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Abstract

The main results of this article are

(I) Let Bbe a homogeneous Banach algebra, A a closed subalgebra of B, and I the largest closed ideal
of B contained in 4. We assert that P(4)® = T+J? for some closed subalgebra J of B.
Furthermore, under suitable conditions, we show that A is an R-subalgebra ifand only if J isan R-
subalgebra. A number of concrete closed subalgebras of a homogeneous Banach algebra therefore
are R-subalgebras. For the definition of P(4) and that of an R-subalgebra, see the introduction in
Section 1.

(IT) We give sufficient and necessary conditions for a closed subalgebra of I (G), 1 < p < c0,to be an
R-subalgebra. ’

1980 Mathematics subject classification (Amer. Math. Soc.): 43 A 15,43 A 45,46 ] 30.

1. Introduction

Throughout this article, let G be an infinite compact abelian group with character
group I' and T'the circle group. Rudin (1962), Chapter 9, began to investigate the
structure of closed subalgebras of L(G) by a synthesis method, called Rudin
synthesis or simply R-synthesis. As a matter of fact, Rudin’s synthesis method can be
applied to homogeneous Banach algebras.

DEerINITION 1.1. Let G be an infinite compact abelian group. By a homogeneous
Banach algebra on G, we mean a subalgebra B(G) of L!(G) which is itself a Banach
algebra under suitable norm ||+ || with |||z = |||, convolution as multiplication
and possessing the following homogeneous properties :

(DIf fe B(G), x€G, then f, € B(G) and || f ||z = || f ||z where £(y) = f(y—x).
. (IDFor each fin B(G), x - f, is a continuous map of G into (B(G), -||B).

The research in this paper was partially supported by the National Science Council, Republic of
China.
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A homogeneous Banach algebra B(G) is called a Segal algebra if B(G) is dense in
(LY(G),||*||,)- For properties of homogeneous Banach algebras, see Silov (1954),
Reiter (1968, 1971) and Wang (1972, 1977).

A closed subalgebra 4 of a homogeneous Banach algebra B(G) induces an
equivalence relation ~ on I" where y; ~ y, if and only if f(y,) = f(y,) for all fin A.
Denote the equivalence classes by (A,) called the Rudin classes (or simply, the R-
classes) induced by A. By the Riemann-Lebesgue lemma, each A, is finite except
possibly for A, where A, = {yeT": f(y) =0, V f e A}. Let P(A) be the subalgebra
generated by the trigonometric polynomials P,, a # 0, such that P, = y,, the
characteristic function of A,, and

AB® = { fe B(G): f(A,) = 0, f(A,) = constant, a # 0}.
Rudin (1962), Chapter 9, proved that P(4)® and A®® are the minimal and the
maximal closed subalgebra of B(G) inducing the same R-classes (A,).

DEFINITION 1.2. A closed subalgebra A of a homogeneous Banach algebra B(G) is
called an R-subalgebra if P(4)® = A = A%9 or equivalently, if each fe B(G) with
f(Ay) =0, f=constant on A, «# 0, can be approximated by trigonometric
polynomials P such that P are constant on A, & # 0. We say that Rudin synthesis (or
simply, R-synthesis) holds for B(G) if every closed subalgebra of B(G) is an R-
subalgebra. Otherwise we say that Rudin synthesis fails for B(G).

Kahane (1965) and Rider (1969) proved that R-synthesis fails for L'(T)and L?(T),
1 < p < 2, respectively. Tseng-Wang (1975) proved that, for the A?(T)-algebras, R-
synthesis holds for 1 < p < 2 and fails for 2 < p < co. In this article, we study R-
synthesis of homogeneous Banach algebras through their largest closed ideals. Fora
closed subalgebra A of a homogeneous Banach algebra B(G), we first assert that
P(A4)® = I+ J® where I is the largest closed ideal of B(G) contained in A and J a
closed subalgebra of B(G). Various characterizations of I are given. A number of
concrete closed subalgebras of homogeneous Banach algebras therefore are R-
subalgebras. Stimulated by the ideas of Friedberg (1970), we give sufficient and
necessary conditions for a closed subalgebra A of LP(G), 1 <p < oo, to be an R-
subalgebra. Finally, we give a simple and different proof of Edward’s result : R-
synthesis holds for L*(T).

2. Rudin synthesis for homogeneous Banach algebras

Let {I,} be the family of all ideals of B(G)contained in the closed subalgebra A4, X1,
the ideal of all finite sums f; +... +f,, f;e ] o Then the B-closure I of Z1, is the largest
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closed ideal of B(G) contained in A. Let (A,) be the R-classes induced by 4, Z(I) the
zero set of I, P, = {P,|a # 0, A, is a singleton}, and P, = {P,|a # 0, A, is not a
singleton}. Then we have

THEOREM 2.1. (I) Let J be a closed ideal of B(G), then J is the closed linear space of the
set, say K, of characters it contains. In particular, ideals of B(G) are R-subalgebras.
(II) The zero set Z(J) of a closed ideal J of B(G) is the complement of K in T..

The proof follows from Wang (1977), Theorem 9.1.

THEOREM 2.2. Let A be a closed subalgebra of a homogeneous Banach algebra B(G),
1 the largest closed ideal of B(G) contained in A, and P, = {P,|a #0, A, is a
singleton}. Then
(I) [Iistheclosed linear span of Py, I = P(A)5,and Z(I) = Ay L (| ). A,) where A,
is not a singleton.
(II) Any two closed subalgebras which induce the same R-classes have the same

largest closed ideal.
(III) A is an R-subalgebra if and only if (P(A) %) |z, = (A*®) |z

ProoF. It suffices to prove (I11). If fe A%® and f = g on Z(I) where g e P(4) &, then
f—gel, so that f—g is in the closed span of P,, or f—geP(4)%.

LEMMA 2.3. Let C(G) be the Segal algebra of all complex-valued continuous functions
on G and S(G) a Segal algebra containing C(G), H a closed ideal of S(G). For any u in
the dual S(G)* of S(G), we have h L y for all he H if and only if h+ u = 0 for all he H.

ProoF. Since C(G)* = M(G), S(G)* = M(G). Recall that M(G) * S(G) = S(G) (see
Wang (1977)). For g€ S(G), he H,

0=(Ch*g,u>since H Ly and hxge H
= f(h *g)(—y)du(y) = ffg(x) h(—y—x)dxdu(y)
= fg(X) d(h* ) (—x) = {g,h*p>.
Thus h+u = 0 for all he H. Conversely, suppose that h« u = Oforall he H. Let (K,)
be an approximate identity. For he H, we have 0 = (K, h* u)> = (K, * h, u). Since

| K, *h—h||, = 0, we have <h,u> = 0. This completes the proof.

For H = 5(G), K < S(G)* and pe S(G)*, define
H* = {peS(G)*: (h¢)> =0 VheH}, K* = {feS(G): {f,¢> =0,V 9eK}
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and
S, ={9€S(G).g+u = 0}.

Then H* and K*' are closed linear subspace of S(G) and S(G)* respectively.
Moreover, if H and K are ideals then so are H* and K*. Clearly .#,, is a closed ideal of
S(G) contained in {u}*.

THEOREM 2.4. Let S(G) be a Segal algebra containing C(G), A a closed subalgebra of
S(G) and I the largest closed ideal of S(G) contained in A. Then I = [\, q* &,

ProOF. By Lemma 2.3, I < (), ,+#,. Since
— (AN = A =
(Lfus i =@y =A=4

neAL
and (),.4+#, is a closed ideal of S(G), () c4+F, = I. Therefore I = (), 5,
Let 4 be a closed subalgebra of a homogeneous Banach algebra B(G) inducing the
R-classes(A,), P, = {P,|a # 0, A,is not asingleton}, and J be the closed span of P,.
Clearly InJ = {0}. Note that, for the R-classes (V,) induced by J, then
Vo = Ay U A, where A, are singletons. We claim that P(4)® = T+ J5. In fact, I +J
and P(A4) are both spanned by P, u P,.

THEOREM 2.5. If Z(I) is in the coset ring of T, then AB® =] 4+JBO apd
P(A)® = I +J. In this case, A is an R-subalgebra if and only if J is an R-subalgebra.

Proor. By a well-known result of Cohen (see Rudin (1962), 3.1.3), there exists
1e M(G) with @t = xz,,. For fe A9, we have f—f+ ueB and (f—f*p) |54 = 0.
Hence f—f*uel. But f+ueJ®® so fel+JB® or A%D c [+ JB9, Clearly
1+J%9 < A9, We conclude that AB® = [+ J¥®,

For g e P(A4)®, there exists (P,,) = P(4) with || P,,—g||z—0. Since

[Pt =g tlls < [| #llae [| Pr—g ||z = O

and P,*uP(J), we have g+ucP{J)=J. Since (g—g*p)|zsy =0, g—gruel.
Thus g=(g—g*u)+g*uel+J. We conclude that P(A)’cI+J. But
I1+J < P(A)®, so P(A)® = I +J.

Suppose that A is an R-subalgebra. For f in J5, there exists (P,) = P(4) with
| P.—f ||z — O since J® = 4% = P(4)®. But u*P,eP(J) and

| f=uxPy|lg=[lu*f—p*P,|z—0,

so fe P(J)® or J is an R-subalgebra. Conversely, let J be an R-subalgebra, we have
AP = I+ JB = I +J = P(A)®. This completes the proof.

REMARK 2.6. If we replace Z(I) by Z(I)\ A, in Theorem 2.5, the conclusion still
holds.
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COROLLARY 2.7. Let B(G) be a homogeneous Banach algebra with maximal ideal
space M, and A a closed subalgebra of B(G). If A separates points of #,then A is an R-
subalgebra.

Proor. Let (A,) be the R-classes induced by A. Note that A,~ # = A, for all
« # Osince [\ # < A,. A separates points of .# if and only if A, is a singleton for all
a # 0and A, N # contains at most one element. We claim : (I) If A, n # =@, then
A is the closed ideal of B(G) with zero set I'\ # = A,, and A = B(G). (II) If
Ay M = {y}, then A = {fe B(G): f(y) = 0}. Both cases follow from the fact that
B(G) admits an approximate identity (see Wang (1977), p. 95) and so A4 is a closed
ideal of B(G). Thus A is an R-subalgebra.

THEOREM 2.8. A maximal subalgebra A of a homogeneous Banach algebra B(G) with
maximal ideal space M is either

(1) A = {feB(G): f(y) =0} for some y in M or

() A = {feB(G): f(y,) = f(7,)} for some y,,y, in .

Proor. The proof is along the lines of Edwards (1967), p. 17.

COROLLARY 2.9. A maximal subalgebra of a homogeneous Banach algebra B(G)is an
R-subalgebra.

Proor. The proof follows from Theorem 2.8.

THEOREM 2.10. Let B; (i = 1,2) be a homogeneous Banach algebra with maximal
ideal space M, and the family %, of all closed subalgebras. If B, c B,, define
N F, > Fy A FyF, by n(A) = A for AcF,, (C) = Cn B, for Ce F,.
Then we have

(I) n preserves the R-classes in the sense that A and n(A) induce the same R-
classes for all A in # .
(II) If n is injective and R-synthesis fails fo_r_B_l, then R-synthesis fails for B,.

(IIT) If m is surjective, then M, = M, and (AB1)P2 = (AB2)B: v AeF,.

(IV) A preserves the R-classes if and only if #, = M ,.

(V) If A is injective then M| = M,.
(VD) If 1 is surjective, then P(A)%2~ B, = P(A)®,V Ae F .
(VII) If R-synthesis holds for B,, then n is injective. A is surjective and A o n is the
identity map of ¥, and A = A®> " B,,V Ae ¥ ,.
(VIII) If R-synthesis holds for B, and # | = M ,,then 1o A is the identity map of & ,
and C =Cn B2,V Ce#F*,

Proor. It suffices to prove (II), (IIT), (IV) and (VII).
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(II) Suppose that n is injective and that R-synthesis fails for B,. Then there is Ain
# , such that P(4)%' ¢ 4%, . Thus (P(4)5) G n(A®"). Since n(P(4)%) = P(4)? and
n(A”’) < (A®?)P2, we have P(A”Z)"[’2 = P(4)%2 # (48P so R-synthesis fails for B,.

(IIT) Suppose that .#, # #,. Take yin .#,\ .#, then Cye & ,. Obviously thus
there is no 4 in &, with n(4) = A®2 = Cy. Hence n cannot be surjective. Now
suppose that = is surjective. For Ae #,, take De #, with n(D) = (. (AB%)®2, Since
D = A%, we have (4582 = n(D) = n(A®") = (A7))P2 = (4B, s0 (AP')B = (4B2)P2.

(IV) Suppose that .#, # #,. Takeyin .#,\ .#, then A(Cy) = {0}. Since Cy and
{0} induce different R-classes, A cannot preserve the R-classes. Conversely, if
M, = M, then P(B,) =P(B,)and P(Cn B,)=P(Cn B,)=PC)forall Cin #,.
Thus P(C ~ B,)?' = P(C)®. Since P(C)?? induces the same R-classes as C, P(C)?!
induces the same R-calsses as n@”‘) = l—’(_C)B2 by (I), we see that the R-classes
induced by Ce %, and A(C) = C n B, are the same.

(VII) Suppose that R-synthesis holds for B,.

(1) Assume that = is not injective. Then there are A, A" in #, with A # A’ but
n(A) = n(A’). Since R-synthesis holds for B,, the R-classes induced by A and A’ are
different. By (I), the R-classes induced by n(A) and n(A’) are different, contradicting
our hypothesis that n(4) = n(4’). Thus = is injective.

(2) For each 4 in &, since A®2 ~ B, induces the same R-classes as A, we have
AM(AP?) = AP2~ B, = A. Thus A is surjective. Combining (1) and (2) we see that
Aom(A) = AB2~ B, = A for all A in &, and that 1o is the identity map of #,.

Kahane (1965) proved that if A is a closed subalgebra of L'(T) with a constant
C > Osuch that|m—n| < Cform,neA,, a # 0, then 4 is an R-subalgebra of L'(T).
Tseng-Wang (1975) extended Kahane’s result to any Segal algebra containing C(T).
As a matter of fact, with the same proof their criterion is applicable for certain non-
Segal homogeneous Banach algebras : LA(T), C ,(T),A4(T) where A & Z and Cy(T),
L%(T) where Q is a finite subset of Z. (See Wang (1977) for these algebras.)

THEOREM 2.11. Let B(T) be a homogeneous Banach algebra with maximal ideal space
M and d a constant such that ||y,||s < d V ne M, where y,(x) = ¢'™*. Suppose that A is
a closed subalgebra of B(T) with the R-classes (A,), k > 0 a constant such that
|m—n| < k whenever m, ne A, a # 0. Then A is an R-subalgebra of B(T).

3. Rudin synthesis for L?(G), 1 < p < «©

Friedberg (1970) proved:- that for any closed subalgebra 4 of LYG),
(P(A)*') = B A L™ and (4*") = B* for some subspace B of [°(G). It turns out that
A is an R-subalgebra of LYG) if and only if BY A L*® = B*". We apply Friedberg’s
theory to LP(G)-algebras, 1 < p < 0.
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Let A be a closed subaigebra of L*(G), 1 < p < co, which induces the R-classes
(A Fora # 0, A, = {74, Yan)» define:

F,= {(peL"(G): ¢ = i=21 a;y,, 3,€C, 2:1 q; = 0}

where p~'+47' = 1, and F, = A,. Let F be the closed linear subspace of LYG)
generated by | J, F,. We call F the Friedberg space of A. Note that supp $ = Z(I) for
all ¢ in F and F, = {0}, « # 0, whenever A, is a singleton.

LEMMA 3.1. Let A be a closed subalgebra of LP(G), 1 < p < co, with R-classes (A,).
If F is the Friedberg space of A, then F < A*.

Proor. Fix fe A. For
(p = z aj?ajEFay
j=1
we have

{fio)= Lf(x)tp(—x)dx

= f f(x)}é1 a;7,(—x)dx

Q

= -i a; L SO =%, 7, dx

=0.
It is clear that {f,y) =f(y) =0 for all ye F,. Therefore F = A*.
THEOREM 3.2. Let F be the Friedberg space of A. Then (A¥Y* =F, 1 < p < .
PrOOF. By Lemma 3.1, F = (A*)L. L is reflexivefor 1 < p < o0,s0(F*)* = F. Let
g¢ AY. Suppose that g(y,) # 9(y,) for some y,,y, €A, « # 0. Then y, —y, € F, but

{y1—72,9> # 0. Suppose that g(y) # 0 for some ycA,, then ye F, but {g,y> # 0.
We conclude that g¢ FL. Thus F* < AY or (4Y)* < F. This completes the proof.
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THEOREM 3.3.
() Forl<p<ow,p l+q =1, F'nLic PAY)
(I) For 1 <p<2 p '4q ‘=1, Fn L =PAY"

Proor. (I) Let o e F*' ~ L% Take (¢,) = F with ||¢,—¢||; = 0.For pe P(4), we
have

<llo=eul-llpl = 0.

Hence {¢,p> =0. Therefore <{¢,f>=0 for f in P{A)"Y. Therefore
F' A L1 < (P(A)Y)~

(I) Clearly FY¥ALic Fl'AL2c (P(A)Y):. We need to prove that
PAY)c F’. Let ¢ePA)Y) < L¥G). By the Plancherel Theorem,
@ =Z,r @(y)yin L>-norm. I # 0,A, = {7y, .., Y}, then0 = <@, p,)> = Z7 | §(¥;).
We conclude that ¢, = 7., ¢(y,)y;€ F,. For yeA, = F, let ¢, = @(y)y, we have
@,€F. Hence ¢ € F-*. Together with the fact that (P(4)"")* < L4, we conclude that
(PAY)* = F¥* ~ L4, This completes the proof.

COROLLARY 3.4. Let F be the Friedberg space of A. Then
(I) For p > 2, if A is an R-subalgebra of L*(G), then F*' L1 = F.
(I1) For p > 2, if P(A)~): = F, then A is an R-subalgebra.
(II1) For 1 < p <2, A is an R-subalgebra of L*(G) if and only if F = F¥* ~ L1,

Proor. By Theorem 3.2, and 3.3.

By Corollary 3.4, (III), we have that R-synthesis holds for L%(G). Note that for
G = T, this fact was first proved by Edwards (1967), pp. 15-16, with different
methods.

THEOREM 3.5. Let A be a closed subalgebra of L?(G), F the Friedberg space of A, and
I the largest closed ideal of LP(G) contained in A; then the following are equivalent:
I Z{) = A,.
(1 J = {o}.
(II) J is an ideal of LP(G).
(IV) A=1
(V) F is an ideal of LYG), where p~'+q~ ' = 1.

PRroOF. Clearly (I), (II) and (III) are equivalent.

(III) = (IV). Let P,e J.If P, # 0,let ye A,, we havey = y* P,e J. Thus A, = {y},a
contradiction. This implies J = {0}. By Theorem 2.5, P(4) Y = I. Spectral synthesis
holds for LA(G) and f(Z(I)) = f(A,) = O for all fin 4,50 A = L.

(IV) = (V). Suppose that 4 = I. Then A, is a singleton for all & 5 0. In this case,
F,= {0} for all a ## 0. Therefore F is the closed linear subspace generated by
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{y:y€A, = Z(I)}. Routine arguments reveal that F is a closed ideal of
LYG).

(V)= (I)Assume that Z(I)\A, # @.Take A, = {7}, ... Ym} = Z(I),m = 2. We have
v, —7, € F. Moreover y, = y,#(y, —y,)€ F since F is an ideal of LY. By Lemma 3.1,
{3, P> =0 since P,e 4. But {y,,P,> = P(y,) = 1, a contradiction.

Finally we give a sufficient condition of closed subalgebras of L*(G), p > 2, to be
R-subalgebras.

THEOREM 3.6. Let A be a closed subalgebra of L*G), p>2,p '+q ' =1 If
P(AY ~ L2(G) is L-dense in (P(A)Y')*, then A is an R-subalgebra of L*(G).

ProoF. Suppose that (P(4)X")* n L® is Li-dense in (P(4)Y)*. We claim that
P(A)Y A L? = P(A)Y. Clearly P(A)Y < P(A)*' n L*. Let @ e(P(A)X)* n L*. For
feP(AY n L7, take (f,) = P(4) with || f,—f ||, = 0, we have

[KLo | <[t |+ KX | <[ fi=f il ]l —0

so {f,¢>=0. Thus (PA)'nL® < (P4 ~nL?*. By the hypothesis,
PA) A L is L-dense in (P(A))*. Since (P(A):' n L?)* is closed in LYG),
PAY)L <« (AL ~ LP)L or P(AY o P(A)L' A LP. Thus P(A)L' ~ L = P(4)Y.

Now
A = {feL%G): f(A,) =0, f(A,) = constant, a # 0}

= {feL¥G): f(A,) =0, f(A,) = constant, « # 0} n L¥(G)
= P(A)¥* A L (since R-synthesis holds for L*G))
c P(A) n L» = PA)Y.

Therefore A" = P(A)Y". Thus A4 is an R-subalgebra of L?(G).
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