UNITS IN GROUP RINGS OF THE INFINITE DIHEDRAL GROUP

MACIEJ MIROWICZ

ABSTRACT. This paper studies the group of units $U(RD_{\infty})$ of the group ring of the infinite dihedral group D_{∞} over a commutative integral domain R. The structures of $U(\mathbb{Z}_2D_{\infty})$ and $U(\mathbb{Z}_3D_{\infty})$ are determined, and it is shown that $U(\mathbb{Z}D_{\infty})$ is not finitely generated.

1. Introduction. One of the fundamental problems in group ring theory is the Isomorphism Problem: given a ring isomorphism $RG \approx RH$, can we claim that the groups G and H are isomorphic? In general the answer is no (see [1], Chapter 3) but the problem is still open when R = Z—the ring of rational integers—the case most interesting for topologists.

Recently a substantial progress was made for finite groups due to works of K. Roggenkamp with L. Scott [1] and A. Weiss [3].

One of possible ways of the attack of the Isomorphism Problem is to study the group of invertible elements of the ring RH: any ring homomorphism $RG \rightarrow RH$ maps G into this group. A lot is known about units in RG for finite groups ([2]). On the other hand, the domain of infinite groups remains still to be investigated.

In this paper we deal with invertible elements in group rings RD_{∞} where R is a commutative domain with unity and D_{∞} stands for the infinite dihedral group. In Section 3 we describe a certain subgroup of $U(RD_{\infty})$ whose structure depends only on the structure of the additive group of R. This subgroup appears to be the whole group of units in cases $R = \mathbb{Z}_z$ and $R = \mathbb{Z}_3$. This fact enables us to describe in Section 4 the structure of groups $U(\mathbb{Z}_2D_{\infty})$, $U(\mathbb{Z}_3D_{\infty})$ and prove that the group $U(\mathbb{Z}D_{\infty})$ is not finitely generated.

I would like to express my gratitude to Dr. Zbigniew Marciniak.

2. Notation. In this paper *R* will be a commutative domain with unity. The infinite dihedral group can be defined as the semi-direct product of the infinite cyclic group C_{∞} with the cyclic group of order two C_2 :

$$D_{\infty} = C_{\infty}C_2 = \langle t \rangle \langle x \rangle$$

with a well-known presentation $D_{\infty} = \langle t, x | x^2 = 1, xt = t^{-1}x \rangle$. Since each element of the group D_{∞} can be written as t^i or $t^i x$ for some $i \in \mathbb{Z}$ we can write any element $\alpha \in RD_{\infty}$ in the form:

$$\alpha = \sum_{i \in \mathbb{Z}} \alpha_i t^i + \sum_{i \in \mathbb{Z}} b_i t^i x = a + bx \text{ where } a, b \in RC_{\infty}.$$

Received by the editors March 28, 1988.

AMS subject classification: 16A27.

[©]Canadian Mathematical Society 1991.

Let $*: RC_{\infty} \to RC_{\infty}$ be the involution of the group ring RC_{∞} which comes from the non-trivial automorphism of the group C_{∞} , i.e., let $(\sum a_i t^i)^* := \sum a_i t^{-i}$. Using the relator $xt = t^{-1}x$ one can easily see that for any $a \in RC_{\infty}$ the relation $xa = a^*x$ holds. In particular: $(a + bx)(c + dx) = (ac + bd^*) + (ad + bc^*)x$. Applying this formula one can explicitly embed the group ring RD_{∞} into a matrix ring.

REMARK 2.1. The function $i_R: RD_{\infty} \rightarrow M_2(RC_{\infty})$ defined as

$$i_R(a+bx) = \begin{pmatrix} a & b \\ b^* & a^* \end{pmatrix}$$

is a monomorphism of rings.

From now on we identify elements of the ring RD_{∞} with their images in $i_R(RD_{\infty}) \subseteq M_2(RC_{\infty})$.

Let U(P) denote the group of invertible elements (units) of a ring P.

If $\alpha = a + bx \in U(RD_{\infty})$ then there exists an element $\beta \in RD_{\infty}$ such that $\alpha\beta = 1$. Since RC_{∞} is a commutative domain, determinants make sense and det $\alpha \cdot \det \beta = \det(\alpha \circ \beta) = \det 1 = 1$, which shows that det $\alpha \in U(RC_{\infty})$, i.e., it is a unit in the group ring RC_{∞} . But RC_{∞} contains only trivial units (see [2]) so det $\alpha = rt^{i}$ for some $i \in \mathbb{Z}, r \in U(R)$. Moreover $rt^{-i} = (\det \alpha)^{*} = (aa^{*} - bb^{*})^{*} = aa^{*} - bb^{*} = \det \alpha = rt^{-i}$; thus i = 0 and det $\alpha = r \in u(R)$. Conversely, if det $\alpha = r \in U(R)$ then

$$\alpha^{-1} = \begin{pmatrix} a^*r^{-1} & -br^{-1} \\ -b^*r^{-1} & ar^{-1} \end{pmatrix} \in i_R(RD_\infty) \subseteq M_2(RC_\infty).$$

Thus we have proved the following:

REMARK 2.2. If *R* is a commutative domain then:

$$\alpha = a + bx \in U(RD_{\infty}) \iff \det \alpha = aa^* - bb^* \in U(R)$$

For $0 \neq a \sum_{i \in \mathbb{Z}} \alpha_i t^i \in RC_{\infty}$ we set:

$$\max a := \max\{i \mid a_i \neq 0\}$$

$$\min b := \min\{i \mid a_i \neq 0\}$$

$$\deg a := \max a - \min a = \max aa^*$$

If $\alpha = a + bx \in RD_{\infty}$ is a non-trivial unit then $a \neq 0, b \neq 0$. By Remark 2.2 we have $aa^* - bb^* \in U(R)$ hence deg $a = \max aa^* = \max bb^* = \deg b > 0$. We define deg $\alpha := \deg a = \deg b$. For trivial units α we extend this definition by setting deg $\alpha := 0$.

We consider special nilpotents in the group ring RD_{∞} :

$$n_{ij} = (1 + \operatorname{sgn}(i)t^{i}x)t^{|i|}(1 - \operatorname{sgn}(i)t^{j}x)$$

= $(-t^{-|i|} + t^{|i|}) + \operatorname{sgn}(i)t^{j}(t^{-|i|} - t^{|i|})x$ for $i, j \in \mathbb{Z}$.

In fact $(n_{ij})^2 = 0$ because

$$(n_{ij})^2 = (\ldots)(1 \pm t^j x)(1 \mp t^j x)(\ldots) = (\ldots)(1 - (t^j x)^2)(\ldots) = 0.$$

For any $r \in \mathbb{R}$, $i, j \in \mathbb{Z}$ the element $1 + rn_{ij}$ is a unit in RD_{∞} as

$$(1 + rn_{ij})(1 - rn_{ij}) = 1 - r^2(n_{ij})^2 = 1.$$

We will further consider the subgroup of $U(RD_{\infty})$ generated by all units of the above form, so it is useful to introduce the following notation:

$$U = \langle 1 + rn_{ij} \rangle_{i,j \in \mathbb{Z}, r \in \mathbb{R}}$$

For all $k > 0, j \in \mathbb{Z}$:

$$V_j^k = \langle 1 + rn_{ij} \rangle_{0 < i \le k, r \in \mathbb{R}}$$
$$W_j^k = \begin{cases} \langle 1 + rn_{ij} \rangle_{0 > i \ge -k, r \in \mathbb{R}} & \text{if char } R \neq 2\\ \{1\} & \text{if char } R = 2 \end{cases}$$

Obviously, the groups $\{V_j^k\}_{k=1}^{\infty}$ (respectively $\{W_j^k\}_{k=1}^{\infty}$) form an ascending system. We set:

$$V_j = \underline{\lim_k} V_j^k, \ W_j = \underline{\lim_k} W_j^k$$

Natural inclusions induce homomorphisms from the free products:

$$\Phi_k: \star_j V_j^k * \star_j W_j^k \longrightarrow U \text{ for } k > 0 \text{ and}$$
$$\Phi = \underbrace{\lim_k} \Phi_k: \star_j V_j * \star_j W_j \longrightarrow U.$$

By l(w) we will denote the length of word w in a corresponding free product.

3. A subgroup of obvious units in RD_{∞} . Let us start from the description of groups V_j^k and W_j^k (in any place where we consider groups W_j^k we assume that char $R \neq 2$). If sgn(i) = sgn(l) then

$$n_{ij} \cdot n_{lj} = (\dots)(1 - \operatorname{sgn}(i)t^{j}x)(1 + \operatorname{sgn}(l)t^{j}x)(\dots) = (\dots) \cdot 0 \cdot (\dots) = 0,$$

therefore the function $\mathbb{R}^k \longrightarrow V_i^k(\mathbb{R}^k \longrightarrow W_i^k)$ given by the formula :

$$(r_1, \dots, r_k) \to 1 + r_1 n_{1j} + \dots + r_k n_{kj}$$

= $(-r_k t^{-k} - \dots - r_1 t^{-1} + 1 + r_1 t^1 + \dots + r_k t^k)$
+ $t^j (r_k t^{-k} + \dots + r_1 t^{-1} - r_1 t - \dots - r_k t^k) x$

respectively

$$(r_1, \dots, r_k) \to 1 + r_1 n_{-1j} + \dots + r_k n_{-kj}$$

= $(-r_k t^{-k} - \dots - r_1 t^{-1} + 1 + r_1 t^1 + \dots + r_k t^k)$
+ $t^j (-r_k t^{-k} - \dots - r_1 t^{-1} + r_1 t + \dots + r_k t^k) x.$

is an isomorphism from the additive group of R^k onto the multiplicative group V_j^k (W_j^k) . Therefore we obtain isomorphisms $V_j^k \cong R^k$ $(W_j^k \cong R^k)$ and $V_j \cong \bigoplus_{i>0} R$ $(W_j \cong \bigoplus_{i>0} R)$. LEMMA 3.1. Let k > 0 and let $\omega \in \star_{j \in \mathbb{Z}} V_j^k * \star_{j \in \mathbb{Z}} W_j^k$ be a non-empty, reduced word with the last letter g (i.e., $l(wg^{-1}) < l(w)$). If $\Phi_k w = a + bx \in U \subseteq U(RD_{\infty})$, then:

- (*i*) deg $\Phi_k w > 0$ (*in particular* Φ_k *is a monomorphism*)
- (ii) $g \in V_j^k \iff \max(t^{-j}b + a) < \max\{\max a, \max t^{-j}b\}$ or $\min(t^{-j}b + a) > b$ $\min\{\min a, \min t^{-j}b\}$ $g \in W_i^k \iff \operatorname{char} R \neq 2 \text{ and: } \max(t^{-j}b - a) < \max\{\max a, \max t^{-j}b\} \text{ or }$ $\min(t^{-j}b - a) > \min\{\min a, \min t^{-j}b\}.$

PROOF. Induction on the length of word w. From the explicit form of elements of V_i^k, W_i^k (that is words of length one) we conclude that for all words of length one our Lemma holds. We also observe that

(v) for $c + dx \in V_j^k$ we have $c^* = -c$, $d^* = -t^{-2j}d$, $c + t^{-j}d = 1$, (w) for $e + fx \in W_j^k$ we have $e^* = -e$, $f^* = -t^{-2j}f$, $e - t^{-j}f = 1$. Now let us assume that lemma holds for words of the length $n \ge 1$. Let *w* be a reduced word with $l(w) = n + 1, w = v \cdot g, l(v) = n$. There exists $j \in \mathbb{Z}$ such that $g \in V_i^k$ or $g \in W_j^k$. Consider the case $g \in V_j^k$. Let $\Phi_k(v) = y = zx, g = c + dx, \Phi_k(w) = a + bx = bx$ $(y + zx)(c + dx) = (yc + zd^*) + (yd + zc^*)x$. Since w is a reduced word, so that last letter of v does not belong to V_i^k and by the inductive assumption (ii) we obtain the following inequalities:

(3.1.1)
$$\max(t^{-j}z + y) \ge \max\{\max y, \max t^{-j}z\} \\ \min(t^{-j}z + y) < \min\{\min y, \min t^{-j}z\}.$$

We calculate

$$a = yc + zd^* = yc - t^{-2j}zd = yc - t^{-j}z(t^{-j}d) = yc - t^{-j}z(1-c)$$

= $c(y + t^{-j}z) - t^{-j}z$.

From (3.1.1) it follows that

$$\max(c(y+t^{-j}z)) = \max c + \max(y+t^{-j}z) > \max t^{-j}z$$

which implies the equality max $a = \max(c(y + t^{-j}z) - t^{-j}z) = \max(c(y + t^{-j}z))$. On the other hand by (3.1.1) we have $\max(y + t^{-j}z) \ge \max y$, so $\max a = \max(c(y + t^{-j}z)) =$ $\max c + \max(y + t^{-j}z) > \max y$. Replacing "max" by "min" and repeating the above calculations we obtain min $a < \min y$. Thus deg $\Phi_k(w) = \deg a = \max a - \min a >$ $\max y - \min y = \deg \Phi_k(v) > 0$. Similarly we obtain $\deg \Phi_k(w) > \deg \Phi_k(v) > 0$ for $g \in W_i^k$, which completes the inductive step for (i).

Now, we will show that implications " \Rightarrow " in part (ii) are valid. Let $g \in V_i^k$; then

$$t^{-j}b + a = t^{-j}(yd + zc^*) + (yc + zd^*) = t^{-j}yd - t^{-j}zc + yc - t^{-2j}zd$$

= $t^{-j}d(y - t^{-j}z) + c(y - t^{-j}z) = (y - t^{-j}z)(c + t^{-j}d) = y - t^{-j}z.$

Therefore $\max(t^{-j}b + a) = \max(y - t^{-j}z) \le \max\{\max y, \max t^{-j}z\}$. But we have shown that max $y < \max a$. Using similar calculations and applying inequality (3.1.1) we obtain $\max t^{-j}b = \max(y - c(y + t^{-j}z)) = \max c + \max(y + t^{-j}z) > \max t^{-j}z, \text{ so } \max(t^{-j}b + a) \le \max\{\max x, \max x, \max t^{-j}b\}.$ In analogous way for $g \in W_j^k$ we obtain $\max(t^{-j}b - a) < \max\{\max a, \max t^{-j}b\}$. Considering "min" instead of "max" one can easily verify that:

$$g \in V_k^j \Rightarrow \min(t^{-j}b + a) > \min\{\min a, \min t^{-j}b\} \text{ and}$$
$$g \in W_k^j \Rightarrow \min(t^{-j}b + a) > \min\{\min a, \min t^{-j}b\}.$$

Hence to complete proof of (ii) it is enough to show that left sides of equivalences (ii) exclude one another. First let us notice that if $\max(t^j b \pm a) < \max\{\max a, \max t^j b\}$ then $\max a = \max t^j b$ and hence $\max(t^j b \pm a) < \max t^j b = j + \max b$. Therefore if $\max(t^j b + \varepsilon a) < \max\{\max a, \max t^j b\}$ $\max(t^j b + \varepsilon a) < \max\{\max a, \max t^j b\}$ for $j, l \in \mathbb{Z}$, $\varepsilon, \delta \in \{\pm 1\}$ then $\max(t^j b + \varepsilon a - \varepsilon \delta^{-1}(t^l b + \delta a)) = \max(t^j b - \varepsilon \delta^{-1}t^l b) = \max b + \max(t^j - \varepsilon \delta^{-1}t^l) < \max\{j + \max b, l + \max b\}$. Eventually we have $\max(t^j - \varepsilon \delta^{-1}t^l) < \max(l, j)$. But if $t^j - \varepsilon \delta^{-1}t^l \neq 0$ then $\max(t^j - \varepsilon \delta^{-1}t^l) = \max\{l, j\}$ which would lead to a contradiction, therefore $t^j - \varepsilon \delta^{-1}t^l = 0$, i.e., j = 1 and $\varepsilon = \delta$ —what was to be shown.

Let *R* be a commutative domain with unity. By *D* we denote the group of trivial units of the group ring RD_{∞} . We have an obvious isomorphism $D \cong D_{\infty} \times U(R)$. The groups U, V_i, W_j are defined as in Section 2.

THEOREM 3.2. Let $G = \langle U, D \rangle$. Then: (i) $U \cong \star_{j \in \mathbb{Z}} V_j * \star_{j \in \mathbb{Z}} W_j \cong \star_{\mathbb{Z}} \oplus_{\mathbb{N}} R^+$, where R^+ denotes the additive group of the ring R. (ii) G = UD.

PROOF. (i) We have shown in the proof of Lemma 3.1 that $V_j \cong \bigoplus_N R^+$ (and for char $R \neq 2$: $W_j \cong \bigoplus_N R^+$). In order to prove (i) we should check that the homomorphism $\Phi = \lim_{k \to \infty} \Phi_k : \star V_j * \star W_j \to U$ is an isomorphism. Φ is an epimorphism because each generator $1 + rn_{ij}$ lies in the image of Φ . Φ is a monomorphism because for $1 \neq w \in$

generator $1 + m_{ij}$ has in the image of Φ . Φ is a monomorphism because for $1 \neq w \in \star_j V_j * \star_j W_j$ there exists $k \in \mathbb{N}$ such that $w \in \star_j V_j^k * \star_j W_j^k$ and then by Lemma 3.1. (i) $\Phi(w) = \Phi_k(w) \neq 1$.

(ii) In order to prove (ii) it is enough to verify that:

1°: $U \cap D = \{1\}$ 2°: U is a normal subgroup of G

1°: If $1 \neq \alpha \in U$ then by Lemma 3.1.(i) deg $\alpha > 0$ so $\alpha \notin D$. 2°: $D = D \times U(R)$. U(R) is contained in the centre of RD_{∞} so it is sufficient to show that $t \circ U \circ t^{-1} \subseteq U$ and $x \circ U \circ x^{-1} \subseteq U$.

We calculate:

(3.2.1)
$$t(1 + rn_{ij})t^{-1} = 1 + rtn_{ij}t^{-1} = 1 + rn_{i(j+Z)} \in U$$
$$x(1 + rn_{ij})x^{-1} = 1 + rxn_{ij}x^{-1} = 1 + rn_{i(-i)} \in U$$

which completes the proof of the Theorem.

-

COROLLARY 3.3.

 $\langle \operatorname{im} \Phi_k, D \rangle = \operatorname{im} \Phi_k D$

PROOF. From Lemma 3.1. (i) it follows that for $1 \neq \alpha \in \operatorname{im} \Phi_k$ holds: deg $\alpha > 0$ so im $\Phi_k \cap D = \{1\}$. But by (3.2.1) im Φ_k is a normal subgroup of $\langle \operatorname{im} \Phi_k, D \rangle$ which complete the proof.

PROPOSITION 3.4. The groups U, G are not finitely generated.

PROOF. If $\alpha_1, \ldots, \alpha_n \in U$ then there exist $k \in \mathbb{N}$ such that: $\alpha_1, \ldots, \alpha_n \in \Phi(\star_j V_j^k * \star_j W_j^k)$. Then $\langle \alpha_1, \ldots, \alpha_n \rangle \subseteq \operatorname{im} \Phi_k$. But $1 + n_{(k+1)j} \notin \operatorname{im} \Phi_k$ because Φ_{k+1} is a monomorphism. Therefore $\langle \alpha_1, \ldots, \alpha_n \rangle \neq U$. Similarly if $\beta_1, \ldots, \beta_n \in G$ then by Theorem 3.2 there exists $k \in \mathbb{N}$ such that $\langle \beta_1, \ldots, \beta_n \rangle \subseteq \operatorname{im} \Phi_k D$ but by the Corollary 3.3, $1 + n_{(k+1)j} \notin \operatorname{im} \Phi_k D$ so $\langle \beta_1, \ldots, \beta_n \rangle \neq G$.

4. **Description of groups** $U(Z_2D_{\infty}), U(Z_3D_{\infty})$. In this section the group *G* defined in Section 3 for the rings \mathbb{Z}_2D_{∞} and \mathbb{Z}_3D_{∞} will be denoted by G_2 and G_3 respectively.

THEOREM 4.1.

$$U(\mathbb{Z}_2 D_{\infty}) = G_2 \cong (\star_{\mathbb{Z}} \oplus_{\mathbb{N}} \mathbb{Z}_2) D_{\infty}$$
$$U(\mathbb{Z}_3 D_{\infty}) = G_3 \cong (\star_{\mathbb{Z}} \oplus_{\mathbb{N}} \mathbb{Z}_3) D_{\infty}$$

PROOF. In both cases it is enough to prove that trivial units together with units of the form $1 \pm n_{ij}$ for $i, j \in \mathbb{Z}$ generate the whole group of units. We will prove this fact for the group $U(\mathbb{Z}_3 D_{\infty})$ only but it can be easily seen that the proof is valid also for the group $U(\mathbb{Z}_2 D_{\infty})$.

Let $\alpha \in U(\mathbb{Z}_3 D_{\infty})$, $\alpha = a + bx$. If deg $\alpha = 0$ then α is a trivial unit. Hence we can assume that deg $\alpha > 0$. Let $j = \max a - \max b$,

$$\varepsilon = -a_{\max a} \circ (b_{\max b})^{-1} = \pm 1,$$

$$k = \min\{\min(a + \varepsilon t^{j}b) - \min a, \max a - \max(a + \varepsilon t^{j}b)\}$$

Let us notice that $aa^* - bb^* = \pm 1$ (Remark 2.2) $\Rightarrow aa^* \neq bb^* \Rightarrow a \neq \pm t^j b \Rightarrow a + \varepsilon t^j b \neq 0$; thus k is well-defined. Moreover, $k \geq 1$ because $a_{\max a} = -\varepsilon b_{\max b}$ and $a_{\min a} = -\varepsilon b_{\min b}$ —the second equality follows from the equality $aa^* - bb^* = \pm 1$ and the assumption: deg α = deg a = deg b > 0. As $a_{\max a}a_{\min a} = aa^*_{\max aa^*} = bb^*_{\max bb^*} = b_{\max b}b_{\min b} + b_{\min b} + b_{\min$

$$\alpha \circ (1 + sn_{(\varepsilon k)j}) = [a + s(-t^{-k} + t^k)a + s(-t^{-k} + t^k)\varepsilon t^j b] + [\dots]x$$

= $[a + s(-t^{-k}(a + \varepsilon t^j b) + t^k(a + \varepsilon t^j b))] + [\dots]x.$

88

Let $h = -t^{-k}(a + \varepsilon t^{j}b) + t^{k}(a + \varepsilon t^{j}b)$.

Directly from the definition of *k* we have:

(4.1.1)
$$\max h = \max t^k (a + \varepsilon t^j b) = k + \max(a + \varepsilon t^j b) \le \max a$$

(4.1.2)
$$\min h = \min t^{-k}(a + \varepsilon t^{l}b) = -k + \min(a + \varepsilon t^{l}b) \ge \min a$$

and at least one inequality is an equality. First let us assume that equality occurs in (4.1.1). The $h_{\max h} = h_{\max a} \in \{\pm 1\} = \mathbb{Z}_3 - \{0\}$. Also $a_{\max a} \in \{\pm 1\}$ thus we can choose $s \in \{\pm 1\}$ in such a way that $\max(a + sh) < \max a \ (s = -h_{\max h} \circ a_{\max a}^{-1})$. Similarly if equality occurs in (4.1.2) then we can choose $s \in \{\pm 1\}$ $(s = -h_{\min h} \circ a_{\min a}^{-1})$ such that $\min(a + sh) > \min a$. As a result we obtain:

$$\deg(\alpha \circ (1 + sn_{(\varepsilon k)j}) = \deg(a + sh) = \max(a + sh) - \min(a + sh)$$

< max a - min a = deg a = deg \alpha.

Simple inductive argument completes the proof.

THEOREM 4.2. Groups $U(\mathbb{Z}D_{\infty})$, $U(\mathbb{Z}_{3}D_{\infty})$ and $U(\mathbb{Z}_{2}D_{\infty})$ are not finitely generated.

PROOF. For groups $U(\mathbb{Z}_3 D_{\infty})$, $U(\mathbb{Z}_2 D_{\infty})$ the assertion follows directly from Theorem 4.1 and Proposition 3.4. The homomorphism $\mathbb{Z} \to \mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ induces a homomorphism of rings $\Psi: \mathbb{Z} D_{\infty} \to \mathbb{Z}_2 D_{\infty}$ which restricted to $U(\mathbb{Z} D_{\infty})$ gives us a homomorphism of groups $\Psi: U(\mathbb{Z} D_{\infty}) \to U(\mathbb{Z}_2 D_{\infty})$. Let us notice that for $1 \circ x$, $1 \circ t$, $n_{ij} \in \mathbb{Z} D_{\infty}$ we have: $\Psi(1 \circ x) = 1 \circ x \in \mathbb{Z}_2 D_{\infty}$, $\Psi(1 \circ t \in \mathbb{Z}_2 D_{\infty}, \Psi(n_{ij}) = n_{ij} \in \mathbb{Z}_2 D_{\infty}$ so $G_2 \subseteq \text{im } \Psi$. But by Theorem 4.1 $G_2 = U(\mathbb{Z}_2 D_{\infty})$ thus $\Psi: U(\mathbb{Z} D_{\infty}) \to U(\mathbb{Z}_2 D_{\infty})$ is an epimorphism. Therefore $U(\mathbb{Z} D_{\infty})$ cannot be a finitely generated group.

REFERENCES

- 1. K. W. Roggenkamp, L. L. Scott, Isomorphisms of p-adic group rings, Ann. of Math. (1987).
- 2. S. K. Sehgal, Topics in group rings, M. Dekker (1978).
- 3. A. Weiss, *p*-adic ridigity of *p*-torsion, Ann. of Math. (1988).