J. Austral. Math. Soc. (Series A) 29 (1980), 407-416

RUDIN SYNTHESIS ON HOMOGENEOUS BANACH ALGEBRAS

RONG-SONG JIH and HWAI-CHIUAN WANG

(Received 20 November 1978; revised 25 September 1979)

Communicated by E. Strzelecki

Abstract

The main results of this article are

- (I) Let B be a homogeneous Banach algebra, A a closed subalgebra of B, and I the largest closed ideal of B contained in A. We assert that $\overline{\mathbf{P}(A)}^B = \overline{I + J^B}$ for some closed subalgebra J of B. Furthermore, under suitable conditions, we show that A is an R-subalgebra if and only if J is an Rsubalgebra. A number of concrete closed subalgebras of a homogeneous Banach algebra therefore are R-subalgebras. For the definition of $\mathbf{P}(A)$ and that of an R-subalgebra, see the introduction in Section 1.
- (II) We give sufficient and necessary conditions for a closed subalgebra of $L^p(G)$, 1 , to be an*R*-subalgebra.

1980 Mathematics subject classification (Amer. Math. Soc.): 43 A 15, 43 A 45, 46 J 30.

1. Introduction

Throughout this article, let G be an infinite compact abelian group with character group Γ and T the circle group. Rudin (1962), Chapter 9, began to investigate the structure of closed subalgebras of $L^1(G)$ by a synthesis method, called Rudin synthesis or simply R-synthesis. As a matter of fact, Rudin's synthesis method can be applied to homogeneous Banach algebras.

DEFINITION 1.1. Let G be an infinite compact abelian group. By a homogeneous Banach algebra on G, we mean a subalgebra B(G) of $L^1(G)$ which is itself a Banach algebra under suitable norm $\|\cdot\|_B$ with $\|\cdot\|_B \ge \|\cdot\|_1$, convolution as multiplication and possessing the following homogeneous properties :

(I) If $f \in B(G)$, $x \in G$, then $f_x \in B(G)$ and $||f_x||_B = ||f||_B$ where $f_x(y) = f(y-x)$. (II) For each f in B(G), $x \to f_x$ is a continuous map of G into $(B(G), ||\cdot||_B)$.

The research in this paper was partially supported by the National Science Council, Republic of China.

A homogeneous Banach algebra B(G) is called a Segal algebra if B(G) is dense in $(L^{1}(G), \|\cdot\|_{1})$. For properties of homogeneous Banach algebras, see Šilov (1954), Reiter (1968, 1971) and Wang (1972, 1977).

A closed subalgebra A of a homogeneous Banach algebra B(G) induces an equivalence relation \sim on Γ where $\gamma_1 \sim \gamma_2$ if and only if $\hat{f}(\gamma_1) = \hat{f}(\gamma_2)$ for all f in A. Denote the equivalence classes by (Δ_{α}) called the Rudin classes (or simply, the *R*-classes) induced by A. By the Riemann-Lebesgue lemma, each Δ_{α} is finite except possibly for Δ_0 where $\Delta_0 = \{\gamma \in \Gamma : \hat{f}(\gamma) = 0, \forall f \in A\}$. Let $\mathbf{P}(A)$ be the subalgebra generated by the trigonometric polynomials $P_{\alpha}, \alpha \neq 0$, such that $\hat{P}_{\alpha} = \chi_{\Delta}$, the characteristic function of Δ_{α} , and

 $A^{B(G)} = \{ f \in B(G) : \hat{f}(\Delta_0) = 0, \ \hat{f}(\Delta_\alpha) = \text{constant}, \ \alpha \neq 0 \}.$

Rudin (1962), Chapter 9, proved that $\overline{\mathbf{P}(A)}^B$ and $A^{B(G)}$ are the minimal and the maximal closed subalgebra of B(G) inducing the same *R*-classes (Δ_{α}) .

DEFINITION 1.2. A closed subalgebra A of a homogeneous Banach algebra B(G) is called an R-subalgebra if $\overline{\mathbf{P}(A)}^B = A = A^{B(G)}$ or equivalently, if each $f \in B(G)$ with $\hat{f}(\Delta_0) = 0$, $\hat{f} = \text{constant}$ on Δ_{α} , $\alpha \neq 0$, can be approximated by trigonometric polynomials P such that \hat{F} are constant on Δ_{α} , $\alpha \neq 0$. We say that Rudin synthesis (or simply, R-synthesis) holds for B(G) if every closed subalgebra of B(G) is an R-subalgebra. Otherwise we say that Rudin synthesis fails for B(G).

Kahane (1965) and Rider (1969) proved that R-synthesis fails for $L^1(T)$ and $L^p(T)$, $1 , respectively. Tseng-Wang (1975) proved that, for the <math>A^p(T)$ -algebras, Rsynthesis holds for $1 \le p \le 2$ and fails for 2 . In this article, we study Rsynthesis of homogeneous Banach algebras through their largest closed ideals. For aclosed subalgebra A of a homogeneous Banach algebra <math>B(G), we first assert that $\overline{P(A)}^B = \overline{I+J}^B$ where I is the largest closed ideal of B(G) contained in A and J a closed subalgebra of B(G). Various characterizations of I are given. A number of concrete closed subalgebras of homogeneous Banach algebras therefore are Rsubalgebras. Stimulated by the ideas of Friedberg (1970), we give sufficient and necessary conditions for a closed subalgebra A of $L^p(G)$, 1 , to be an Rsubalgebra. Finally, we give a simple and different proof of Edward's result : R $synthesis holds for <math>L^2(T)$.

2. Rudin synthesis for homogeneous Banach algebras

Let $\{I_{\alpha}\}$ be the family of all ideals of B(G) contained in the closed subalgebra $A, \Sigma I_{\alpha}$ the ideal of all finite sums $f_1 + ... + f_n, f_i \in I_{\alpha}$. Then the *B*-closure *I* of ΣI_{α} is the largest

408

closed ideal of B(G) contained in A. Let (Δ_{α}) be the R-classes induced by A, Z(I) the zero set of I, $P_1 = \{P_{\alpha} | \alpha \neq 0, \Delta_{\alpha} \text{ is a singleton}\}$, and $P_2 = \{P_{\alpha} | \alpha \neq 0, \Delta_{\alpha} \text{ is not a singleton}\}$. Then we have

THEOREM 2.1. (I) Let J be a closed ideal of B(G), then J is the closed linear space of the set, say K, of characters it contains. In particular, ideals of B(G) are R-subalgebras. (II) The zero set Z(J) of a closed ideal J of B(G) is the complement of K in Γ .

The proof follows from Wang (1977), Theorem 9.1.

THEOREM 2.2. Let A be a closed subalgebra of a homogeneous Banach algebra B(G), I the largest closed ideal of B(G) contained in A, and $P_1 = \{P_{\alpha} \mid \alpha \neq 0, \Delta_{\alpha} \text{ is a singleton}\}$. Then

- (I) I is the closed linear span of P_1 , $I \subset \overline{\mathbf{P}(A)}^B$, and $Z(I) = \Delta_0 \cup (\bigcup_{\alpha} \Delta_{\alpha})$ where Δ_{α} is not a singleton.
- (II) Any two closed subalgebras which induce the same R-classes have the same largest closed ideal.
- (III) A is an R-subalgebra if and only if $(\overline{\mathbf{P}(A)}^{B})^{\uparrow}|_{Z(I)} = (A^{B(G)})^{\uparrow}|_{Z(I)}$.

PROOF. It suffices to prove (III). If $f \in A^{B(G)}$ and f = g on Z(I) where $g \in \overline{\mathbf{P}(A)}^{B}$, then $f-g \in I$, so that f-g is in the closed span of P_1 , or $f-g \in \overline{\mathbf{P}(A)}^{B}$.

LEMMA 2.3. Let C(G) be the Segal algebra of all complex-valued continuous functions on G and S(G) a Segal algebra containing C(G), H a closed ideal of S(G). For any μ in the dual S(G)* of S(G), we have $h \perp \mu$ for all $h \in H$ if and only if $h * \mu = 0$ for all $h \in H$.

PROOF. Since $C(G)^* = M(G)$, $S(G)^* \subset M(G)$. Recall that M(G) * S(G) = S(G) (see Wang (1977)). For $g \in S(G)$, $h \in H$,

$$0 = \langle h * g, \mu \rangle \text{ since } H \perp \mu \text{ and } h * g \in H$$
$$= \int (h * g)(-y) \, d\mu(y) = \iint g(x) \, h(-y-x) \, dx \, d\mu(y)$$
$$= \int g(x) \, d(h * \mu)(-x) = \langle g, h * \mu \rangle.$$

Thus $h * \mu = 0$ for all $h \in H$. Conversely, suppose that $h * \mu = 0$ for all $h \in H$. Let (K_n) be an approximate identity. For $h \in H$, we have $0 = \langle K_n, h * \mu \rangle = \langle K_n * h, \mu \rangle$. Since $||K_n * h - h||_s \to 0$, we have $\langle h, \mu \rangle = 0$. This completes the proof.

For
$$H \subset S(G)$$
, $K \subset S(G)^*$ and $\mu \in S(G)^*$, define
 $H^{\perp} = \{ \varphi \in S(G)^* : \langle h, \varphi \rangle = 0 \ \forall h \in H \}, K^{\perp} = \{ f \in S(G) : \langle f, \varphi \rangle = 0, \forall \varphi \in K \}$

410 and

$$\mathscr{I}_{\mu} = \{g \in S(G) : g * \mu = 0\}.$$

Then H^{\perp} and K^{\perp} are closed linear subspace of S(G) and $S(G)^*$ respectively. Moreover, if H and K are ideals then so are H^{\perp} and K^{\perp} . Clearly \mathscr{I}_{μ} is a closed ideal of S(G) contained in $\{\mu\}^{\perp}$.

THEOREM 2.4. Let S(G) be a Segal algebra containing C(G), A a closed subalgebra of S(G) and I the largest closed ideal of S(G) contained in A. Then $I = \bigcap_{\mu \in A^{\perp}} \mathscr{I}_{\mu}$.

PROOF. By Lemma 2.3, $I \subset \bigcap_{\mu \in A^{\perp}} \mathscr{I}_{\mu}$. Since

$$\bigcap_{\mu\in A^{\perp}}\mathscr{I}_{\mu}\subset \bigcap_{\mu\in A^{\perp}}\{\mu\}=(A^{\perp})^{\perp}=\bar{A}=A$$

and $\bigcap_{\mu \in A^{\perp}} \mathscr{I}_{\mu}$ is a closed ideal of S(G), $\bigcap_{\mu \in A^{\perp}} \mathscr{I}_{\mu} \subset I$. Therefore $I = \bigcap_{\mu \in A^{\perp}} \mathscr{I}_{\mu}$.

Let A be a closed subalgebra of a homogeneous Banach algebra B(G) inducing the R-classes (Δ_{α}) , $P_2 = \{P_{\alpha} \mid \alpha \neq 0, \Delta_{\alpha} \text{ is not a singleton}\}$, and J be the closed span of P_2 . Clearly $I \cap J = \{0\}$. Note that, for the R-classes (∇_{λ}) induced by J, then $\nabla_0 = \Delta_0 \cup \Delta_{\alpha}$ where Δ_{α} are singletons. We claim that $\overline{\mathbf{P}(A)}^B = \overline{I + J}^B$. In fact, I + Jand $\mathbf{P}(A)$ are both spanned by $P_1 \cup P_2$.

THEOREM 2.5. If Z(I) is in the coset ring of Γ , then $A^{B(G)} = I + J^{B(G)}$ and $\overline{P(A)}^B = I + J$. In this case, A is an R-subalgebra if and only if J is an R-subalgebra.

PROOF. By a well-known result of Cohen (see Rudin (1962), 3.1.3), there exists $\mu \in M(G)$ with $\hat{\mu} = \chi_{Z(I)}$. For $f \in A^{B(G)}$, we have $f - f * \mu \in B$ and $(f - f * \mu) |_{Z(I)} = 0$. Hence $f - f * \mu \in I$. But $f * \mu \in J^{B(G)}$ so $f \in I + J^{B(G)}$ or $A^{B(G)} \subset I + J^{B(G)}$. Clearly $I + J^{B(G)} \subset A^{B(G)}$. We conclude that $A^{B(G)} = I + J^{B(G)}$.

For $g \in \overline{\mathbf{P}(A)}^{B}$, there exists $(P_{m}) \subset \mathbf{P}(A)$ with $||P_{m} - g||_{B} \to 0$. Since

 $||P_{m} * \mu - g * \mu||_{B} \leq ||\mu||_{M} ||P_{m} - g||_{B} \rightarrow 0$

and $P_m * \mu \mathbf{P}(J)$, we have $g * \mu \in \overline{\mathbf{P}(J)} = J$. Since $(g - g * \mu)|_{Z(I)} = 0$, $g - g * \mu \in I$. Thus $g = (g - g * \mu) + g * \mu \in I + J$. We conclude that $\overline{\mathbf{P}(A)}^B \subset I + J$. But $I + J \subset \overline{\mathbf{P}(A)}^B$, so $\overline{\mathbf{P}(A)}^B = I + J$.

Suppose that A is an R-subalgebra. For f in J^B , there exists $(P_n) \subset \mathbf{P}(A)$ with $||P_n - f||_B \to 0$ since $J^B \subset A^B = \mathbf{P}(A)^B$. But $\mu * P_n \in \mathbf{P}(J)$ and

$$||f - \mu * P_n||_B = ||\mu * f - \mu * P_n||_B \to 0,$$

so $f \in \overline{\mathbf{P}(J)^B}$ or J is an R-subalgebra. Conversely, let J be an R-subalgebra, we have $A^B = I + J^B = I + J = \overline{\mathbf{P}(A)^B}$. This completes the proof.

REMARK 2.6. If we replace Z(I) by $Z(I) \setminus \Delta_0$ in Theorem 2.5, the conclusion still holds.

COROLLARY 2.7. Let B(G) be a homogeneous Banach algebra with maximal ideal space \mathcal{M} , and A a closed subalgebra of B(G). If \hat{A} separates points of \mathcal{M} , then A is an R-subalgebra.

PROOF. Let (Δ_{α}) be the *R*-classes induced by *A*. Note that $\Delta_{\alpha} \cap \mathcal{M} = \Delta_{\alpha}$ for all $\alpha \neq 0$ since $\Gamma \setminus \mathcal{M} \subset \Delta_0$. \hat{A} separates points of \mathcal{M} if and only if Δ_{α} is a singleton for all $\alpha \neq 0$ and $\Delta_0 \cap \mathcal{M}$ contains at most one element. We claim : (I) If $\Delta_0 \cap \mathcal{M} = \emptyset$, then *A* is the closed ideal of B(G) with zero set $\Gamma \setminus \mathcal{M} = \Delta_0$, and A = B(G). (II) If $\Delta_0 \cap \mathcal{M} = \{\gamma\}$, then $A = \{f \in B(G) : \hat{f}(\gamma) = 0\}$. Both cases follow from the fact that B(G) admits an approximate identity (see Wang (1977), p. 95) and so *A* is a closed ideal of B(G). Thus *A* is an *R*-subalgebra.

THEOREM 2.8. A maximal subalgebra A of a homogeneous Banach algebra B(G) with maximal ideal space \mathcal{M} is either

(I) $A = \{f \in B(G) : \hat{f}(\gamma) = 0\}$ for some γ in \mathcal{M} or (II) $A = \{f \in B(G) : \hat{f}(\gamma_1) = \hat{f}(\gamma_2)\}$ for some γ_1, γ_2 in \mathcal{M} .

PROOF. The proof is along the lines of Edwards (1967), p. 17.

COROLLARY 2.9. A maximal subalgebra of a homogeneous Banach algebra B(G) is an R-subalgebra.

PROOF. The proof follows from Theorem 2.8.

THEOREM 2.10. Let B_i (i = 1, 2) be a homogeneous Banach algebra with maximal ideal space \mathcal{M}_i and the family \mathcal{F}_i of all closed subalgebras. If $B_1 \subset B_2$, define $\pi: \mathcal{F}_1 \to \mathcal{F}_2, \lambda: \mathcal{F}_2 \to \mathcal{F}_1$ by $\pi(A) = \overline{A}^{B_2}$ for $A \in \mathcal{F}_1, \lambda(C) = C \cap B_1$ for $C \in \mathcal{F}_2$. Then we have

- (I) π preserves the R-classes in the sense that A and $\pi(A)$ induce the same R-classes for all A in \mathcal{F}_1 .
- (II) If π is injective and R-synthesis fails for B_1 , then R-synthesis fails for B_2 .
- (III) If π is surjective, then $\mathcal{M}_1 = \mathcal{M}_2$ and $(\overline{A^{B_1}})^{B_2} = (\overline{A^{B_2}})^{B_2}$, $\forall A \in \mathcal{F}_1$.
- (IV) λ preserves the R-classes if and only if $\mathcal{M}_1 = \mathcal{M}_2$.
- (V) If λ is injective then $\mathcal{M}_1 = \mathcal{M}_2$.
- (VI) If λ is surjective, then $\overline{\mathbf{P}(A)}^{B_2} \cap B_1 = \overline{\mathbf{P}(A)}^{B_1}, \forall A \in \mathcal{F}_1$.
- (VII) If R-synthesis holds for B_1 , then π is injective. λ is surjective and $\lambda \circ \pi$ is the identity map of \mathcal{F}_1 and $A = \overline{A}^{B_2} \cap B_1$, $\forall A \in \mathcal{F}_1$.
- (VIII) If R-synthesis holds for B_2 and $\mathcal{M}_1 = \mathcal{M}_2$, then $\pi \circ \lambda$ is the identity map of \mathcal{F}_2 and $C = \overline{C \cap B_1} B_2, \forall C \in \mathcal{F}_2^s$.

PROOF. It suffices to prove (II), (III), (IV) and (VII).

(II) Suppose that π is injective and that *R*-synthesis fails for \underline{B}_1 . Then there is *A* in \mathscr{F}_1 such that $\overline{\mathbf{P}(A)}^{B_1} \subseteq A^{B_1}$. Thus $\pi(\overline{\mathbf{P}(A)}^{B_1}) \subseteq \pi(A^{B_1})$. Since $\pi(\overline{\mathbf{P}(A)}^{B_1}) = \overline{\mathbf{P}(A)}^{B_2}$ and $\pi(A^{B_1}) \subset (\overline{A}^{B_2})^{B_2}$, we have $\overline{\mathbf{P}(\overline{A}^{B_2})}^{B_2} = \overline{\mathbf{P}(A)}^{B_2} \neq (\overline{A}^{B_2})^{B_2}$ so *R*-synthesis fails for B_2 .

(III) Suppose that $\mathcal{M}_1 \neq \mathcal{M}_2$. Take γ in $\mathcal{M}_2 \setminus \mathcal{M}_1$, then $C\gamma \in \mathcal{F}_2$. Obviously thus there is no A in \mathcal{F}_1 with $\pi(A) = \overline{A}^{B_2} = C\gamma$. Hence π cannot be surjective. Now suppose that π is surjective. For $A \in \mathcal{F}_1$, take $D \in \mathcal{F}_1$ with $\pi(D) = (\overline{A}^{B_2})^{B_2}$. Since $D \subset A^{B_1}$, we have $(\overline{A}^{B_2})^{B_2} = \pi(D) \subset \pi(A^{B_1}) = (\overline{A}^{B_1})^{B_2} \subset (\overline{A}^{B_2})^{B_2}$, so $(\overline{A}^{B_1})^{B_2} = (\overline{A}^{B_2})^{B_2}$.

(IV) Suppose that $\mathcal{M}_1 \neq \mathcal{M}_2$. Take γ in $\mathcal{M}_2 \setminus \mathcal{M}_1$, then $\lambda(C\gamma) = \{0\}$. Since $C\gamma$ and $\{0\}$ induce different *R*-classes, λ cannot preserve the *R*-classes. Conversely, if $\mathcal{M}_1 = \mathcal{M}_2$ then $\mathbf{P}(B_1) = \mathbf{P}(B_2)$ and $\mathbf{P}(C \cap B_1) = \mathbf{P}(C \cap B_2) = \mathbf{P}(C)$ for all C in \mathcal{F}_2 . Thus $\overline{\mathbf{P}(C \cap B_1)}^{B_1} = \overline{\mathbf{P}(C)}^{B_1}$. Since $\overline{\mathbf{P}(C)}^{B_2}$ induces the same *R*-classes as C, $\overline{\mathbf{P}(C)}^{B_1}$ induces the same *R*-classes as $\pi(\overline{\mathbf{P}(C)}^{B_1}) = \overline{\mathbf{P}(C)}^{B_2}$ by (I), we see that the *R*-classes induced by $C \in \mathcal{F}_2$ and $\lambda(C) = C \cap B_1$ are the same.

(VII) Suppose that R-synthesis holds for B_1 .

(1) Assume that π is not injective. Then there are A, A' in \mathscr{F}_1 with $A \neq A'$ but $\pi(A) = \pi(A')$. Since R-synthesis holds for B_1 , the R-classes induced by A and A' are different. By (I), the R-classes induced by $\pi(A)$ and $\pi(A')$ are different, contradicting our hypothesis that $\pi(A) = \pi(A')$. Thus π is injective.

(2) For each A in \mathscr{F}_1 , since $\overline{A}^{B_2} \cap B_1$ induces the same R-classes as A, we have $\lambda(\overline{A}^{B_2}) = \overline{A}^{B_2} \cap B_1 = A$. Thus λ is surjective. Combining (1) and (2) we see that $\lambda \circ \pi(A) = \overline{A}^{B_2} \cap B_1 = A$ for all A in \mathscr{F}_1 and that $\lambda \circ \pi$ is the identity map of \mathscr{F}_1 .

Kahane (1965) proved that if A is a closed subalgebra of $L^1(T)$ with a constant C > 0 such that |m-n| < C for $m, n \in \Delta_{\alpha}, \alpha \neq 0$, then A is an R-subalgebra of $L^1(T)$. Tseng-Wang (1975) extended Kahane's result to any Segal algebra containing C(T). As a matter of fact, with the same proof their criterion is applicable for certain non-Segal homogeneous Banach algebras : $L^p_{\Delta}(T), C_{\Delta}(T), A^p_{\Delta}(T)$ where $\Delta \subseteq Z$ and $C^k_{\Omega}(T)$, $L^{(k)}_{\Omega}(T)$ where Ω is a finite subset of Z. (See Wang (1977) for these algebras.)

THEOREM 2.11. Let B(T) be a homogeneous Banach algebra with maximal ideal space \mathcal{M} and d a constant such that $\| \gamma_n \|_{B} \leq d \forall n \in \mathcal{M}$, where $\gamma_n(x) = e^{inx}$. Suppose that A is a closed subalgebra of B(T) with the R-classes (Δ_{α}) , k > 0 a constant such that |m-n| < k whenever $m, n \in \Delta_{\alpha}, \alpha \neq 0$. Then A is an R-subalgebra of B(T).

3. Rudin synthesis for $L^{p}(G)$, 1

Friedberg (1970) proved that for any closed subalgebra A of $L^1(G)$, $\overline{(\mathbf{P}(A)}^{L^1}) = \overline{B}^{L^2} \cap L^{\infty}$ and $(A^{L^1}) = \overline{B}^{w'}$ for some subspace B of $L^{\infty}(G)$. It turns out that A is an R-subalgebra of $L^1(G)$ if and only if $\overline{B}^{L^2} \cap L^{\infty} = \overline{B}^{w'}$. We apply Friedberg's theory to $L^p(G)$ -algebras, 1 . Let A be a closed subalgebra of $L^{p}(G)$, $1 , which induces the R-classes <math>(\Delta_{\alpha})$. For $\alpha \neq 0$, $\Delta_{\alpha} = \{\gamma_{\alpha_{1}}, ..., \gamma_{\alpha_{n}}\}$, define

$$F_{\alpha} = \left\{ \varphi \in L^{q}(G) : \varphi = \sum_{i=1}^{n} a_{i} \gamma_{\alpha}, a_{i} \in \mathbb{C}, \sum_{i=1}^{n} a_{i} = 0 \right\}$$

where $p^{-1} + q^{-1} = 1$, and $F_0 = \Delta_0$. Let F be the closed linear subspace of $L^q(G)$ generated by $\bigcup_{\alpha} F_{\alpha}$. We call F the Friedberg space of A. Note that supp $\hat{\varphi} \subset Z(I)$ for all φ in F and $F_{\alpha} = \{0\}, \alpha \neq 0$, whenever Δ_{α} is a singleton.

LEMMA 3.1. Let A be a closed subalgebra of $L^p(G)$, $1 , with R-classes <math>(\Delta_{\alpha})$. If F is the Friedberg space of A, then $F \subset A^{\perp}$.

PROOF. Fix $f \in A$. For

$$\varphi = \sum_{j=1}^n a_j \gamma_{\alpha_j} \in F_{\alpha_j}$$

we have

$$\langle f, \varphi \rangle = \int_{G} f(x) \varphi(-x) dx$$

= $\int_{G} f(x) \sum_{j=1}^{n} a_{j} \gamma_{\alpha j}(-x) dx$
= $\sum_{j=1}^{n} a_{j} \int_{G} f(x) \langle -x, \gamma_{\alpha j} \rangle dx$
= $\sum_{j=1}^{n} a_{j} \hat{f}(\gamma_{\alpha j})$
= $\sum_{j=1}^{n} a_{j} m_{\alpha}$ where $m_{\alpha} = \hat{f}(\Delta_{\alpha})$
= $m_{\alpha} \cdot \sum_{j=1}^{n} a_{j}$
= 0.

It is clear that $\langle f, \gamma \rangle = \hat{f}(\gamma) = 0$ for all $\gamma \in F_0$. Therefore $F \subset A^{\perp}$.

THEOREM 3.2. Let F be the Friedberg space of A. Then $(A^{L^p})^{\perp} = F$, 1 .

PROOF. By Lemma 3.1, $F \subset (A^{L^{p}})^{\perp}$. L^{p} is reflexive for $1 , so <math>(F^{\perp})^{\perp} = F$. Let $g \notin A^{L^{p}}$. Suppose that $\hat{g}(\gamma_{1}) \neq \hat{g}(\gamma_{2})$ for some $\gamma_{1}, \gamma_{2} \in \Delta_{\alpha}, \alpha \neq 0$. Then $\gamma_{1} - \gamma_{2} \in F_{\alpha}$ but $\langle \gamma_{1} - \gamma_{2}, g \rangle \neq 0$. Suppose that $\hat{g}(\gamma) \neq 0$ for some $\gamma \in \Delta_{0}$, then $\gamma \in F_{0}$ but $\langle g, \gamma \rangle \neq 0$. We conclude that $g \notin F^{\perp}$. Thus $F^{\perp} \subset A^{L^{p}}$ or $(A^{L^{p}})^{\perp} \subset F$. This completes the proof.

[7]

THEOREM 3.3.

(I) For $1 , <math>p^{-1} + q^{-1} = 1$, $\vec{F}^{L^1} \cap L^q \subset (\overline{\mathbf{P}(A)}^{L'})^{\perp}$. (II) For $1 , <math>p^{-1} + q^{-1} = 1$, $\vec{F}^{L^2} \cap L^q = (\overline{\mathbf{P}(A)}^{L'})^{\perp}$.

PROOF. (I) Let $\varphi \in \overline{F}^{L^1} \cap L^q$. Take $(\varphi_n) \subset F$ with $\|\varphi_n - \varphi\|_1 \to 0$. For $p \in \mathbf{P}(A)$, we have

$$\begin{split} \langle \varphi, p \rangle &| \leq |\langle \varphi - \varphi_n, p \rangle| + |\langle \varphi_n, p \rangle| \\ &\leq || \varphi - \varphi_n || \cdot || p|_{\infty} \to 0. \end{split}$$

Hence $\langle \varphi, p \rangle = 0$. Therefore $\langle \varphi, f \rangle = 0$ for f in $\overline{\mathbf{P}(A)}^{L^p}$. Therefore $\overline{F}^{L^1} \cap L^q \subset (\overline{\mathbf{P}(A)}^{L^p})^{\perp}$.

(II) Clearly $\overline{F}^{L^2} \cap L^q \subset \overline{F}^{L^1} \cap L^q \subset \overline{(\mathbf{P}(A)}^{L^p})^{\perp}$. We need to prove that $(\overline{\mathbf{P}(A)}^{L^p}) \subset \overline{F}^{L^2}$. Let $\varphi \in (\overline{\mathbf{P}(A)}^{L^p})^{\perp} \subset L^2(G)$. By the Plancherel Theorem, $\varphi = \sum_{\gamma \in \Gamma} \hat{\varphi}(\gamma) \gamma$ in L^2 -norm. If $\alpha \neq 0$, $\Delta_{\alpha} = \{\gamma_1, ..., \gamma_m\}$, then $0 = \langle \varphi, p_{\alpha} \rangle = \sum_{j=1}^m \hat{\varphi}(\gamma_j)$. We conclude that $\varphi_{\alpha} = \sum_{j=1}^m \hat{\varphi}(\gamma_j) \gamma_j \in F_{\alpha}$. For $\gamma \in \Delta_0 = F_0$, let $\varphi_{\gamma} = \hat{\varphi}(\gamma) \gamma$, we have $\varphi_{\gamma} \in F$. Hence $\phi \in \overline{F}^{L^2}$. Together with the fact that $(\overline{\mathbf{P}(A)}^{L^p})^{\perp} \subset L^q$, we conclude that $(\overline{\mathbf{P}(A)}^{L^p})^{\perp} \subset \overline{F}^{L^2} \cap L^q$. This completes the proof.

COROLLARY 3.4. Let F be the Friedberg space of A. Then

- (I) For p > 2, if A is an R-subalgebra of $L^{p}(G)$, then $F^{L^{1}} \cap L^{q} = F$.
- (II) For p > 2, if $(\overline{\mathbf{P}(A)}^{L^p})^{\perp} \subset F$, then A is an R-subalgebra.
- (III) For $1 , A is an R-subalgebra of <math>L^p(G)$ if and only if $F = \overline{F}^{L^2} \cap L^q$.

PROOF. By Theorem 3.2, and 3.3.

By Corollary 3.4, (III), we have that R-synthesis holds for $L^2(G)$. Note that for G = T, this fact was first proved by Edwards (1967), pp. 15–16, with different methods.

THEOREM 3.5. Let A be a closed subalgebra of $L^{p}(G)$, F the Friedberg space of A, and I the largest closed ideal of $L^{p}(G)$ contained in A; then the following are equivalent:

- (I) $Z(I) = \Delta_0$.
- (II) $J = \{0\}$.
- (III) J is an ideal of $L^{p}(G)$.
- (IV) A = I.

(V) F is an ideal of $L^{q}(G)$, where $p^{-1} + q^{-1} = 1$.

PROOF. Clearly (I), (II) and (III) are equivalent.

(III) \Rightarrow (IV). Let $P_{\alpha} \in J$. If $P_{\alpha} \neq 0$, let $\gamma \in \Delta_{\alpha}$, we have $\gamma = \gamma * P_{\alpha} \in J$. Thus $\Delta_{\alpha} = \{\gamma\}$, a contradiction. This implies $J = \{0\}$. By Theorem 2.5, $\overline{\mathbf{P}(A)}^{L^{p}} = I$. Spectral synthesis holds for $L^{p}(G)$ and $\hat{f}(Z(I)) = \hat{f}(\Delta_{0}) = 0$ for all f in A, so A = I.

 $(IV) \Rightarrow (V)$. Suppose that A = I. Then Δ_{α} is a singleton for all $\alpha \neq 0$. In this case, $F_{\alpha} = \{0\}$ for all $\alpha \neq 0$. Therefore F is the closed linear subspace generated by

414

 $\{\gamma: \gamma \in \Delta_0 = Z(I)\}$. Routine arguments reveal that F is a closed ideal of $L^q(G)$.

 $(V) \Rightarrow (I)$ Assume that $Z(I) \setminus \Delta_0 \neq \emptyset$. Take $\Delta_{\alpha} = \{\gamma_1, ..., \gamma_m\} \subset Z(I), m \ge 2$. We have $\gamma_1 - \gamma_2 \in F$. Moreover $\gamma_1 = \gamma_1 * (\gamma_1 - \gamma_2) \in F$ since F is an ideal of L^q . By Lemma 3.1, $\langle \gamma_1, P_{\alpha} \rangle = 0$ since $P_{\alpha} \in A$. But $\langle \gamma_1, P_{\alpha} \rangle = \hat{P}_{\alpha}(\gamma_1) = 1$, a contradiction.

Finally we give a sufficient condition of closed subalgebras of $L^{p}(G)$, p > 2, to be *R*-subalgebras.

THEOREM 3.6. Let A be a closed subalgebra of $L^{p}(G)$, p > 2, $p^{-1} + q^{-1} = 1$. If $(\overline{\mathbf{P}(A)}^{L^{p}} \cap L^{\infty}(G)$ is L^{q} -dense in $(\overline{\mathbf{P}(A)}^{L^{p}})^{\perp}$, then A is an R-subalgebra of $L^{p}(G)$.

PROOF. Suppose that $(\overline{\mathbf{P}(A)}^{L^p})^{\perp} \cap L^{\infty}$ is L^q -dense in $(\overline{\mathbf{P}(A)}^{L^p})^{\perp}$. We claim that $\overline{\mathbf{P}(A)}^{L^1} \cap L^p = \overline{\mathbf{P}(A)}^{L^p}$. Clearly $\overline{\mathbf{P}(A)}^{L^p} \subset \overline{\mathbf{P}(A)}^{L^1} \cap L^p$. Let $\varphi \in (\overline{\mathbf{P}(A)}^{L^p})^{\perp} \cap L^{\infty}$. For $f \in \overline{\mathbf{P}(A)}^{L^1} \cap L^p$, take $(f_n) \subset \mathbf{P}(A)$ with $||f_n - f||_1 \to 0$, we have

$$|\langle f, \varphi \rangle| \leq |\langle f_n - f, \varphi \rangle| + |\langle f_n, \varphi \rangle| \leq ||f_n - f||_1 ||\varphi||_{\infty} \to 0$$

so $\langle f, \varphi \rangle = 0$. Thus $(\overline{\mathbf{P}(A)}^{L^p})^{\perp} \cap L^{\infty} \subset (\overline{\mathbf{P}(A)}^{L^1} \cap L^p)^{\perp}$. By the hypothesis, $(\overline{\mathbf{P}(A)}^{L^p})^{\perp} \cap L^{\infty}$ is L^q -dense in $(\overline{\mathbf{P}(A)}^{L^p})^{\perp}$. Since $(\overline{\mathbf{P}(A)}^{L^1} \cap L^p)^{\perp}$ is closed in $L^q(G)$, $(\overline{\mathbf{P}(A)}^{L^p})^{\perp} \subset (\overline{\mathbf{P}(A)}^{L^1} \cap L^p)^{\perp}$ or $\overline{\mathbf{P}(A)}^{L^p} \supset \overline{\mathbf{P}(A)}^{L^1} \cap L^p$. Thus $\overline{\mathbf{P}(A)}^{L^1} \cap L^p = \overline{\mathbf{P}(A)}^{L^p}$. Now

$$A^{L^{p}} = \{ f \in L^{p}(G) : \hat{f}(\Delta_{0}) = 0, \ \hat{f}(\Delta_{\alpha}) = \text{constant}, \ \alpha \neq 0 \}$$

= $\{ f \in L^{2}(G) : \hat{f}(\Delta_{0}) = 0, \ \hat{f}(\Delta_{\alpha}) = \text{constant}, \ \alpha \neq 0 \} \cap L^{p}(G)$
= $\overline{\mathbf{P}(A)}^{L^{2}} \cap L^{p}$ (since *R*-synthesis holds for $L^{2}(G)$)
 $\subset \overline{\mathbf{P}(A)}^{L^{1}} \cap L^{p} = \overline{\mathbf{P}(A)}^{L^{p}}.$

Therefore $A^{L^p} = \overline{\mathbf{P}(A)}^{L^p}$. Thus A is an R-subalgebra of $L^p(G)$.

Acknowledgement

We would like to thank the referee for his valuable suggestions in the first draft of this paper.

References

- R. E. Edwards (1967), Fourier series, a modern introduction, Vol. II (Holt, Reinhart and Winston, Inc., New York).
- S. Friedberg (1970), 'Closed subalgebras of group algebras', Trans. Amer. Math. Soc. 147, 117-125.
- J. P. Kahane (1965), 'Idempotents and closed subalgebras of A(Z)', in On function algebras, pp. 198–207 (Proc. Internat. Sympt., Tulane University).

- H. Reiter (1968), Classical harmonic analysis and locally compact groups (Oxford mathematics monographs, Oxford University Press, Oxford).
- H. Reiter (1971), L¹-algebras and Segal algebras (Lecture Notes in Mathematics 231, Springer-Verlag, Berlin).
- D. Rider (1969), 'Closed subalgebras of $L^{1}(T)$ ', Duke Math. J. 36, 105-116.
- W. Rudin (1962), Fourier analysis on groups (Interscience, New York).
- G. E. Šilov (1954), 'Homogeneous rings of functions', in *Translations*, pp. 393–455 (Series 1, Volume 8, Amer. Math. Soc.).
- C. N. Tseng and H. C. Wang (1975), 'Closed subalgebras of homogeneous Banach algebras', J. Austral. Math. Soc. Ser. A 20, 366–376.
- H. C. Wang (1972), 'Nonfactorization in group algebras'. Studia Math. 42, 231-241.
- H. C. Wang (1977), *Homogeneous Banach algebras* (Lecture Notes in Pure and Applied mathematics 29, Marcel Dekker, Inc., New York).

National Tsing Hua University Taiwan Republic of China Princeton University U.S.A.

Current address : National Tsing Hua University Taiwan Republic of China