideal of B(G) contained in A, and P t = {Px | a # 0, Aa is a
singleton}. Then

(I) / is the closed linear span ofPu I c P(A)B, and Z(I) = Ao u (\Ja AJ where Ax

is not a singleton.
(II) Any two closed subalgebras which induce the same R-classes have the same

largest closed ideal.
(III) A is an R-subalgebra if and only i/(P(J)B)"|Z( / ) = (A*G)f |Z(/).

PROOF. It suffices to prove (III). If/e A*G) a n d / = g on Z(I) where geP(A)B, then
f-gel, so t h a t / - g is in the closed span of Pu or f—geP(A)B.

LEMMA 2.3. Let C(G) be the Segal algebra of all complex-valued continuous functions
on G and S(G) a Segal algebra containing C{G), H a closed ideal ofS(G). For any n in
the dual S(G)* ofS(G), we have h 1 nfor all he H if and only ifh*n = Ofor all heH.

PROOF. Since C{G)* = M(G), S(G)* c M(G). Recall that M(G)*S(G) = S(G) (see
Wang (1977)). For geS(G), heH,

0 = </j*g,fi} since H Ifi and h*geH

= \(h*g)(- y) dfi (y) = (Lx) h(-y-x)dx dfi (y)

= \

Thus h * \i = 0 for all h e H. Conversely, suppose that h * fi = 0 for all h e H. Let (Kn)
be an approximate identity. For heH,v/e have 0 = <Kn, h */x> = <Xn * h, fi}. Since
|| Kn * h — h ||, -> 0, we have </J, fi} = 0. This completes the proof.

For H <= S(G), K c S(G)* and fieS(G)*, define

H1 = {<peS(G)*: <h,(p} = 0 VheH}, K1 = {feS(G): </(p> = 0, V cpeK}
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and

Then H1 and KL are closed linear subspace of S(G) and S(G)* respectively.
Moreover, if H and K are ideals then so are H x and K1. Clearly J^ is a closed ideal of
S(G) contained in {n}L.

THEOREM 2.4. Let S(G) be a Segal algebra containing C(G), A a closed subalgebra of
S(G) and I the largest closed ideal ofS(G) contained in A. Then I = f)/ieA

1-Slll.

PROOF. By Lemma 2.3, / c H/ie^-Ar Since

and n ^ ^ ^ ' s a c l ° s e d ideal of S(G), (s\lieA
LSll <=• I- Therefore / = (^^^J,,.

Let A be a closed subalgebra of a homogeneous Banach algebra B(G) inducing the
/^-classes (Aa), P2 = {Px | a # 0, Aa is not a singleton}, and J be the closed span of P2.
Clearly / n J = {0}. Note that, for the /^-classes (VJ induced by J, then
Vo = Ao u Aa where A. are singletons. We claim that P(A)B = I+JB. In fact, I+J
and P(A) are both spanned by P^ u P2.

THEOREM 2.5. / / Z(I) is in the coset ring of T, then AB(G> = I+J8*0' and
P(/1)B = I+J. In this case, A is an R-subalgebra if and only if J is an R-subalgebra.

PROOF. By a well-known result of Cohen (see Rudin (1962), 3.1.3), there exists
H e M{G) with /i = Xzuy For / e AmG), we have / - / * n e B and ( / - / * n) \Z(I) = 0.
Hence f-f*fiel. But f*fieJ*G) so feI+J*G) or /1B ( G ) c 7+/B(G>. Clearly
7+JB<G» c : ^ 0 ' . We conclude that ^B<G) = 7+JB(G».

For g e P(/1)B, there exists (PJ <= P(A) with || Pm -g ||B-»0. Since

and Pm*^P(J), we have g*fxePjJJ=J. Since (^—gr*^)"|Z(/) = 0, g-g*nel.
Thus # = ( 0 - 0 * / i ) + 0 * / x e / + . / . We conclude that PjA)BcI+J. But
I + J<= PjA)B, so P(J)B = I+J.

Suppose that A is an i?-subalgebra. For / in JB, there exists (Pn) c P(A) with
II ^» - / ||J> -»0 since JB <= AB = P(A)B. But fi * Pne P(J) and

so/eP(J) B or J is an R-subalgebra. Conversely, let J be an i?-subalgebra, we have
AB = I + JB = I + J = PJA)B. This completes the proof.

REMARK 2.6. If we replace Z(I) by Z(/)\A0 in Theorem 2.5, the conclusion still
holds.
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COROLLARY 2.7. Let B(G) be a homogeneous Banach algebra with maximal ideal
space M, and A a closed subalgebra ofB(G). If A separates points ofM, then A is an R-
subalgebra.

PROOF. Let (AJ be the /^-classes induced by A. Note that Aa n M = Ax for all
a # 0 since F \ J c A 0 . i separates points of M if and only if Aa is a singleton for all
a / 0 and AonJ? contains at most one element. We claim : (I) If Ao n J( = 0 , then
A is the closed ideal of B(G) with zero set Y\J( = Ao, and A = B(G). (II) If
Ao n M = {>>}, then /I = {/e B(G): /()>) = 0}. Both cases follow from the fact that
B(G) admits an approximate identity (see Wang (1977), p. 95) and so A is a closed
ideal of B(G). Thus A is an R-subalgebra.

THEOREM 2.8. A maximal subalgebra A of a homogeneous Banach algebra B(G) with
maximal ideal space M is either

(I) A = {/e B(G): fp) = 0} for some y in M or
(II) A = {feB(G): /(y,) =f{y2)}for some y1>72 in ^T.

PROOF. The proof is along the lines of Edwards (1967), p. 17.

COROLLARY 2.9. A maximal subalgebra of a homogeneous Banach algebra B(G) is an
R-subalgebra.

PROOF. The proof follows from Theorem 2.8.

THEOREM 2.10. Let B{ (i = 1,2) be a homogeneous Banach algebra with maximal
ideal space Jf{ and the family &\ of all closed subalgebras. If Bt c B2, define
n:Pl^F2,X:&1^Fl by n(A) = AB> for Ae F u X{C) = C n Bt for Ce&2.
Then we have

(I) n preserves the R-classes in the sense that A and n(A) induce the same R-
classesfor all A in 3F\.

(II) If n is injective and R-synthesis fails for B t , then R-synthesis fails for B2.
(III) Ifn is surjective, then Mx = Ji2 and (A*i)Bi = (ABl)B\ V
(IV) X preserves the R-classes if and only if Jt\ = M2.
(V) If X is injective then MY = M2.

(VI) IfX is surjective, then P(A)B2nfl,= P(A)B\
(VII) If R-synthesis holds for Bu then n is injective. X is surjective and X°nis the

identity map of &\ and A = A"2 n Bu V Ae&v

(VIII) If R-synthesis holds for B2 and Mx = M2, then n°Xis the identity map of &2

and C = Cr^WiB
2, V C e & \ .

PROOF. It suffices to prove (II), (III), (IV) and (VII).
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(II) Suppose that n is injective and that R-synthesis fails for Bv Then there is A in
j s \ such that P(/l)Bl ^ AB'. Thus n(P(Af>) ^ TT(^B')- Since n{P(A)B>) = P(A)"2 and
TT(/4BI) c (iB2)*2, we have P(,4B2)B2 = P(A)B2 # (IB2)B2 so R-synthesis fails for B2.

(HI) Suppose that Mx ^ ^ 2 . Take y'va.J(2\ Jtu then Cye&2. Obviously thus
there is no A in ^ l with 7r(X) = ABl = Cy. Hence n cannot be surjective. Now
suppose that n is surjective. For As3P\, take D e f , with n(D) = (y4B2)*2. Since
D <= ,4B\ we have (A*2)*2 = n{D) c /t(,4Bl) = (A*7)*2 c (,4B2)B2, so (A^)"1 = (/P2)82.

(IV) Suppose that Jt\ ^ ^ 2 . Take y in ^ 2 \ Jtu then x(Cy) = {0}. Since Cy and
{0} induce different R-classes, k cannot preserve the R-classes. Conversely, if
Jt^ = J(2 then P(5! )^P(B 2 ) and£(C n B ^ = P(C n B2) = P(C) for all C in ,^2.
Thus P fCnB, ) " ' = PJC)Bl. Since P(C)B2 induces the same /^-classes as C, PJC)B'
induces the same /?-calsses as 7r(P(C)Bl) = P(C)B2 by (I), we see that the R-classes
induced by Ce&2 and X(C) = CnBl are the same.

(VII) Suppose that /^-synthesis holds for B1.
(1) Assume that n is not injective. Then there are A, A' in #r

l with A # A' but
n(A) = n(A'). Since R-synthesis holds for Bu the /^-classes induced by A and A' are
different. By (I), the /?-classes induced by n{A) and n(A') are different, contradicting
our hypothesis that n(A) = n(A'). Thus n is injective.

(2) For each A in &\, since ^B a n Bj induces the same /^-classes as A, we have
/l(/4fl2) = AB2 n Bt = A. Thus A is surjective. Combining (1) and (2) we see that
X ° n(A) = AB2 r\Bx = A for all A in ^ and that X ° 7t is the identity map of &v

Kahane (1965) proved that if A is a closed subalgebra of Ll(T) with a constant
C > 0 such that | m — n | < C for m, n e Ax, a # 0, then A is an J?-subalgebra of Ll(T).
Tseng-Wang (1975) extended Kahane's result to any Segal algebra containing C(T).
As a matter of fact, with the same proof their criterion is applicable for certain non-
Segal homogeneous Banach algebras : L"A(T), C A(T),AftT) where A $ Z and C^7),
L(%(T) where Q is a finite subset of Z. (See Wang (1977) for these algebras.)

THEOREM 2.11. let B( T) be a homogeneous Banach algebra with maximal ideal space
Jt and d a constant such that || yn \\B < d V « e J(, where yn(x) = emx. Suppose that A is
a closed subalgebra of B(T) with the R-classes (AJ, k > 0 a constant such that
\m — n\ < k whenever m, neAx, or. i= 0. Then A is an R-subalgebra of B(T).

3. Rudin synthesis for L"(G), 1 < p < oo

Friedberg (1970) proved that for any closed subalgebra A of L}{G),
(P(A)L') = BL2 n L00 and (AL>) = ~BW' for some subspace B of L°°(G). It turns out that
A is an R-subalgebra of L\G) if and only if BL1 nLm = Bw'. We apply Friedberg's
theory to L"(G)-algebras, 1 < p < oo.
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Let A be a closed subalgebra of LP(G), 1 < p < oo, which induces the .R-classes
(A,). For a. # 0, Ax = {yai,.--,yaj, define

n n

i = 1 ' i = 1 '

where p~l +q~l = 1, and F o = Ao. Let F be the closed linear subspace of L"(G)
generated by | J a Fx. We call F the Friedberg space of A. Note that supp q> c Z(7) for
all <p in F and Fa = {0}, a ^ 0, whenever Ax is a singleton.

LEMMA 3.1. Let Abe a closed subalgebra ofLP{G), 1 < p < oo, with R-classes (AJ.
7/F is the Friedberg space of A, then F c A1.

PROOF. FixfeA. For
n

we have

= I
= /(x)

J
n

= Z
n

= .Z
n

= .Z

ajjG

ajmx

n

Ho
J = I

/ (x )< -

where

x,yaj>dx

w« =/(AJ

= 0.

It is clear that </,y> =/(y) = 0 for all yeF0. Therefore F <= / l x .

THEOREM 3.2. Let F be t/ie Friedberg space of A. Then {AL")X = F, 1 < p < oo.

PROOF. By Lemma 3.1, F <= (X^O1. L" is reflexive for 1 < p < oo, so (F1)1 = F. Let
giAu. Suppose that giyj # g(y2) for some y1)y2 eAa, a # 0. Then yt - y 2 e F a but
<Vi ~?2^> ^ 0. Suppose that $y) ?fe 0 for some y e Ao, then y s F 0 but <gf,y> ¥= 0.
We conclude that g^F1. Thus F x <= AL" or (/I1'')1 «= F. This completes the proof.
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THEOREM 3.3.

(I) For 1 <p<oo,p~1+q-1 = 1, F l ' n L« c (Pfi)1')1.
(II) For 1 < p ̂  2, p-'+q-1 = 1, F n L ' = (PjA)LP)\

PROOF. (I) Let cpeF1' n L". Take {<pj <= F with || q>n - <p ||, -> 0. For peP(A), we
have

>| < | O-</>„,/>> |+ |<<Pn,P>l

Hence <<p,p> = 0. Therefore <<p, />=0 for / in P(I)L ' . Therefore
FL1 nLqc (PjA)LY-

(II) Clearly FnL ' c f t ' nL ' c (P ( J ) t ' ) i . We need to prove that
[P(A)L')czFL\ Let <pe(P(A)LycL2(G). By the Plancherel Theorem,
<P = Zysr<p(y)y™L2-norm.U(x # 0,Aa={yt,...,ym}, thenO = <<p,pa> = £ 7 = 1 ^ ) .
We conclude that <px = ZJ= x q>(jj) y} e Fa. For y e Ao = /"(,, let <py = ^(y) y, we have
(pyeF. Hence (j>eFL\ Together with the fact that (P(A)LY c L«,we conclude that
(P(A)LP)1 c FL2 n L«. This completes the proof.

COROLLARY 3.4. Let F be the Friedberg space of A. Then
(I) For p>2, if A is an R-subalgebra of LPifi), then Fu nLq = F.

(II) For p>2, if(P{A)LY c F, then A is an R-subalgebra.
(III) For 1 <p^2,Ais an R-subalgebra of L"(G) if and only ifF = FL2 n L".

PROOF. By Theorem 3.2, and 3.3.

By Corollary 3.4, (III), we have that R-synthesis holds for L2(G). Note that for
G = T, this fact was first proved by Edwards (1967), pp. 15-16, with different
methods.

THEOREM 3.5. Let A be a closed subalgebra ofLp(G), F the Friedberg space of A, and
I the largest closed ideal ofLP(G) contained in A; then the following are equivalent:

(I) Z(/) = Ao.
(II) J = {0}.

(III) J is an ideal of L"(G).
(IV) A = I.
(V) F is an ideal of L\G), where p'1 +q~l = 1.

PROOF. Clearly (I), (II) and (III) are equivalent.
(III) => (IV). Let Px € J. UPX * 0, let y e A,, we have y = y * Px e J. Thus Aa = {y}, a

contradiction. This implies J = {0}. By Theorem 2.5, P(A)L' = /. Spectral synthesis
holds for L"(G) and/(Z(/)) =/(A0) = 0 for a l l / i n A, so A = I.

(IV) =>(V). Suppose that A = I. Then Ax is a singleton for all a ^ 0. In this case,
Fx = {0} for all a # 0. Therefore F is the closed linear subspace generated by
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{y: yeA0 = Z(/)}. Routine arguments reveal that F is a closed ideal of

(V)=> (I) Assume that Z(/)\A0 # 0 . Take Aa = {yu...,ym} <= Z(/),m > 2. We have
yl—y2eF. Moreover yt = y,*(ya — y2)eF since F is an ideal of Lq. By Lemma 3.1,
<7i,-Pa> = 0 since PxeA. But (y^P*) = P^Vi) = 1, a contradiction.

Finally we give a sufficient condition of closed subalgebras of LP(G), p > 2, to be
R-subalgebras.

THEOREM 3.6. Let A be a dosed subalgebra of LP{G), p > 2, p~l +q~y = 1. / /
{P(A)Le n LX(G) is Lq-dense in (P(A)LY, then A is an R-subalgebra of L"(G).

PROOF. Suppose that (P(A)LY n L°° is L«-dense in (P(A)LY- We claim that
P(X)L1 nL" = PJA)L'. Clearly PjA)L" c P(T)L' n L". Let ^ e(P(J)I-1')x n L°°. For
/eP(T)L 1 n Lp, take (/„) c P(A) with || / „ - / 1 | , -• 0, we have

so </,<p>=0. Thus (P(X)LP)-L n U° <= (P(A)li n L")1. By the hypothesis,
(P(X) ty nL 0 0 is L«-dense in (F(A)LY- Since (P(J)1'1 n L")x is closed in L"(G),
(P(A)LP)1 <= (PTJ)L1 n Lp)x or PjA)L" => PjA)L1 n Lp. Thus P(X)Ll n L f = P(I)LP.

Now

AtP = {feL»(G): /(Ao) = 0, / (AJ = constant, a ^ 0}

= {fe L2(G): /(Ao) = 0, / ( A J = constant, a # 0} n L»(G)

= PX4)L2 n Lp (since R-synthesis holds for L2(G))

c P(A)L' nLp l t P

Therefore Au = PIT)1-'. Thus /I is an K-subalgebra of L"(G).
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