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APPROXIMATION BY SMOOTH EMBEDDED HYPERSURFACES

WITH POSITIVE MEAN CURVATURE

FANG HUA LIN

Here we initiate the study of the following problem. Let Q be a

compact domain in a Riemannian manifold such that 3°, is of minimum

area for the contained volume. Can 3fi be approximated by smooth

hypersurfaces of positive mean curvature? It reduces to the question

of whether or not a stable (or minimizing) hypercone in a Euclidian

space can be approximated by smooth hypersurfaces of positive mean

curvature. The positive solution to the problem may be useful for

studying the curvature and topology of ft

We show in this paper that such approximation is possible provided

that the given minimal cone satisfies some additional hypothesis.

1. Introduction

The aim of this note is to initiate the study of the following

problem which was posed by Lawson (see [I, Problems section]). Let ff be

a stable (or minimizing) hypercone in M . Given z > 0 , can one find

a smooth embedded hypersurface M of positive mean curvature in

B,(0) n ff so that dM is close to Z(ELB^(0)) (where E is the e-
1 e 1 e

neighbourhood of ff in J?" )? This is related to the following

question. Let n be a compact domain in a Riemannian manifold N such

that 3ft is of a minimum area for the contained volume. Can 3fi be

approximated by a smooth hypersurface of positive mean curvature? The
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latter is useful for studying the curvature and topoloty of fi , see for

example L6l-

Under the additional hypothesis that the given cone IE is regular,

that is IE = 0 # £ for some smooth embedded minimal hypersurface of Z

of S" , both the local and the global approximation problems are studied.

In order to make our statements more precise, we fix an orientation on the

minimal cone E so that lP+ - ff = E u E , where E+ are two connect-

ed components of S ^ IE , and V points into E+ . Suppose M is
G

a connected, orientable hypersurface and such that ML(B^ ~ ^-i/n)

{y = X + u(x)v (x): x e (IE)L(B1 ~ ̂ / ^ is a graph of a small C2-

function u over the cone. Then the orientation vector U,, of M will

be chosen so that V (x)vM(y) > 0 for y = x + u(x)v (x) .

Now we can describe our results. In Section II, we consider the

local approximation problem, and we have

THEOREM 1. Let T be a regular minimal hypercone in E with

E+ defined as above. Then, for any integer k s 3 , we have:

(i) if n < 7 , then for every e > 0 there is a smooth properly

embedded, connected hypersurface with boundary M supported in

B (0) n S so that 3M is u close to 8:L$n , and M is of

positive mean curvature;

(ii) if IE in (i) is, in addition, stable (then n = 7 is auto-

matic), then M£ can be chosen to satisfy the additional property that

spt(M ) c BJO) n IE n E, ;

(Hi) if IE is one-sided area minimizing in E+ , then, for each

e > 0 , there are smooth properly embedded, connected hypersurfaces M*~

and AT with positive and negative mean curvature, respectively, in

B1(0) n IE n E+ , and such that W are <J+ close to !EL$n .

The notion of one-sided area minimality is introduced also in

Section II. By a maximum principle (see Lemma 1 in Section II) and the

regularity of solutions to a parametric obstacle problem [S ] , we show

the equivalence of the existence of M~ (for suitable small positive

e's) and the one-sided area minimality of € in E+ .
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In Section III, we study the global approximation problem. There

we obtain the following:

THEOREM 2. Let E and E+ be as in Theorem 1. We have:

(i) if E is not area-minimizing in F+ , and if n < 7 , then

for every e > 0 there is a smooth properly embedded, complete (non-

compact) hypersurface M in E with positive mean curvature;

(ii) if E is strictly one-sided area minimizing in E+ , then

for each z > 0 there are smooth properly embedded, complete (non-compact)

hypersurfaces M^ and M~ in E n E+ with positive and negative mean-

curvature, respectively.

The strictly one-sided area minimality of a minimal cone and the

proof of the existence of M~ in the above Theorem are modified from the

recent work [5]. see also [7] for the related discussions. It still

remains as an open problem whether or not every one-sided area minimizing

hypercone (not £ ) is strictly one-sided area minimizing.

In the final section, we show how the results in Section II can be

generalized. In particular, a similar approximation result is valid for

7-dimensional area minimizing oriented boundaries or minimizing oriented

boundaries with a volume constraint. For n > 7 , some additional

hypotheses on singular set are needed.

II. Local approximation

DEFINITION. Let E be an open set in Bn+1 with ^ e BVT (&n+1),
e E Loc

where <)>_ is the characteristic function of the set E . Let T = 3£

and we say T is area minimizing in E (the closure of E) if the

following condition is satisfied: for any compact subset K of %n ,

and any F c E with <(>„ e BV (&1 ) and E-F a compact subset of

E , one has -f | £>((>,-, | - ̂ v\^v\ •

It is clear that E is area minimizing in E+ if and only if

F, = ELB is an area minimizing integral current whose support lies in
E+ n B~ and whose boundary is EL $ , Later we will also say E is

one-sided area minimizing in E+ . By the regularity theorem for the one-

sided area minimizing currents, see 18], we conclude that E is the

unique such area minimizing integral current.
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Suppose a is area minimizing in E+ , then there is a unique area

minimizing, smooth properly embedded hypersurface S+ in E+ with

dist(0,S+) = 1 , see [5] and [7]. Moreover, S+ is a polar graph, that

is, x-va (x) > 0 , for all x e spt(S.) ; and for some constant
b+ +

R = R (!E) > 1 ,o o

S, ~ BD (0) = {x + u,(x)v (x) : x e €}L[En+1 ~ Bu (0)}
T n T C * H '

O OO

for some CT' function u+ on E with

-Y_ -Y_~a

either u+ = (C^ + C. log Y^Y "^I + 0(y ) as Y "*" °°

or u+ = Cy + ij>- + 0(y + ) as Y "*" M

where C, + C^ log y > 0 in the first identity, and C, = 0 unless

n-2
Y = Y = ~n~t a n d C > 0 in the second identity. Moreover y S Y_ > 0
"T — Ci T*

in our case, see [5].

The following Lemma w i l l be needed in the proof of Theorem 1.

LEMMA 3. Let T = 3 £ be an oriented boundary with E an open

subset of J?1 . Let spt T - {0} be a C -hypersurface in B and

spt (T) ~ {0} have non-negative mean curvature with respect to the unit

normal vector field pointing into E . Suppose spt T intersects IB*1

transversely, and let T* be an area minimizing integral current whose

support lies in E and whose boundary is T L3> . Then either T* = TLB-

or spt (T*) n spt T = spt (TL$n) .

The proof of the above Lemma is contained in the following more

general maximum-principle:

MAXIMUM PRINCIPLE. Let M3dB be oriented boundaries of open sets

AjB and let x e. dA n 3S . Suppose that dA,dB are area-minimizing in

iP (x ,2p), where 0 < 2p < min {dist [x ,Z(ZA)) , dist (x ,d(dB))} . In

addition, we assume A c B . Then dist[ dALdB (x , 3BI3B (x ) can not
*• p O p O

be positive.
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Proof. Suppose dist(3<4L3B (x ), 3BL3B (x )) > 0 . By [JJ 3 we havev p o p o '

regularity of an oriented area minimizing boundary,so we see 3<4L3B (x )

and 3BL3B (x ) are (n-1)-dimensional integral cycles, and the
P o

subregion of ^""(x ) which is bounded by 34L3S (x ) and 3BL3B (x ) is
^ po * p O po

well-defined. Now we can choose (n-1)-dimensional integral cycles which

are supported strictly in the above subregion and which are arbitrary close

to 3A&3B (x ) in flat norm. Let T be such an integral cycle, we solve
P o

the oriented plateau problem with boundary T . Let T be a solution.

By [S] we see T = 3E for some open set E c J? . The regularity

theorem, see [1J], for least area boundary implies that ALB (x ) <= E <=

BLB (x ) . Let T : x •*• x + a be a translation with \a\ small, then

T # T is a solution of the oriented plateau problem with boundary

T § T . By our choice of T , and a similar argument to that above, we

have

ALB (x ) c T # ELB (x ) c BLB (x ) , for all a / ^

po a po p o

with |a | small.

In particular, x e spt ("T # T/1 , that iSj T (x ) e spt (2V .,

for all a e. x with |a| small. This is impossible. D

Now we would like to show that one-sided area minimality and one-

sided approximability by a non-positive mean curvature, smooth hypersurface

are equivalent for minimal hypercones.

PROPOSITION 4. Let T and E+ be as in Theorem 1. If IE is not

area minimizing in E+ , then there is an e = e (£) > 0 such that any

smooth embedded hypersurface M with non-positive mean curvature in E+ ,

with boundary 3Af outside B. 3 satisfies spt (M) n B = § .

o

Proof. Let i? be an oriented boundary which solves the obstacle

problem:

(*) Min {Mass (Q) : Q e ^n(^
+ ) with spt (Q) c_~E+ and 3Q =
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The existence of such an R and i t s boundary regular i ty were shown in [£ ] .

We claim spt (M) n spt (R) = <j> . This can be ver i f ied as follows.

We l e t A > 0 be such tha t A = sup{A £ (0,11, spt (C*) n spt (M) = ij>
O O u

for all t < A} , where C* = \i # R + (£' ~ C ) . The existence of such

X is obvious. If X < 1 , then we see spt (u, # R) n spt (M) 4 <f>
O

and spt ("p. # R) lies in one side of spt (M) , this contradicts
O

Lemma 3.

Now take e = sup {e > 0, B (0) n spt (R) = $} , and e > 0 by

the Maximum-Principle. Q

Remark. (1) In Proposition 4, E can be replaced by any stationary

oriented boundary.

(2) Proposition 4 also shows that locally area minimality is

essential in proofs of the classical "Bridge-Principle," as in [9], [6].

See also [2].

Proof Of Theorem 1. Part (i) is contained in Theorem 2 which will

be proved in the next section.

We first consider the case where C is area minimizing in E+ .

Then we have S = y # S, is an area minimizing hypersurface in
A A '

E+ n E ,„ for a suitable small A > 0 . For A small, one can assume

3(S LBJO)) is (f+ close to Elrfl , and since S LBJO) is strictly

stable, the implicit function theorem applies, see [9] , to yield the

existence of smooth embedded hypersurfaces M*~, M~ lying in

JC n E+ n BJO) with constant (small) positive and negative mean curvature

respectively. Moreover 3A^ = 3M~ = 3 (s LBJO)) . This proves (iii) .

To show (ii) , we consider, for small 6 > 0 , the obstacle problems

min{M(Q) : Q e I^i1*1) with spt (Q) c ~E+ and dQ = 1^} , where

r = {x + 6v (x) : x e 3JZ7, } . By [5, Section 5] and [£] we obtain

solutions T. to the above problems with sing (T.) = <)> a for all 6 > 0

sufficiently small. It is at this step we need the assumption n = 7 .
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Next we apply perturbation results of CJ2] to obtain M? which are

smooth embedded hypersurfaces in E+ with positive mean curvature and

3M, = 3T. = r. . We also observe that E^ 0 , = E(B . ~ B ) is strictly
0 0 0 1,6/Z o/Z I

stable, hence for all sufficiently small 6 > 0 , one can find a smooth

embedded hypersurface M. in E+ with positive mean-curvature and (which

is close to E- 0/ ) such that 3M, = -I". + T. , f = {x + &V (x) ;
1j 2/e o o o o c

x e W2/£} .

Now we claim the angle made by M. and M. along r. in the

positive mean curvature direction is strictly less than ir for all small

6 > 0 . This can be verified by a contradiction argument. Since as

6 -*• 0 j Me -*• En 0/ and Mx -*• R a one-sided area minimizing integral

current with boundary V = %1C~ (by taking a sub-sequence if necessary).

By the boundary regularity of R , see [S], and the Hopf-boundary point

lemma, we see spt (R) and spt (E) intersect transversely along Y

Therefore we can smooth the corner made by M. and M. to obtain M

o o

which is a smooth embedded hypersurface with positive mean curvature in

E+ . Finally we let M£ = P£ # M to yield (ii).

III. Global approximation

Let T be a regular minimal hypercone, by [5], the main result of

[3] can be generalized to the case of a faster decay solution at infinity,

that is, for a CT-function f on E which decays at °° at a sufficient-

ly faster rate, and with ||/|| small, then one can find a solution of
C

M u = f on Ej ^ , with ||u|| small, and u decays to E at

infinity at a sufficiently faster rate.

A regular minimal hypercone € is called one-sided strictly area

minimizing in E+ if there is 9 > 0 such that

M(E2) <, M(S) - 9e"

whenever 1 > e > 0 and S is an integral current with spt (S) ^_E+ % B
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and dS = iE , see [7] , C5] .

As for s t r i c t ly area minimizing hypercones, we have the following
consequence of [5, Theorem 3.2] which gives various characterizations of
one-sided s t r ic t ly area minimizing hypercones.

LEMMA 5. Let E, E+ , S+ , U+ be as in Section II, then the

following are equivalent:

(1) E is strictly area minimizing in E+ .

(ii) U+ has slower decay at infinity. That is

Urn U+(x)/\x\~y = c > 0 , in the case y > y_

Urn U+(x)/(log \x\)-\ x\~(n~2)/Z = c>0 , in the case y+ = Y_ = ^ •

(Hi) For any non-negative g+ e Cr (S+) which decays at infinity

faster than \x\ , there exists a -positive solution W+ of

(iv) For any non-negative g e C (S+) which decays at °° faster

-y -3
than \x\ , there exists on e > 0 such that for every e e (0,e ) ,

there is a positive C (S ) solution of M~ w = -zg, .
+ S+ + +

Remark. (1) The proof of the above Lemma can be found in [5,

Section 3 ] , except that (iii) and (iv) should be slightly modified. The

reason why we can allow the condition "g decays sufficiently faster at

00 " instead of "compact support" is that (j> = (y - y ) <(>, satisfies

-y -2-a
La <j> < -C y on S ~ BD where a e (0,1), R , C are two
b , O -r K O O

positive constants depending only on a and the cone E . For the details

the reader should see [5, Section 3],

(2) By the same proof as for (iv), one can show there is a negative

CT (S ) solution of M W^_ = eg , for e e (0,e ) .

Now we can prove Theorem 2.
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Proof, of Theorem 2. Part (i): For given e > 0 , we let w be a

(T*" solution of M_M = / > 0 in E m , and u\ „ = 0 t such that

||M|| „ - e j where f is a smooth positive function defined on the cone

!C which decays faster at °> . Hence graph.// = {x + u(x)v (x) :x e E^'a)

is a smooth embedded hypersurface. with boundary and positive mean-curvature.

Now let Ft be as in the Proof of Proposition 4, so that

3i? = 3C- and R is area-minimizing in E+ . Suppose spt (R) is a

smooth embedded hypersurface with boundary (this will be the case if

n S 6 ), then we apply the perturbation of the theorem of [12] to obtain

a smooth embedded hypersurface M of positive mean curvature in E+ such

that 3M = 3ff and M is sufficiently close to R . As in the Proof of

Theorem 1, Part (ii) , we see that the corner angle made by M and graph U

is strictly less than ii if e is sufficiently small. Therefore we'

can smooth the corner to obtain a new surface M with positive mean

curvature. Let M = V # M , then M satisfies the conclusion (i).

Now suppose sing (R) ̂  <j> , then we consider the obstacle problem:

min IM(Q) : Q e I^tf1*1) with spt (Q) c ̂  y E+ and 3§

= {x - 6vo(x) : x e 3^2M

where 6 e (0,z) . Let T. be a solution of above problem, then T. -*• R*

o o

as 6 •*• 0 , for some R* a solution to the corresponding problem with

& = 0 . Then, by [S] , we see the uniformly boundary regularity of T.'s
o

for 6 positive and small, and by [5, Section 5] we can assume
sing (T. ) = <j> for some 6 •*• 0+ . Since we can choose graph_£/ as

"I
close to f <» as we want, and spt (R*) is smooth near 3ff and

1 Ci

intersects € transversely slong 3ff0 , we can choose a proper 6 > 0

and graphj/ , so that spt (T ) intersects graphj/ transversely

along some submanifold which is close to 3ff? . Moreover we can smooth the
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corner to obtain a new surface of positive mean-survature M as before,

and finally we set M = y # M . This finishes the Proof of Part (i).

Part (ii) : Follows directly from Lemma 5 and Remark 2 following

Lemma 5. D

IV. General cases

In this final section, we would like to make a few remarks about

one-side local approximation of an area minimizing oriented boundary or

area minimizing boundary with contained volume by smooth properly embedded

hypersurfaces of positive mean curvature.

Let It be a complete (n+1)-dimensional smooth Riemannian manifold,

and let E,U,V be open subsets of N with E c U , Vcc U , and let

T = 3 E I.U be an oriented boundary of least area in U with spt (T) =

dE L U . We also assume that t, e sing (f) implies that there is a

2
regular tangent cone C(B,) at £ for T . Also we fix a C -comain

W c V such that spt T n W c req(T) and the intersection is trans-

verse, with VQ = d(TLW) .

Then we have the following.

PROPOSITION 6. For any e > 0 there is a smooth, properly embedded

hypersurfaee M*~ (respectively M ), in an e-neighbourhood of spt (T),

of positive (respectively negative) mean curvature, and such that

3AT = r = <j> # r for some <j> e CT(T ) with \ $ - i | „ < e . Moreover
O o

AT = E .

Proof. This is an easy consequence of a result of [5, Section 5]

and the implicit function theorem. D

PROPOSITION 7. For n < 7 , let fi c N be such that 3« has least

area for the contained volume. Then 3fi can be approximated by a sequence

of smooth embedded hi/persurfaees {M } , . lie inside (I , and each Mvlf J m m=l m

has positive mean curvature.

Proof. By [4] and [J7], the conclusing is trivial when n < 6 .

For the case n = 7 3 3fi has at most isolated singularities (hence
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finite since 3fi is compact) . Let E. e sing (ZSi) , C(£) be the regular

minimizing tangent cone of 3£2 at £ , see [10]. After a suitable

scaling, we can assume that %QLB-(E.) sufficiently close to

and that r = d£lL&^(E,) is a smooth 6-dimensional submanifold of

Sy(^) = 3B (£,) . One solves the oriented plateau problem with boundary

r in fi n B.(E,) , the resulting solutions M will be close to C(O

since V is close to 3£"7 (Z,) . By the maximum-principle (see Lemma 1

also), spt (M) n 3fi = T and the intersection is transverse by the Hopf-

boundary point lemma. We can assume sing (M) = <{> otherwise replace M

by a solution of the oriented plateau problem with boundary F =

dQLS (V for e > 0 small, this follows from [5, Section 5].

Since M is smooth, one can apply the implicit function theorems

as in [?Z] to obtain a new hypersurface M 9, with positive mean curvature

and 3M = F j M n 3(1 = F , and the intersection is transverse. By the

same argument as before we can smooth corners to find resulting hyper-

surfaces properly embedded in fi , of positive mean curvature. D
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