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AN IDENTITY INVOLVING NORLUND POLYNOMIALS

A . E . OZLUK AND C. SNYDER

We prove an identity involving Norlund polynomials, the proof of which is elemen-
tary and involves the enumeration of lattice points. The identity is slightly stronger
than an identity of Carlitz which he obtained by using Apostol's transformation
formula for Lambert series.

1. INTRODUCTION

Using a transformation formula for Lambert series developed by Apostol [1], Carlitz
[2], proved an identity from which he was able to derive a number of properties of
Dedekind sums. Let us elaborate.

Let m be a fixed odd integer with m > 1 and let j be an integer such that
0 < j ^ m + 1. Then the Dedekind sums of Apostol are defined as

where h, k are relatively prime integers, Bn(x) denotes the nth periodic Bernoulli
polynomial, and the summation is over a complete set of residues modulo k.

More specifically, we define the nth Bernoulli polynomial by the series

n=0

Then the nth periodic Bernoulli polynomial is given by

Bn(x) = Bn({x})

for any real number x, where {a:} denotes the fractional part of x, that is x — [x].
For h, k, m as above and r G C, the set of complex numbers, with Imr > 0,

define
m + l , , - t \

f(h,k;r)= Y, ( JikT-h^-'cjfak).
j—0
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Carlitz then showed the identity

\m+l

where (B + rB)m+1 is written symbolically for *£ (mt1)T^BJ.Bm+1_i and Bn is the
3=0

nth Bernoulli number denned by Bn(0) where Bn(x) is the nth Bernoulli polynomial.
Carlitz' identity is a consequence of Apostol's transformation formulas for Lambert

series.
In this note, we prove a slightly stronger identity by reformulating it as an identity

involving Norlund polynomials. Our proof is elementary and ultimately depends on
showing that two sets of lattice points are equal.

2. DEFINITION AND BASIC PROPERTIES OF NORLUND POLYNOMIALS

We now introduce the Norlund polynomials and recall some of their properties; see
[3] and [4] for some of the results.

DEFINITION: The mth Norlund polynomial in n parameters «i , . . . , wn, denoted
Bm (x; a>i, . . . , u>n), is defined by

Here w = (wi, . . . , wn) £ C™ and x is a variable.
In particular

xz A ,u. .z
Pl )n»=0

from which we see that

where Bm(x) is the mth Bernoulli polynomial given by

ze" _ y, £•
m=0

PROPOSITION 1. For all nonnegative integers m and a £ C,

B ^ a z ; auj, . . . , aun) = am-nB<£)(x; ult..., «n).
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PROOF:
oo

~ ^ m ^ ' m!'

D
PROPOSITION 2 . For m, n, w as above, and 1 ^ j < n,

PROOF:
OO

m = 0

(e

(e

- i * - l ) . . . ( e

"i* - ! ) . . . ( ]

zn

znexze~"Jz

'">* - l)e-"i

e"

. . - 1 )

ew»* - 1)

where uj_ = {ui, ..., w , _ i , -w,-, uj+i, ..., w n ) . D

PROPOSITION 3 . Let ( m , . . . , n t ) be a partition of n and letw = (wi, . . . , wn)

= (wi, . . . , w t ) wiere wt - (ult ..., w n i ) , . . . , w4 = ( w n _ n t + i , . . . , w n ) . Then

where the iast expression is written symbolically for

Jl + ...+Jk=m

PROOF:

»n=0

D
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3. A N IDENTITY INVOLVING NORLUND POLYNOMIALS

LEMMA. Let h, k be relatively prime integers with k > 0. Then

and /(O, 1; r) = ^ , ( 0 ; r, 1) = ±(B + rB)

M=0

\m+l
£> -f TU

Here [x] is the largest integer less than or equal to x.

PROOF:

f(h, k; T) = E (m+ J (kr - h)m~'cj(h, k)
3=0 ^ 3 '

}=0

where {x} denotes the fractional part of x, that is, x — [x]. Since Bm(x) — Bm\x; 1),
we see by Proposition 1 that

fc-lm+l

Then by Proposition 3 we have

k-i

In particular

/ ( 0 , 1; r) = B^+1(Q; r, 1).

But by Propositions 1 and 3 and the fact that Bm = Bm(0), we see

m+l

m+l , 1
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The lemma is now established. U

By the lemma Carlitz' identity takes the form

fc-i

[-^-[^];k(-l)-h,i)+B^+1(O;r,i),

for all odd m > 1. By using Proposition 1, this identity becomes

L J /

for all odd m > 1.

We establish a little more.

THEOREM. Let h, k be relatively prime positive integers. Then for all integers

m ^ 0 ,

= Y"] B$ ( — fi — \ — \T; ~{hr + k), r J
M=O ^ L * J /

+ ££>(0; hr + k, - T ) - B£> ((h - l ) r + k; hr + k, -r).

COROLLARY. Let h, k and m be as in the theorem. Then

fc-i

= E B"' ( -" - [ T ] T1 -<'"•+*)•r)

REMARK. Notice that Carlitz' version is a special case when m is even, (m above is

m + 1 in the Carlitz identity.)
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PROOF OF COROLLARY: By two applications of Proposition 2, we have

- l ) r + ft; hr + k, - r ) = -B™ ( - r ; -(hr + k), - r )

Now apply Proposition 1 with a = — 1 to obtain

B<£> (0; -(hr + k), r) = ( - l ) — 1 ! ^ ; hr + k, - r ) .

PROOF OF THEOREM: We reformulate the theorem into a sequence of equivalent

statements. We then prove the last of these statements by a lattice counting argument.

By the definition of the Norlund polynomials, we need to show that

Z2

We factor out
z2

of the left-hand side of the equation and then divide both sides by this factor obtaining
the equivalent statement

fc-i t-i

(e™ - 1) Y^ e
(T1"~["*"/ftl)z + (e* - l)e^hT+k

)r+*)z _ A = Q

We now multiply out all the terms obtaining

fc-l h-l
y^eW^+l)-!-*"/^)* _ ^ e(.Ty-[-kv/h])z

i/=0 v=0

t-1 t-1
z - V c((

+ e(fcr+*)« + e(r+l)z _ fi« _ Q
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We simplify the left-hand side and then divide both sides by eTZ obtaining

h-\ fc-i *-i

1/=1 11=1

t-1

{ [x] + 1 if z £ Z
. , ., w e g e t

[z] if z G Z
fc-i t-i

i/=0 v=l

k-1

E -,(((k-l

In the last two sums on the left-hand side, we change variable of summation \i —»
k - fi and use h - 1 - [hfi/k] -> h - 1 - [fc(fc - /i)/jfe] = h - 1 - A - [-(hfi)/k] =

h — l—h + [hfi/k] + 1 = [A/i/fc] for 1 < /i < A; — 1. Hence the above identity becomes

fc-i k-i
y e(ri»+[*i./fcl+i)» _ V^ C(TI

i/=0 v—1

t-1 l- l

We finally have an equivalent form of the theorem that we shall prove. Comparing
terms shows that it suffices to prove

Si 0 S2 = ?i U T2 U Ti

where Si = j (u, f^l + l ) | 0 ^ i/ < h - l | ,

https://doi.org/10.1017/S0004972700029105 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029105


314 A.E. Ozliik and C. Snyder [8]

Let

B = Z x Z n ([0, h] x [0, fc]),

B 1 =ZxZn((0 , fc )x[0 ) i ] ) 1

B2 =ZxZn([0,fc]x(0,4)) .

Also let L denote the line in R x R with equation y = (k/h)x. Then geometrically we
have

51 = {P G B | P lies, just above L},

52 = {P G B | (3Q <E B2) (Q lies just to the left of L and P = Q + (0, 1))} ,

7\ = {P G B | (3Q € Bi)(<2 lies just above L and P = Q + ( - 1 , 0))},

T2 = {P e B2 | P lies just to the left of L).

Notice that from this description Si and S2 are disjoint and T\, T2, Ts are pairwise
disjoint.

We now show that Sj U S2 = I \ U T2 U Ts. To this end, suppose P g Si U S2 •

CASE 1. Suppose P € Si. Then there are five possibilities which are depicted below.

The points represent points in B and the line segment represents a portion of L.

(i) P . / (ii) P- ^

(iii) P-* (h,k) (iv) P- • (V) P.y,

S . (0,0) / • (0,0) / •

In (i) P G T2, in (ii) P G Ti, in (iii) P G T3, in (iv) P G T2 and in (v) P G

CASE 2. Suppose P G S2. Then there are three possibilities given by

(i) P - / (ii) P - / (iii) P y (fc,i)

In (i) P G Ti, in (ii) P g T2 and in (iii) P g T j .

Thus Si U S2 C Ti U T2 U Tj.

Now suppose P G Ti U T2 U T3.

CASE 1. Suppose P G Ti. Then we have two possibilities:

(i) P- y (ii) P- •,

In (i) P G S2 and in (ii) P G Si .
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CASE 2. Suppose P g T j . Then we have two possibilities:

(i) P / - (ii) P. I.

In (i) P € Si and in (ii) P 6 5 2 .

CASE 3. Suppose P G Ts , that is, P = (h - 1, fc). Then there are two possibilities:

(i) P- y (M) (") *• / (M)

In (i) P e Si and in (ii) PeS2.

Therefore 2\ U T2 U Ts C Si U S2 •

The theorem is now established. U

It would be of interest to see if there are similar identities involving Norlund poly-
nomials in more than two parameters. This might lead to the study of Lambert series
in several variables as well as reciprocity laws for "multidimensional" Dedekind sums.
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