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ONE-PARAMETER AUTOMORPHISM GROUPS 
OF THE INJECTIVE FACTOR OF TYPE Hi 

WITH CONNES SPECTRUM ZERO 

YASUYUKI KAWAHIGASHI 

ABSTRACT. We construct a one-parameter automorphism group of the in-
jective type Hi factor with Connes spectrum { 0} which is not stably con­
jugate to an infinite tensor product action. We construct a countable family 
of one-parameter automorphism groups of the injective type II i factor such 
that all are stably conjugate but no two are cocycle conjugate. 

0. Introduction. We exhibit a one-parameter automorphism group of the approxi­
mately finite dimensional (AFD) factor of type IIi which has Connes spectrum {0} and 
is not stably conjugate to an infinite tensor product action. We also construct a count­
able family of one-parameter automorphism groups of the AFD factor of type II i, all of 
which are stably conjugate but no two of which are cocycle conjugate. This shows the 
difference between the two notions, cocycle conjugacy and stable conjugacy. 

At a certain stage of development, the existence of a non-ITPFI AFD type III0 factor 
was a focal point of the structure analysis of factors. In the first section, we prove a 
corresponding result for one-parameter automorphism groups. 

In our previous work [10], we considered a one-parameter automorphism group which 
fixes a Cartan subalgebra of the AFD type II i factor %^ elementwise, and showed that 
if it has full spectrum, i.e., spectrum equal to R, then it is cocycle conjugate to an in­
finite tensor product one-parameter automorphism group (Theorem 1.6 of [10]). Now, 
we consider the problem of whether all one-parameter automorphism groups of the AFD 
type Hi factor %^ are cocycle (or stably) conjugate to an infinite tensor product one-
parameter automorphism group. The answer to this problem would be expected to be 
negative, in analogy with the existence of an AFD type IIIo factor which is not ITPFI. 
(See Araki-Woods [1] and Connes-Woods [4] for related definitions and results.) In fact, 
we shall construct an example of a one-parameter automorphism group a of the AFD 
type Hi factor ^ , with T(a) — {0} , which is not stably conjugate to an infinite ten­
sor product one-parameter automorphism group. The main technical tool is taken from 
Connes-Woods [4]. 

In § 2, we exhibit a countable family of one-parameter automorphism groups of the 
AFD type IIi factor ^ , with Connes spectra { 0} , all of which are all stably conjugate, 
but no two of which are cocycle conjugate. 
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ONE-PARAMETER AUTOMORPHISM GROUPS 109 

In our earlier work [9] on one-parameter automorphism groups of $^, we used stable 
conjugacy for classification when the Connes spectrum is { 0} , and obtained two com­
plete invariants: the type of the crossed product algebra and the flow given by the dual 
action on the center of the crossed product algebra. For actions fixing a Cartan subal-
gebra and certain actions arising from the irrational rotation algebra, we also showed 
the uniqueness, up to cocycle conjugacy, of one-parameter automorphism groups with 
full Connes spectrum in [10,11]. One is naturally led to ask whether cocycle conjugacy 
and stable conjugacy coincide for one-parameter automorphism groups or not. Cocycle 
conjugacy for general actions trivially implies stable conjugacy, but the converse is true 
in some cases, and false in others. For example, the two notions coincide for discrete 
amenable groups and do not coincide for Td\ d > 1. (See the first paragraph of §2.) 
The problem for T or R is more subtle than for discrete groups or TJ, d > 1. We will 
show in § 2 that stable conjugacy does not imply cocycle conjugacy for either T or R. 
The main tools are the basic construction for subalgebras and the method developed by 
Christensen in [2]. 

The main part of this work was done at the Institut des Hautes Études Scientifiques 
with the support of an Alfred Sloan doctoral dissertation fellowship. The author expresses 
gratitude to the Institute and to the Sloan Foundation. The author is thankful to Prof. A. 
Connes for calling attention to these problems, to Prof. E. Christensen for suggestions 
concerning § 2, and to Prof. M. Takesaki for numerous helpful suggestions. 

1. One-parameter automorphism groups of non-product type. We construct an 
example of a one-parameter automorphism group a of the AFD type II i factor %, with 
T(a) = {0} which is not stably conjugate to an infinite tensor product one-parameter 
automorphism group in this section, using a technique from Connes-Woods [4]. We con­
sider the following property first. This is an analogue of the condition in Lemma 2.1 of 
Connes-Woods [4]. 

DEFINITION 1.1. Let 9rf be the AFD type II i factor ^ or the AFD type lloo factor 
%)j. For a one-parameter automorphism group a of f7Vf, consider the Sakai flip a : 
x®yi-^ y®xon fW0 fW. Because a commutes with a 0 a on fW® fW, we can extend 
a to aa on (9/[ 0 fW) M a 0 a R . We consider the following property: 

(*) cja is trivial on Z{(9rf 0 fW) M a®aR). 

PROPOSITION 1.2. The property (*) is invariant under stable conjugacy. 

PROOF. First consider replacing at by f3t which is cocycle conjugate to at. Then oa 

on (M 0 M) x ar®aR is conjugate to ap on (M 0 fW) x / ^ R . Next replace oct by 
at (g) /,, where it is the trivial action of R on LiOi). Then aa on Z((fW (g> M) x a ^ a R) 
is conjugate to aa®i on Z((9rf 0 L{9{) 0 M 0 L{9{)) x a®i®a®&)- T n u s w e get t n e 

conclusion. • 
The following result corresponds to Lemma 2.1 in Connes-Woods [4]. 
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PROPOSITION 1.3. If a one-parameter automorphism group a of the AFD type 11\ 
factor %^ is of infinite tensor product type, then it has the property (*). 

PROOF. Let at be of infinite tensor product type with respect to the decomposition 
%. — ®£Li Mn, where Mn is a matrix algebra, and consider the infinite tensor product 
with respect to the trace. Let om be the Sakai flip on (®™=1Mn) ® (®JLi^n)- Then 
a — limm_>00am ® 1, and aa = limm_+oo(<7m ® 1)«- Thus it is enough to show that 
(o-m 0 1)« is trivial on Z((^<g) %J x a 0 a R ) . But for this statement, we may assume that 
at is trivial for the first m components by perturbing at by a unitary cocycle. Then the 
above assertion is trivial, and we are done. • 

We now have the following theorem. The argument is parallel to the proof of Theorem 
2.3 in Connes-Woods [4]. 

THEOREM 1.4. Let a one-parameter automorphism group a of the AFD type HQQ 
factor %)i be defined as follows. For an ergodic and infinite-measure preserving trans­
formation T onX such that T x T_1 is dissipative, construct the crossed product algebra 
L°°(X) x TZ ^ %Qth Define a by at(x) = xforx G L°°(X) and at{u) = eltufor the 
implementing unitary u. Then the action a does not have the property (*) of Definition 
1.1, and hence it is not stably conjugate to an infinite tensor product one-parameter au­
tomorphism group. 

PROOF. The flow given by (a ® a ) A on Z ( ( % i ® %)^) x a®aR) is a Poincaré 
flow, given by the 1 -cocycle obtained by the equivalence relation (7x, y, t+1 ) ~ (JC, y, t) ~ 
(JC, Ty, r+1) o n l x I x R . (See Proposition 1.3 in [10].) Let £be any TxT~l invariant set 
inXxX, ax the flip onX x X. Let Ëbe the subset of X x X x R generated by E x [0,1 [ 
and the above equivalence relation. Suppose that a has the property (*). Because aa 

acts on Z((%JJ <g) %JJ) x «®aR) by ax, we get that the set Ë is invariant under ax 0 id. 
This implies that ox preserves E. Now by Lemma 2.2 in Connes-Woods [4], we get 
ax G [T x T - 1] . Then for almost all (x,y) G X x X, we have an integer n(x,y) such that 

°x(x, y) = (y,x) = (r<^>jc, T~n^y), 

so that y G T-orbit of JC, but this is impossible because the orbit is countable. • 
An example of a transformation T as in Theorem 1.4 is given in Harris-Robins [5]. (See 

also § 3 of Connes-Woods [4].) If we form ae for the above one-parameter automorphism 
group a and an invariant projection e G L°°(X) C %,i with finite trace, we get an 
example of a one-parameter automorphism group /? of the AFD type IIi factor ^ , with 
T(/3 ) = { 0} , which is not stably conjugate to an infinite tensor product one-parameter 
automorphism group. 

REMARK 1.5. There exists another type of one-parameter automorphism group a 
of the AFD type IIi factor 1^, with T(a) = R, which is not cocycle conjugate to an 
infinite tensor product one-parameter automorphism group. This type of one-parameter 
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automorphism group a does not satisfy at G Out(^), t ^ 0, while T(a) = R, and 
therefore it cannot be cocycle conjugate to an action of product type. (See Introduction 
of [11] for a more detailed explanation.) This does not have an analogue in the case of 
AFD type III factors. 

2. Cocycle conjugacy and stable conjugacy. Cocycle conjugacy for general ac­
tions trivially implies stable conjugacy, but the converse is true in some cases, and false 
in other cases, as shown below. (Recall that a and (3 are said to be stably conjugate if 
a 0 idoo and /? 0 id^ are cocycle conjugate, where idoo is the trivial action on the sepa­
rable type IQO factor.) Stable conjugacy implies cocycle conjugacy for discrete amenable 
group actions on %, because the characteristic invariant is a stable conjugacy invariant. 
(See Theorem 2.7 in Ocneanu [12].) For the tori Td, d^ 2, it is not difficult to construct 
two actions on ^ which are stably conjugate, but not cocycle conjugate: Take an ergod-
ic action a o n ^ and set f3 — a 0 /dfe, where idi is the trivial action on Af2(C). (See 
Olesen-Pedersen-Takesaki [13] for the construction of ergodic actions.) Proposition 4.7 
in [13] asserts that these are not cocycle conjugate. But this construction does not work 
for T: The one-dimensional torus T does not have an ergodic action on ^ and if an action 
of T on ^ has a factor as its fixed point algebra, then it is unique up to conjugacy. (See 
Corollary 4.7 in Paschke [14], our Theorem 2.2 [9], and a remark on p. 185 of Jones [7].) 
Thus, the problem for T or R is more subtle. We will show that stable conjugacy does 
not imply cocycle conjugacy for either T or R. 

Define two actions a and (5 by 

a, = §Adfexp27riff 'Q _y , J J , 

00 ( f3n+2/2 0 ^A 
ft = <g) Ad ĵ exp 2mt y Q' _r+2^ 2 J J , 

Here we identify the AFD type Hi factor ^ with the infinite tensor product ®£ij Mi(C) 
with respect to the trace r . We denote by ejk(n), 1 ^ j,k ±£ 2, the matrix units in the 
n-th factor Af2(C). We also denote by Z>2 the set of diagonal matrices in M2(C). Because 
®£Lj £>2 is in the fixed point algebra of a , we can show that T(a) C 3"Z for each n, 
whence T(a) = {0}. Note that 

/ 

at = Ad exp27nY 

\ 

/ 6 
0 

0 0 
- 3 0 ° \ \ 0 

0 0 3 
0 0 

0 
-61) 

)ft, 

and so ctt and ft are stably conjugate. In the following, we will prove that these two 
actions are not cocycle conjugate. To obtain a contradiction, suppose that they are cocycle 
conjugate: there is an automorphism 9 of ^ and an a -unitary cocycle ut such that 9 • ft • 
9 ~l = Ad(ut) • at, for all t G R. We will reach a contradiction at the end of this section. 
The basic idea of the proof is as follows: For large N, the ut's are almost contained in the 
first N factors, and thus ft • 9 ~x is almost equal to 9 ~l • at at the (N + l)-st factor and 
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later on. Then 6 _ 1 should be like a backward shift by 2 there, but such an automorphism 
does not exist. 

Because both the groups at and j3t have period \,u\ is a scalar; thus we may assume ut 

also has also period 1, without loss of generality. Let e < 1/51200, and choose N ^ 2 
such that for any t G R, there exists a such that 

(1) a€M 2 (C)® •••®M2(C)®C<g>C<g>---, \\ut-a\\2 S e. 

N times 

ASSERTION 2.1. In the context above, for any 

x £ M 2 ( C ) ® - - - ® M 2 ( C ) ® C ® C ® - - - , IWloo^ 1, 

N times 

there exists y such that 

r y G M2(C) ® • • • <g> M2(C) ®D2 ® D2 <8> • • •, 
I > „ / 

l | | ^ - 1 ( x ) - y | | 2 ^ lOv/F. 

For the proof, we introduce the following action pg of Yl^L\ Z2 on !^: 
oo 

pg = / J2N-2 0 (g) Ad 
n = l 

where /J2/v-2 means the trivial action on M2N-2(C), and g = (gn), gn = 0 or 1. Fix g = 
(gn) e ®Z { Z2 C n ~ ! Z2. Suppose that 

^ f l forn = *!,. . . ,*,„, I S *i S . . . S *w, 
10 otherwise. 

We use the notation J — (/'i, • • • Jm) € 11™= i{ 1,2} and define projections /?/,/7/ by 

pj = ehh (k{+N-2)--- ejmjm(km + AT - 2), 

£>y = ^3-7, ,3-7i (k\+N-2)-- e3-jmt3-jm(km +N-2). 

We also set 
ej = ^i;-, (/ci + AO • • • eUm(km + TV), 

w-/ = e*-hj\ (k\+N)-> e3-jmjm(km + AT), 

(T(/) = ( 2 / 1 » 3 ) - - . ( 2 / w - 3 ) G { l , - l } , 

Ay = (2/i - 3)3*1+" + • • • + (2/w - 3)3*"+". 

Note that £/ = vvyWy and at(wj) — exp(27r/A./0w/- We define Pj to be the projection 
onto the /Veigenspace for the eigenvalue 27r Ay. The range of this projection is generated 

1 0 
l o ( - ! )«») ' 
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LEMMA 2.2. In the context above, we have 

| | ( / - p , ) « r W H f = * jf1 \\[u„Wj]\\2
2dt. 

PROOF. Let 6 ~x (wj) — EA ̂ A be the decomposition of 9 ~l (wj) into /3reigenspaces 

with eigenvalues 2n\. Because all the À 's are integers and every À can be expressed as 

a sum of finitely many ±3 n , s in a unique way, we get 

2 | | ( / - P / ) ( 0 - | ( w , ) ) | | 2
2 

=2 £ || *A||f 
A^Aj 

= L II E( e x P( 2 7 r ' A f )^A -exp(2niXjt)bx)\\Ut 

= £ \\f3,(6~l(wj)) - exp(2ni\jt)e-l(wj)\\jdt 

= || ut • exp(27r/Ay0wy • w* — exp(27r/AyOH;y|l2 ^ 

= j['||[l«„Wy]||2
2</f. 

Now we set 
/y = fl-1(w>y) = 0- ,(^), VjV 

(3) 
1/2 

< 

aj = PA6-\wj)yPj{0-\Wj)). 

We have pjajpj = ay. Note that by Lemma 2.2, 

| | / y - a j | | 2^ | | 0 - ' (H ' ; ) ( f l - , (w7) - / , y( f l - I (w 7 ) ) ) | | 2 

+ | | (0 - | (w; ) -P 7 (^ - , (Wy)r )Py(^- | (H-y) ) | | 2 

^ ( / 0 ' | | [ " ( , ^ ] | | 2
2 ^ 

LEMMA 2.3. In the context above, we get 

Z l l ^ l l l fMMI f . a EH. 

PROOF. We have 

E I K ^ ^ I I f = Yl (\\awj-wja\\l + \\awj + wja\\l) 
a(J)=-\ a(J)=-l 

= 2 T ( £ VVyWy«*fl) + 2r( ]T VVyWytftf*) 
cr(J)=-\ a{J)=-\ 

ma\\i 
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LEMMA 2.4. In the context above, we get 

|| £ (fj-aj)\\l^U\ 

PROOF. We have 

II E (fj-<*j)\\2=T( £ fjfK + ajaK-fjaK-ajfK) 
a(J)=-\ a(J),a(K)=-\ 

=r( E /i)+r( E ûy)-2r( E /W*) 
( j ( 7 ) = - l CT(7)=-1 a ( y ) , c r ( / 0 = - l 

^r( x) /y)+T( E Û3)-2T( E / ^ A ) 
CT(7)=-1 c r ( 7 ) = - l ff(7),a(^)=-l 

+ 2r( £ &«/*> 

=T( E (fj + ti-lfjajfj)) 
a(J)=-\ 

= E ll/v-^lll 
ff(7)=-l 

^2 £ jT'll^WylHlA, 
r l 

/ 
« 7 ( 7 ) = - l 

by (3). By (1), there exists at such that 

at e M2(C) ® • • • <g> M2(C)(g)C (8) C ( 

N times 

for each t. By Lemma 2.3, we get 

£ (fy-fly)||2
2S2 £ / j | [ ^ - ^ v v y ] | | 2

2 ^ 
n_ _i ~t i\— 1 ^u c r ( / ) = - l (T(J)=-\ 

LEMMA 2.5. /n the context of Assertion 2.7, we have 

\\pg(9-\x))-e-\x)\\2Û îoy?. 
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PROOF. First we have 

\\pg(0-\x))-0-\x)\\l=4\\[ E PJ,0-\x)]\\l 
(7(7)—1 

=4||[ E PJ-fj,0-\x)]\\î 
a(7)=-l 

= 16|| E PJ-fÀl 
a(J)=-\ 

= 16r( E (PJPK
 +fjfc ~ PJIK -ÎJPK)) 

a(J),a(K)=-\ 

=32r( E fj~ E PKÎJPK) 
a(J)=-l a(J),a(K)=-\ 

= 32T( E (fj-aj)- E PK(fj-aj)pK) 
a ( 7 ) = - l a(7),CT(/0=-l 

^32|| E <fj-<*j)- E M(/}-ûy)Mll2 
< T ( 7 ) = - 1 a(J),a(K)=-\ 

^32|| E 0}-«y)||2. 
(7(7)=-1 

Then by Lemma 2.4, we get 

\\pg(0-\x))-0-\x)\fi£64y/2e, 

and hence 

\\pg(9-l(x))-0-\x)\\2£ \0js. 

• 

Now we can prove Assertion 2.1. 

PROOF OF ASSERTION 2.1. By Lemma 2.5, we have 

(4) \\pg(0-l(x))-9-\x)\\2£ 1(V?, 

for each g G ®%L\ %2- Hence by continuity the estimate (4) is also valid for each g E 

UZ\Z2- Then set 

/ ^ * < « - ' « ) * , 

where the integral is performed with respect to the Haar measure of n£=i ^2- Now by 
(4), we get 

\\y-e-l(x)\\2£ ioy?, 

which is (2). • 
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We introduce the following notation for the second step: 

<P = M2(C) <8> • • • <8> M2(C)0C (8) C (g) • • • C ^ , 

yv times 
Q, = M2(C) ® • • • <8> M2(C)(g)D2 ® D2 ® • • • C ^ , 

w-2 times 

94 = M2(C) <g> !£, 5\£ = C <8> Q,, L=C®Œ>, 

JÏ = C<8>C<8>---<8>C ®D2 ® D2 (g) • • • C fW. 

/v-2 times 

We also write L°°(X,/i), /i(X) = 1, for J3L So far, we have proved (P C Q, in this 
notation. We would like to embed P̂ into Q, by a perturbation to get a contradiction. The 
main difficulty is that we have no control over the size of N here. But by the technique 
of Christensen, [2], we can embed *P into M2(C) (8) Q,, which is enough for our purpose. 

ASSERTION 2.6. There is a non-trivial (non-unital) homomorphism QofT into fA£ 

We will show Assertion 2.6 by arguments similar to Christensen's in [2]. Note that it 
l(VF lOy^ 

follows from (P C Q, that il C fA£ in fM. We make the basic construction (see Jones 
[61, or, for that matter, Christensen [2]) for the pair fA£ C 94. Denote by E the conditional 
expectation of 94 onto !A£, and write e for the projection in L2{94) arising from E. Then 
an easy computation shows that the basic construction ( 94, e) is isomorphic to M4(C) (8) 
M2^2(C) (8) L°°(X, /x) (8) L(l2(Z)) because L°°(X, /x) is a Cartan subalgebra in 

C <8> C <8> • • • <8> C <8>M 2(C) 0 M2(C) <8> • • • ^ ^ . 

yv-2 times 

(Note that the basic construction for C C M2(C) is M4(C).) We can define a centre-valued 
trace T on ( 94, e) by the formula 

T(xe) = (tr2N-2 <8) idjz)E(x), for x G fW, 

where tr2* 2 is the normalized trace on M2^-2(C). Under the above isomorphism, 

{94,e) ^ M4(C) (8) M2*-2(C) (8)L°°(X,/x) (8) L(l2(Z)), 

and 7 corresponds to Tr4 (8) tr2^ 2 0 id^x) ® Tr, where Tr4 is the unnormalized trace 
on M4(C), and Tr is the usual trace on L(E2(Z)). Then 7(e) is the constant function 1 in 
L°°(X,/i). 

LEMMA 2.7. /ft f/i£ context above, there exists a projection f G L! Pi {L,e) such 
that 

JxT((e-f) )d[i s < 
(1-(200e)1/4)2 4 
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PROOF. For any u £ ll^L), we get, by the same argument as after the formula (8) 
on p. 21 in Christensen [2], 

T((e - if eu)1) = 2E^{(u - E(u))*(u - E{u))\ 

where E& is a conditional expectation of fAf onto A. Thus by the argument on p. 22 and 
Lemma 2.1 of [2], we obtain/as desired. (Christensen's ip corresponds to our Jx T(x) dx.) 
• 

PROOF OF ASSERTION 2.6. We first follow the proof of Theorem 4.7 in Christensen 
[2]. Let ejk, 1 = j , k ^ 2, be the matrix units in 

M 2 (C)®C®C--- C f W c ( f M » . 

Define pjk to be the range projection of e^e. Then by Christensen's argument, these are 
mutually orthogonal, and equivalent to e. Setting/? — Pu + P22 ^ {M,e), Tip) is the 
constant 2 in L°°(X, fi). Christensen's argument also shows that 

(5) I jf (7V) - T(e)) dfi I - \jx T(f ) dfi - 11 < i . 

Suppose that T(f) = 0 on F Ç X. Then by Lemma 7, we get /x(F) = JY T((e -f)2) d\x < 
1/ 4. If T(f) > T(p) = 2 on X \ Y, we would have Jx T(f) dp ^ 2(1 - p,(Y)) > 3/ 2, 
contradicting (5). Thus we have a subset Zof X such that \i(Z) > 0 and 0 < T(f) ^ Tip) 
on Z. This implies that/xz -< PXz, i.e., there exists a projection g = q\z G ( fW,e) 
such that/xz ~ <7Xz = PXz- Choose v £ ( 9\l, e) so that v* v = q\z and vv* = f\z, and 
define a map 

x H-> V*JCV e(M,e)p^( M, e)e <g> M2(C) ^ ^ (g) M2(C), 

forx € L= (P. (See Proposition 3.1.5 in Jones [6].) The above map defines a non-trivial 
homomorphism O from 2* to !A£ ® M2(C) because/ £ £. • 

Now finally we obtain a contradiction as follows. Our O is a map from M2^(C) into 
M2N-\(C) ®L°°iZ). Consider the centre-valued trace V — tr2w-i (g> idL°°(z) on M2*-i(C) 0 
L°°iZ). Choose minimal projections g i , . . . , q2N in M2^(C) with q\ + • • • + q2N = 1. Then 
r (0(? i ) ) = • • • = r ( 0 ( ^ ) ) and, hence, T'i<&iqx)) S 1/ 2N in L°°(Z), which is impos­
sible in T\M2N-\iC) (g) L°°(Z)). Thus we conclude that at and /3, = «9, are not cocycle 
conjugate. This also implies at and a^ are not cocycle conjugate because otherwise we 
would have ctt ~ a^t ~ agt, a contradiction. (The symbol ^ means cocycle conjugacy.) 

REMARK 2.8. The proof of Theorem 4.7 in [2] contains a small mistake. The state­
ment (Lo U r)" = (LQ U p)" in line 20 on page 25 is invalid. Thus the map constructed in 
the proof is a homomorphism from M to (L0 U p1'r ^ (L0 U p1'p <g> M4(C) ^ N <g> M4(C), 
not N (g) M2(C). But if we use r = ru + r22 as above instead of r — r\\ + r\2 + r2ï + r22 

in [2], we still have (fiq)< 2 = c/?(r), and therefore by the same argument, we get a 
homomorphism from M to (Lo U p)"r = N (g> M2(C). Hence the conclusion of Theorem 
4.7 is valid, and our proof is not affected. 
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THEOREM 2.9. There exists a countably infinite family of one-parameter automor­

phism groups of the AFD type II \ factor %^, all members of which are stably conjugate, 

but no two members of which are cocycle conjugate. 

PROOF. Consider 

a}k) = (g) Ad ( exp27riï I Q
f _y+k , 2 J I , 

for each k â 0. The above argument gives the conclusion. • 

REFERENCES 

1. H. Araki & E. J. Woods, A classification of factors, Publ. RIMS Kyoto Univ. Ser. A 3(1968), 51-130. 
2. E. Christensen, Subalgebras of a finite algebra, Math. Ann. 243(1979), 17-29. 
3. A. Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. 8(1975), 

383-119. 
4. A. Connes & E. J. Woods, A construction of approximately finite-dimensional non-JTPFI factors, Canad. 

Math. Bull. 23(1980), 227-230. 
5. T. E. Harris & H. Robins, Ergodic theory of Markov chains admitting an infinite invariant measure, Proc. 

Nat. Acad. Sci. U.S.A. 39(1953), 860-864. 
6. V. F. R. Jones, Index for subfactors, Invent. Math. 72(1983), 1-15. 
7. V. F. R. Jones, Prime actions of compact abelian groups on the hyperfinite type II\ factor, J. Operator 

Theory 9(1983), 81-186. 
8. V. F. R. Jones & M. Takesaki, Actions of compact abelian groups on semifinite injective factors, Acta Math. 

153(1984), 213-258. 
9. Y. Kawahigashi, Centrally ergodic one-parameter automorphism groups on semifinite injective von Neu­

mann algebras, Math. Scand.64(1989),285-289. 
10. , One-parameter automorphism groups of the hyperfinite type II\ factor, (to appear in J. Operator 

Th.). 
11. , One-parameter automorphism groups of the injective H\ factor arising from the irrational rotation 

C"-algebra, Amer. J. Math. 112 (1990),499-524. 
12. A. Ocneanu, Actions of discrete amenable groups on factors," Lecture Notes in Math. No. 1138, Springer, 

Berlin, 1985. 
13. D. Olesen, G. K. Pedersen & M. Takesaki, Ergodic actions of compact abelian groups, J. Operator Theory 

3(1980), 237-269. 
14. W. Paschke, Inner product modules arising from compact automorphism groups on von Neumann algebras, 

Trans. Amer. Math. Soc. 224(1976), 87-102. 

Department of Mathematics, Faculty of Science 

University of Tokyo, Hongo, 

Tokyo, 113, JAPAN 

https://doi.org/10.4153/CJM-1991-007-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-007-9

