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Abstract. The whole scope of problems related with the rotational motion of celestial bodies 
is briefly discussed. Relativistic modeling of the Earth rotation is considered from a conceptual 
point of view. Relativistic effects in rotational equations of motion of an extended body in general 
relativity are discussed. Numerical values of the effects are given. 

1. What do we call Earth rotation and how do we model it? 

Definition of rotational motion of an extended body being fairly simple in Newtonian mechanics is 
not obvious at all in the framework of general relativity. Theoretically speaking the concept of a 
precessing extended rigid body in general relativity encounters fundamental difficulties and cannot 
be introduced even in the first post-Newtonian approximation. From a practical point of view, 
however, the rotational motion of the Earth even at the Newtonian level is defined operationally 
through the time-dependence of geocentric quasi-inertial coordinates of observing sites. An analo­
gous operational definition can be applied in general relativity. To this end, we need a physically 
adequate geocentric reference system to model local physics of the Earth. Then time-dependence 
of coordinates of observing sites relative to that geocentric reference system gives relativistic oper­
ational definition of the rotation of the Earth. 

2. Relativistic reference systems 

Nowadays there are two well developed formalisms for the cons t ruc t ion of relat ivis t ic as t ronomica l 
reference sys tems: t h e Brumberg-Kope ik in formalism (see, e.g., B r u m b e r g , 1991) and t h e D S X 
formalism (Damour , Soffel, Xu, 1991, 1992, 1993). A l though the two approaches look qu i te different 
at first glance, t he ma in serious difference be tween t h e m is t h e concept of mass mul t ipo le m o m e n t s 
of some grav i t a t ing body. Here, t h e D S X formalism makes use of t h e so-called B l a n c h e t - D a m o u r 
moments t h a t have direct physical significance for an isolated body. It is main ly because of th i s 
fact t h a t t he DSX scheme is super ior to the Brumberg-Kope ik in formalism. 

T h e two pr incipal reference sys tems needed to mode l t h e E a r t h ro ta t ion are t h e ba rycen t r i c 
reference sys tem of t h e solar sys tem and t h e local geocentric reference sys tem. 

T h e barycent r ic reference sys tem is n a t u r a l to model t rans la t iona l mot ion of t h e center of mass of 
the Sun and p lane ts as well as light p ropaga t ion from t h e d i s tan t sources (p lanets , s t a r s or quasars) 
to the observers in the solar sys tem. Th i s reference sys tem is used, for example , t o cons t ruc t t h e 
J P L p l ane t a ry ephemer ides a n d t o define t h e In te rna t iona l Celest ial Reference Sys t em ( ICRS) . 

In principle, any reference sys tem covering a region of space- t ime under considera t ion can b e 
used to mode l any kind of physical p h e n o m e n a in t h a t region. However, in some reference sys tems 
t h e ma thema t i ca l descr ip t ion of physical processes is simpler t h a n in o thers . Moreover, relat ivis t ic 
models involve a set of p a r a m e t e r s (say; masses of p lane ts , coordina tes of observing s t a t ions , coor­
dinates of p lane t s or satel l i tes a t some init ial momen t of t ime) which are usual ly defined only wi th 
respect to t h a t reference system. Nevertheless, it is usual ly preferable if these p a r a m e t e r s could be 
reasonably in te rpre ted from a physical po in t of view. A local geocentric reference sys tem is phys­
ically a d e q u a t e to mode l physical p h e n o m e n a occurr ing in the vicini ty of t h e E a r t h . Influence of 
the external masses ( the Sun, p lane ts , etc.) reduces in this reference sys tems to t ida l effects. Th i s 
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makes a mathematical description of local physical phenomena in this reference system especially 
simple. On the other hand, coordinate parameters defined in that local reference system could then 
be physically interpreted at some reasonable level of accuracy in terms of local physical phenom­
ena and without the necessity to remember always their relativistic coordinate nature (e.g., time 
dependence of the geocentric coordinates of observing sites can be interpreted as a result of the 
rotational motion of the Earth and some geophysical drifts). The local geocentric reference system 
is used to describe translational motions of Earth's satellites, to model Earth rotation (including 
precession-nutation angles), and therefore, to define the International Terrestrial Reference System. 

Both reference systems are defined by the structure of their metric tensors. Coordinate trans­
formations between the reference systems are indispensable to relate coordinates of objects, bodies 
and observers defined in those two reference systems and are given in detail in the formalisms. 

3. Precession-nutation angles 

Newtonian theory of Earth rotation heavily uses various angles between various planes and lines, and 
their time-dependence to describe the Earth's rotation. The concept of a plane, a line and an angle 
between them can be meaningfully introduced only in Newtonian physics based upon Euclidean 
space. Curved pseudo-Riemannian manifolds that we are dealing with in general relativity do not 
allow us to consider planes, lines and angles in a physically meaningful way. However, forgetting 
about physical meaning we can use three space coordinates of some reference systems to introduce 
" coordinate planes", " coordinates lines" and " coordinates angles" formally in the same way as we 
do in Euclidean geometry. Those concepts being defined only in one reference system can still be 
useful from a formal mathematical point of view. 

By its construction the local geocentric reference system is physically adequate for modeling of 
any physical processes occurring in the vicinity of the Earth, and in particular, for modeling the 
rotation of the Earth itself. In this geocentric reference system (T, X, Y, Z) for the sake of continuity 
the coordinate plane (T = To, Z = 0) may , e.g., be related with some equator at some epoch T0. 
The vectors of the post-Newtonian spin, angular velocity or figure axes (see below) then define the 
precession-nutation angles in that system. The coordinate transformations between the geocentric 
and barycentric reference systems enable one to define the orientation of the Earth with respect to 
distant celestial objects. 

On the other hand, the concept of a coordinate plane has fundamental restrictions as compared 
to its Newtonian (Euclidean) counterpart. Thus, a coordinate plane is defined in one specific refer­
ence system. If we transform that plane into some other reference system it would be no longer a 
coordinate plane in that other reference system. Some agreements could be adopted to work with 
coordinate planes defined in different reference systems (see, e.g., Brumberg, Bretagnon, Guinot, 
1996). However, for example, the concept of time-dependent plane (say, moving ecliptic) cannot be 
defined with the post-Newtonian accuracy in a reasonable way. 

4. Rotational equations of motion 

In the local geocentric reference system one can derive rotational equations of motion of the Earth, 
which take the same functional form as in Newtonian physics 

| 5 ' = L' + 0 ( c - 4 ) , (1) 

where Sl is the post-Newtonian spin, and L' is the post-Newtonian tidal torque (see, e.g., Damour, 
Soffel, Xu, 1993 and Klioner, 1996 for details). These equations are valid without any assumption 
on shape and composition of the Earth. Both spin and torque coincide with their Newtonian 
counterparts in the Newtonian limit. The torque V vanishes for case of an isolated body. Both 
S1 and L1 contain many relativistic contributions. However, in practice we determine the value of 
Sl directly from observations rather than compute it from the distribution of density, pressure, 
etc. within the Earth. Therefore, only the contributions in the torque are important for practical 
applications. One can show (see, Damour, Soffel, Xu, 1993) that L' can be expanded as 
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L' = ^2 7J (tiabMaLGbL + -^——-eiabSaLHbL ) , (2) 
1=0 V C 1 + Z J 

where L = i i i 2 . . . i | is the multiindex, ML are the Blanchet-Damour mass multipole moments, 
Si are spin moments needed to Newtonian accuracy only, and Gi and Hi are the electric- and 
magnetic type tidal moments of external gravitational field. Both ML and SL are parameters of the 
gravitational field of the Earth and should be determined from observations. The moments GL and 
Hi can be computed from planetary and lunar ephemerides. For practical purposes the expansion 
(2) can be truncated as usual considering magnitudes of the multipole and tidal moments. 

One should note, that the post-Newtonian spin and the rotational equations of motion (1) are 
not unique (see, Damour, Soffel, Xu, 1993 for a discussion). Therefore, in practice one has to adopt 
a definition of spin by some agreement. Say, the form of expansion (2) of the torque U makes the 
definition of Sl unique. 

5. Angular velocity and tensor of inertia 

Eq. (1) is sufficient to discuss precession and nutation of the spin. For many reasons it is also 
important to consider precession and nutation of the angular velocity and figure axis. Therefore, 
we need a relativistic definition of the tensor of inertia and angular velocity. 

A variety of theoretical approaches can be followed to get the same post-Newtonian definition of 
the tensor of inertia C'3 (from restricted rigid body models (Soffel, 1994) to relativistic Tisserand-
like axes of a deformable Earth (Klioner, 1996)). This allows one to split the spin S' into a product 
of the tensor of inertia and corresponding angular velocity 

Si = Ci3\J. (3) 

The post-Newtonian tensor of inertia C'3 is defined as integral over the volume of the body. Again, 
although the definition of C'J contains a number of explicit relativistic terms usually we do not 
compute C'3 from the distribution of density, pressure, etc. within the Earth, but determine the 
values of C'3 from observations. Therefore, for practical purposes we can simply use the fact that 
the spin S' can be represented in the form given in (3). 

The definition of angular velocity of a deformable body is not unique already in Newtonian 
mechanics (one can consider Tisserand axes and principal axes of inertia which give two different 
definitions of angular velocity). This ambiguity is aggravated in general relativity by the ambiguity 
in the definition of the relativistic tensor of inertia C'3 for the non-isolated Earth. Therefore, one 
more agreement is needed. 

6. Rigid-multipole model 

A rigid Earth plays a very important role as a first order approximation in the Newtonian theory 
of Earth's rotation. This rigid model (1) crucially simplifies the mathematical description of the 
rotational motion and (2) is not too far from reality, so that the effect of non-rigidity can be 
than added to the model by means of perturbation theory. The reason why the rigid body model 
substantially simplifies the rotational equations of motion is that both the mass multipole moments 
M)^ewt and the tensor of inertia C^ewt rotate rigidly. In other word there exist a rigidly rotating 
reference system Y' = P'3(T)X3, where P'3(t) is some time-dependent orthogonal matrix, where 
both M^™1 and CjjJ

ewt are constant. 
This nice feature can obviously be saved in the post-Newtonian framework. One might define 

"rigid-multipole" models by means of a series of assumptions 

C'3\t)=PiaP3bCab, C'J = diag(.4,e,e) , A,B,C = const, (4) 

M,1I2..„ = P"<" P'^ ... P"a> M„,ia2...a,, Maia2...ai = const, / > 2, (5) 

Sili2...il=Cki'i2-i'u)k, l>2, (6) 

(jki^.A, = pk] pi,a, pi2a2 pim T j j a ^ . . . ^ C0 i a 2 . . = COIlst, I > 2, (7) 
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and the orthogonal matrix P,3(t) is related to the angular velocity u{ from (3) 

ui(t) = \eijkPmj(t)Pmk(t)^ (8) 

Relations (6)-(7) for the higher spin moments SL,1>2 and for Ciz, are only necessary to Newtonian 
accuracy since they appear only in relativistic terms of (2). 

Note, that in Newtonian theory we derive or prove (4)-(8) from the fundamental property of 
rigidity of the body. Here, on the contrary, in general relativity we define the model by assuming 
the properties of C'3, ML and SL not considering some more fundamental property of the body. 

The experience of the Newtonian models of Earth's rotation shows that the phenomenological 
model (4)-(8) can be used as a first-order approximation for a description of the global rotational 
motion of the Earth. As in Newtonian theory, the model is a basis for considering the effects of 
non-rigidity in the rotation of the Earth as a whole. However, the model does not constrain at all 
internal structure and dynamics of the Earth and completely insufficient for, e.g., a post-Newtonian 
theory of elasticity, which still waits for a rigorous treatment. 

7. Observational consequences 

There are three main observational consequences of general relativity in the rotation of the Earth: 

1. In practice we prefer to use so-called kinematically nonrotating geocentric reference system 
which rotates relative to a locally inertial reference system. This results in Coriolis and cen­
trifugal forces in the right-hand side of (1). These forces gives additional effects in the orien­
tation of the spin of the Earth which are called geodetic precession (~ 1.9" per century) and 
nutation (with an amplitude of 0.15 mas and a period of one year), (see, e.g., Bizouard, et at, 
1992 for details). 

2. Explicit relativistic terms in U results in additional periodic relativistic effects amounting to 
~ 1 microarcsecond (see, Bizouard, et al., 1992). It is to note, however, that the analogous 
effect in the rotation of the Moon is 2-3 order of magnitude larger and may amount to ~ lmas 
(see, Bois, Vockrouhlicky, 1995). 

3. The key relation of Newtonian mechanics 

(Mij) =(-6ljCss -Cij) (9) 
V I Newton V3 /Newton 

relating the quadrupole moment of the gravitational field M'3 and the tensor of inertia C3 

can be shown to be violated in general relativity. This means that, for example, J2, related to 
M'i, cannot be easily related to the dynamical ellipticity H, which is derived from C'3, the 
effect being of order of SJ2/J2 ~ 10~9 (see, Klioner, 1997). 
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