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Simplices in the Euclidean Ball

Matthieu Fradelizi, Grigoris Paouris, and Carsten Schütt

Abstract. We establish some inequalities for the second moment

1

|K|

∫
K

|x|22 dx

of a convex body K under various assumptions on the position of K.

1 Introduction

The starting point of this paper is the article [2], where it was shown that if all the

extreme points of a convex body K in R
n have Euclidean norm greater than r > 0,

then

(1.1)
1

|K|

∫

K

|x|22 dx >
r2

9n

where |x|2 stands for the Euclidean norm of x and |K| for the volume of K.

We improve this inequality showing that the optimal constant is r2

n+2
, with equality

for the regular simplex, with vertices on the Euclidean sphere of radius r. We also

prove the same inequality under the different condition that K is in Löwner position.

More generally, we investigate upper and lower bounds on the quantity

(1.2) C2(K) :=
1

|K|

∫

K

|x|22 dx,

under various assumptions on the position of K. Some hypotheses on K are necessary

because C2(K) is not homogeneous, one has C2(λK) = λ2C2(K).

Let n > 2. We denote by K
n the set of all convex bodies in R

n, i.e., the set of

compact convex sets with nonempty interior and by ∆
n the regular simplex in R

n

with vertices in Sn−1, the Euclidean unit sphere. For K ∈ K
n, we denote by gK its

centroid,

gK =
1

|K|

∫

K

x dx.

With these notations we prove the following theorem.
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Theorem 1.1 Let r > 0 and K ∈ K
n such that all its extreme points have Euclidean

norm greater than r. Then

C2(K) =
1

|K|

∫

K

|x|22 dx > C2(r∆n) +
( n + 1

n + 2

)

|gK |22 =
r2 + (n + 1)|gK |22

n + 2
.

Moreover, if K is a polytope there is equality if and only if K is a simplex with its vertices

on the Euclidean sphere of radius r.

In Theorem 1.1, for a general K, we don’t have a characterization of the equality

case because we deduce it by approximation from the case of polytopes. We conjec-

ture that the equality case is still the same.

Notice that the condition imposed on K that all its extreme points have Euclidean

norm greater than r is unusual. For example, if K has positive curvature, it is equiva-

lent to either K ⊃ rBn
2 or K ∩ rBn

2 = ∅. Moreover, this hypothesis is not continuous

with respect to the Hausdorff distance. Indeed, if we define P = conv(∆n, x), where

x /∈ ∆
n is a point very close to the centroid of a facet of ∆n, then the distance of ∆n

and P is very small but the point x will be an extreme point of P of Euclidean norm

close to 1/n, i.e., much smaller than 1, the Euclidean norm of the vertices of ∆n.

Other conditions on the position of K may be imposed. To state them, let us first

recall the classical definitions of John and Löwner positions. Let K ∈ Kn. We say that

K is in John position if the ellipsoid of maximal volume contained in K is Bn
2 . We say

that K is in Löwner position if the ellipsoid of minimal volume that contains K is Bn
2 .

It was proved by Guédon in [5] (see also [6]) that if K ∈ K
n satisfies gK = 0 and if

K ∩ (−K) is in Löwner position (which is equivalent to saying that Bn
2 is the ellipsoid

of minimal volume containing K and centered at the origin), then C2(K) ≥ C2(∆n).

Using the same ideas, we prove the following theorem.

Theorem 1.2 Let K be a convex body in Löwner position. Then

n

n + 2
= C2(Bn

2) ≥ C2(K) ≥ C2(∆n) +
(n + 1)2

n(n + 2)
|gK |22 =

n + (n + 1)2|gK |22
n(n + 2)

.

Moreover, if K is symmetric, then

n

n + 2
= C2(Bn

2) ≥ C2(K) ≥ C2(Bn
1) =

2n

(n + 1)(n + 2)
.

Let K be a convex body in John position. Then

n

n + 2
= C2(Bn

2) ≤ C2(K) ≤ C2(n∆n) + 2
( n + 1

n + 2

)

|gK |22 =
n2 + 2(n + 1)|gK |22

n + 2
.

Moreover, if K is symmetric, then

n

n + 2
= C2(Bn

2) ≤ C2(K) ≤ C2(Bn
∞) =

n

3
.
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The inequalities involving the Euclidean ball in Theorem 1.2 are deduced from the

following proposition.

Proposition 1.3 Let K be a convex body.

(i) If K ⊂ Bn
2 and 0 ∈ K then C2(K) ≤ C2(Bn

2) =
n

n+2
with equality if and only if

K = {tx : 0 ≤ t ≤ 1, x ∈ S}, where S ⊂ Sn−1.

(ii) If K ⊃ Bn
2 then C2(K) ≥ C2(Bn

2) = n
n+2

, with equality if and only K = Bn
2 .

In view of Proposition 1.3, it could be conjectured that for every centrally sym-

metric convex bodies K, L such that K ⊂ L one has C2(K) ≤ C2(L). But this is not

the case. It can be seen already in dimension 2, by taking

L = conv
(

(a, 0), (−a, 0), (0, 1), (0,−1)
)

K = {(x, y) ∈ L : |y| ≤ 1/2}

with a large enough. Indeed, C2(L) = 1+a2

6
and C2(K) = 5+15a2

72
.

The paper is organized as follows. In Section 2, we gather some background mate-

rial needed in the rest of the paper. We prove Theorem 1.1 in Section 3, Theorem 1.2

in Section 4 and Proposition 1.3 in Section 5.

2 Preliminaries

As mentioned before the quantity C2(K) is not affine invariant. Let us investigate the

behaviour of C2(K) under affine transform. We start with translations. For a ∈ R
n,

and K ∈ K
n, one has

C2(K − a) =
1

|K|

∫

K

|x − a|22 dx = C2(K) − 2〈gK , a〉 + |a|22.

Hence

(2.1) C2(K − gK ) = C2(K) − |gK |22
minimizes C2(K − a) among translation a ∈ R

n. Let T be a nonsingular linear

transform, then

C2(TK) =
1

|TK|

∫

TK

|x|22 dx =
1

|K|

∫

K

|Tx|22 dx.

The preceding quantity may be computed in terms of C2(K) if K is in isotropic posi-

tion (see below).

2.1 Decomposition of Identity

Let u1, . . . , uN be N points in the unit sphere Sn−1. We say that they form a represen-

tation of the identity if there exist c1, . . . , cN positive integers such that

I =

N
∑

i=1

ciui ⊗ ui and

N
∑

i=1

ciui = 0.
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Notice that in this case, one has, for x ∈ R
n

(2.2) x =

N
∑

i=1

ci〈x, ui〉ui , |x|22 =
N
∑

i=1

ci〈x, ui〉2 and

N
∑

i=1

ci = n.

Moreover, for any linear map T on R
n, its Hilbert–Schmidt norm is given by

‖T‖2
HS := tr(T⋆T) =

N
∑

i=1

ci〈ui ,T⋆Tui〉 =
N
∑

i=1

ci |Tui |22.

If A is an affine transformation and T its linear part, i.e., A(x) = T(x) + A(0), then

(2.3)

N
∑

i=1

ci |Aui |22 = ‖T‖2
HS + n|A(0)|22.

Indeed,

N
∑

i=1

ci |Aui |22 =
N
∑

i=1

ci |Tui + A(0)|22 = ‖T‖2
HS + 2

N
∑

i=1

ci〈Tui ,A(0)〉 +

N
∑

i=1

ci |A(0)|22

= ‖T‖2
HS + n|A(0)|22.

2.2 John, Löwner and Isotropic Positions

Let K ∈ Kn. Recall that K is in John position if the ellipsoid of maximal volume

contained in K is Bn
2 and that K is in Löwner position if the ellipsoid of minimal

volume that contains K is Bn
2 . The following theorem ([7], see also [1]) characterizes

these positions.

Theorem 2.1 Let K ∈ Kn. Then K is in John position if and only if Bn
2 ⊆ K and there

exist u1, . . . , uN ∈ ∂K ∩ Sn−1 that form a representation of identity.

Also K is in Löwner position if and only if Bn
2 ⊇ K and there exist u1, . . . , uN ∈

∂K ∩ Sn−1 that form a representation of identity.

Let K ∈ Kn. We say that K is in isotropic position if |K| = 1, gK = 0 and

(2.4)

∫

K

〈x, θ〉2 dx = L2
K , ∀θ ∈ Sn−1.

If K is in isotropic position, then C2(K) = nL2
K . Note that the isotropic position is

unique up to orthogonal transformations and that for any convex body K ∈ Kn there

exist an affine transformation A such that AK is in isotropic position (see [9] or [4]).

The quantity LK is called the isotropic constant of K.

For any nonsingular linear transform T on R
n,

∫

K

〈x,Tx〉 dx = L2
K trT.
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In particular if K is isotropic and T ∈ GLn, then

(2.5) C2(TK) =
1

|K|

∫

K

|Tx|22 dx = L2
K trT∗T =

‖T‖2
HS

n
C2(K).

From the arithmetic geometric inequality, it implies that C2(TK) ≥ | det(T)| 2
n C2(K).

With (2.1), it gives, as it is well known, that the isotropic position minimizes C2(AK)

among affine transforms A that preserve volume.

3 Proof of Theorem 1.1

We start with the following lemma.

Lemma 3.1 For every n > 1

C2(∆n) =
1

n + 2
.

Proof The volume of the regular simplex ∆
n with vertices u1, . . . , un+1 in Sn−1 is

|∆n| =
√

n + 1

n!

( n + 1

n

)
n
2

.

Let f (t) = |{x ∈ ∆
n : 〈x, u1〉 = t}|. One has

f (t) =
( n − 1

n + 1

)

n−1
2 |∆n−1|(1 − t)n−11[− 1

n
,1](t)

= |∆n|
( n

n + 1

) n

n(1 − t)n−11[− 1
n
,1](t).

Hence, by Fubini

1

|∆n|

∫

∆n

〈x, u1〉2 dx =
1

|∆n|

∫ 1

− 1
n

t2 f (t) dt =
1

n(n + 2)
.

Since λ∆n is in isotropic position for some λ > 0 we conclude that

C2(∆n) =
1

|∆n|

∫

∆n

|x|22 dx =
n

|∆n|

∫

∆n

〈x, u1〉2 dx =
1

n + 2
.

Lemma 3.2 Let S = conv(x1, . . . , xn+1) ⊂ R
n be a nondegenerate simplex. Then

C2(S) =
1

n + 1

(

n+1
∑

i=1

|xi |22
)

C2(∆n) + |gS|22
(

1 −C2(∆n)
)

.

In particular, if 1
n+1

∑n+1
i=1 |xi |22 ≥ r2, then

C2(S) ≥ r2C2(∆n) +
( n + 1

n + 2

)

|gS|22.
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Remark This implies that a nondegenerate simplex S = conv(x1, . . . , xn+1) such

that |xi |2 ≥ r for all i satisfies C2(S) ≥ C2(r∆n) =
r2

n+2
, with equality if and only if

|xi |2 = r for all i and gS = 0. In dimension 2, these conditions for equality imply

that S is regular, but in dimension n ≥ 3, it is not the case anymore. For example in

dimension 3, if one takes the regular simplex and moves two vertices symmetrically

along the geodesic between them to make them closer, and if one does the same to

the two other opposite vertices, then the centroid stays at 0 and the vertices stay on

the sphere. In any dimension n ≥ 4, one chooses the north pole as the first vertex of

our simplex and the n other vertices as the vertices of a simplex in dimension n − 1

that is not regular and satisfies the equality case, we put this simplex in a horizontal

hyperplane in such a way that the centroid is at 0.

Proof Let A be an affine map such that S = A∆n, and denote by T its linear part.

One has gS = Ag∆n = A(0), hence A = T +gS and S = gS +T∆n. Denote by ui ∈ Sn−1

the vertices of ∆n, so that xi = gS + Tui , for 1 ≤ i ≤ n + 1. Hence, by (2.1) and (2.5)

C2(S) = |gS|22 + C2(T∆n) = |gS|22 +
‖T‖2

HS

n
C2(∆n).

Since u1, . . . , un+1 form a decomposition of identity

I =
n

n + 1

n+1
∑

i=1

ui ⊗ ui ,

one has

‖T‖2
HS =

n

n + 1

n+1
∑

i=1

|Tui |22 =
n

n + 1

n+1
∑

i=1

|Aui |22 − n|gS|22.

Therefore, we get the equality. The inequality is obvious.

Proof of Theorem 1.1 We first consider the case where K is a polytope. Let us prove

by induction on the dimension that there exist nondegenerate simplices S1, . . . , Sm

with the following properties: K =
⋃m

i=1 Si , the interiors of Si and S j are mutually

disjoint for i 6= j, and the vertices of the Si ’s are among the vertices of K.

In dimension two, it is enough to fix a vertex x of K, then to consider the edges

∆1, . . . ,∆m which don’t contain x, and choose Si = conv(x,∆i), for i = 1, . . . ,m.

Assuming that the property has been proved in dimension n − 1, let us prove it in

dimension n. We proceed in the same way as in dimension two. Let x be a fixed vertex

of K. Let F1, . . . , FN be the facets of K which don’t contain x. From the induction

hypothesis, we can split each of them into simplices with the required properties. Let

∆1, . . . ,∆m be the collection of these simplices. Then it is not difficult to check that

the simplices Si = conv(x,∆i), for i = 1, . . . ,m have the required properties.
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Now we may apply Lemma 3.2 to the Si ’s and we get

C2(K) =
1

|K|

m
∑

i=1

|Si |C2(Si) ≥
1

|K|

m
∑

i=1

|Si |
(

r2C2(∆n) +
( n + 1

n + 2

)

|gSi
|22
)

= r2C2(∆n) +
( n + 1

n + 2

)

m
∑

i=1

|Si |
|K| |gSi

|22.

Then we use the convexity of the function x 7→ |x|22 to deduce that

C2(K) ≥ r2C2(∆n) +
( n + 1

n + 2

)∣

∣

∣

m
∑

i=1

|Si |
|K| gSi

∣

∣

∣

2

2
= r2C2(∆n) +

( n + 1

n + 2

)

|gK |22.

This proves the inequality. If there is equality, then from the strict convexity of the

function x 7→ |x|22 one deduces that gSi
= gK , for every i. Since the Si ’s have disjoint

interiors, this implies that there is only one of them. Hence K is a simplex and its

vertices have Euclidean norm r.

Let us prove the general case. Let K be a convex body such that all its extreme

points have Euclidean norm greater than r. Then there is a sequence of polytopes

(Pn)n converging to K in the Hausdorff metric in K
n such that for every n ∈ N, the

extreme points of Pn have Euclidean norm greater than r. Since C2 is continuous with

respect to the Hausdorff distance we get the inequality for K.

4 Proof of Theorem 1.2

As in [5], our main tools are the following inequalities, proved by Milman and Pajor

[9] in the symmetric case and by Kannan, Lovász, and Simonovits [8] in the non-

symmetric case. Recall that if K is a convex body and u ∈ R
n, the support function

of K is defined by

hK (u) = sup
x∈K

〈x, u〉.

Lemma 4.1 Let K be a convex body and u ∈ Sn−1.

(1) If K is symmetric then

2hK (u)2

(n + 1)(n + 2)
≤ 1

|K|

∫

K

〈x, u〉2 dx ≤ hK (u)2

3
,

with equality on the left-hand side if and only if K is a double-cone in direction u,

which means that there exists x in R
n and a symmetric convex body L in u⊥ such

that 〈x, u〉 6= 0 and K = conv(L, x,−x) and equality in the right-hand side if and

only if K is a cylinder in direction u, which means that there exists x in R
n and a

symmetric convex body L in u⊥ such that 〈x, u〉 6= 0 and K = L + [−x, x].

(2) If gK = 0, then

hK (u)2

n(n + 2)
≤ 1

|K|

∫

K

〈x, u〉2 dx ≤ nhK (u)2

n + 2
,
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with equality on the left-hand side if and only if K is a cone in direction u, which

means that there exists x in R
n and a convex body L in u⊥ such that 〈x, u〉 > 0,

gL = 0, and K = conv(L, x) − x
n

and equality in the right-hand side if and only if

K is a cone in direction −u.

Notice that the proof of (1) given in [9] is beautiful and elementary but the proof

of (2) given in [8] is not as simple; it used a much more elaborate tool called the

localization lemma. A simple proof of (2) was given in [3], but since it is not easily

available, we reproduce it partially here for completeness.

Proof of (2) With a change of variable, we may assume that |K| = 1 and hK (u) = 1.

Let f (t) = |{x ∈ K : 〈x, u〉 = t}|. The support of f is [−hK (−u), hK(u)], and from

Brunn’s theorem, f 1/(n−1) is concave on its support. Moreover, from Fubini, for any

continuous function φ on R

∫

K

φ(〈x, u〉) dx =

∫ ∞

−∞

φ(t) f (t) dt.

Since |K| = 1 we have
∫

f = 1 and since gK = 0,
∫

t f (t) dt = 0. Define

g1(t) =
nn+1

(n + 1)n
(1 − t)n−11[− 1

n
,1], g2(t) =

n

(n + 1)n
(t + n)n−11[−n,1].

Then the functions g
1/(n−1)
i are affine on their support and satisfy

∫

gi = 1 and
∫

tgi(t) dt = 0. Let h1 = f − g1 and h2 = g2 − f . Assume that hi 6= 0. Since
∫

hi =
∫

thi = 0, the function hi changes sign at least twice at si < ti for i = 1, 2.

Moreover because of the concavity of f 1/(n−1), the function hi is negative in (si , ti)

and positive outside. By looking at its variations, one sees that the function

Wi(t) :=

∫ t

−∞

∫ s

−∞

hi(x) dx ds

is nonnegative on its support. Integrating by parts twice and assuming that φ is twice

differentiable and convex, one has

∫

φ(t)hi(t) dt =

∫

φ ′ ′(t)Wi(t) dt ≥ 0.

Therefore
∫

φ(t)g1(t) dt ≤
∫

φ(t) f (t) dt ≤
∫

φ(t)g2(t) dt . For φ(t) = t2, we get the

inequality. If there is equality for example in the left-hand side, then W1 = 0, thus

h1 = 0, hence f = g1. From the equality case in Brunn’s theorem we deduce that all

the sets {x ∈ K : 〈x, u〉 = t} are homothetic.

Using Lemma 4.1, we prove the following proposition.

Proposition 4.2 Let K be a convex body such that there exist vectors u1, . . . , um ∈
Sn−1, with hK (ui) = 1 which form a representation of identity I =

∑m
i=1 ciui ⊗ui , with

∑m
i=1 ciui = 0.

https://doi.org/10.4153/CMB-2011-142-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-142-1


506 M. Fradelizi, G. Paouris, and C. Schütt

(1) If K is symmetric then

2n

(n + 1)(n + 2)
= C2(Bn

1) ≤ C2(K) ≤ C2(Bn
∞) =

n

3
.

(2) In general one has

1

n + 2
+

|gK |22
n(n + 2)

≤ C2(K) − |gK |22 ≤
n2

n + 2
+

n

n + 2
|gK |22.

Proof (1) Using the decomposition of identity, we deduce that

C2(K) =
1

|K|

∫

K

|x|22 dx =

m
∑

i=1

ci
1

|K|

∫

K

〈x, ui〉2 dx.

We apply the preceding lemma to the vectors ui and use that hK (ui) = 1 to get

2n

(n + 1)(n + 2)
≤ C2(K) ≤ n

3
.

For K = Bn
1 or K = Bn

∞, the calculation is trivial but we could also check that we are

in the case of equality of Lemma 4.1.

(2) One has

C2(K) − |gK |22 =
1

|K|

∫

K−gK

|x|22 dx =

m
∑

i=1

ci
1

|K|

∫

K−gK

〈x, ui〉2 dx.

We apply the preceding lemma to the vectors ui

C2(K) − |gK |22 ≤
m
∑

i=1

ci
n

n + 2
hK−gK

(ui)
2
=

n

n + 2

m
∑

i=1

ci

(

hK (ui) − 〈gK , ui〉
) 2
.

Since hK (ui) = 1 and
∑

ciui = 0

C2(K) − |gK |22 ≤
n

n + 2
(n + |gK |22).

The lower estimate follows in the same way.

Theorem 1.2 follows from Proposition 1.3 and Proposition 4.2.

5 Proof of Proposition 1.3

We first state and prove a standard lemma that we shall use in the proof.
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Lemma 5.1 Let K be a Borel set such that 0 < |K| < +∞, ϕ : R+ → R+ be a

nondecreasing function and λ = (|K|/|Bn
2|)1/n. Then

1

|K|

∫

K

ϕ(|x|2) dx ≥ 1

|Bn
2|

∫

Bn
2

ϕ(λ|x|2) dx = n

∫ 1

0

ϕ(λr)rn−1 dr.

Proof One has |λBn
2| = |K|, hence |K \ (λBn

2)| = |(λBn
2) \K|. Since ϕ is nondecreas-

ing, we deduce that

∫

K\(λBn
2 )

ϕ(|x|2) dx ≥ ϕ(λ)|K \ (λBn
2)| = ϕ(λ)|(λBn

2) \ K| ≥
∫

(λBn
2 )\K

ϕ(|x|2) dx.

Therefore

∫

K

ϕ(|x|2) dx =

∫

K∩(λBn
2 )

ϕ(|x|2) dx +

∫

K\(λBn
2 )

ϕ(|x|2) dx ≥
∫

λBn
2

ϕ(|x|2) dx.

Two changes of variables finish the proof.

Proof of Proposition 1.3

(1) Let ‖ · ‖K be the gauge function of K, i.e., ‖x‖K = inf{t > 0 : x ∈ tK}, for

every x ∈ R
n. Since K ⊂ Bn

2 one has |x|2 ≤ ‖x‖K , for every x ∈ R
n. Hence

∫

K

|x|22 dx ≤
∫

K

‖x‖2
K dx =

∫

K

∫ ‖x‖K

0

2t dt dx =

∫ 1

0

2t|{x ∈ K; ‖x‖K ≥ t}| dt

= |K|
∫ 1

0

2t(1 − tn) dt = |K| n

n + 2
.

This gives the inequality. If there is equality, then ‖x‖K = |x|2 for every x ∈ K hence

{x : ‖x‖K = 1} = K ∩ Sn−1 := S therefore K = {tx : 0 ≤ t ≤ 1, x ∈ S}, with

S ⊂ Sn−1.

(2) Applying Lemma 5.1 to ϕ(t) = t2, we deduce that

C2(K) =
1

|K|

∫

K

|x|22 dx ≥ λ2C2(Bn
2) =

( |K|
|Bn

2|
)

2
n

C2(Bn
2).

If we assume that K ⊃ Bn
2 then it follows that C2(K) ≥ C2(Bn

2), with equality if and

only if K = Bn
2 , which is the content of the second part of Proposition 1.3.
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