UNITS IN GROUP RINGS
 OF THE INFINITE DIHEDRAL GROUP

MACIEJ MIROWICZ

Abstract

This paper studies the group of units $U\left(R D_{\infty}\right)$ of the group ring of the infinite dihedral group D_{∞} over a commutative integral domain R. The structures of $U\left(\mathbb{Z}_{2} D_{\infty}\right)$ and $U\left(\mathbb{Z}_{3} D_{\infty}\right)$ are determined, and it is shown that $U\left(\mathbb{Z} D_{\infty}\right)$ is not finitely generated.

1. Introduction. One of the fundamental problems in group ring theory is the Isomorphism Problem: given a ring isomorphism $R G \approx R H$, can we claim that the groups G and H are isomorphic? In general the answer is no (see [1], Chapter 3) but the problem is still open when $R=Z$-the ring of rational integers-the case most interesting for topologists.

Recently a substantial progress was made for finite groups due to works of K. Roggenkamp with L. Scott [1] and A. Weiss [3].

One of possible ways of the attack of the Isomorphism Problem is to study the group of invertible elements of the ring $R H$: any ring homomorphism $R G \rightarrow R H$ maps G into this group. A lot is known about units in $R G$ for finite groups ([2]). On the other hand, the domain of infinite groups remains still to be investigated.

In this paper we deal with invertible elements in group rings $R D_{\infty}$ where R is a commutative domain with unity and D_{∞} stands for the infinite dihedral group. In Section 3 we describe a certain subgroup of $U\left(R D_{\infty}\right)$ whose structure depends only on the structure of the additive group of R. This subgroup appears to be the whole group of units in cases $R=\mathbb{Z}_{z}$ and $R=\mathbb{Z}_{3}$. This fact enables us to describe in Section 4 the structure of groups $U\left(\mathbb{Z}_{2} D_{\infty}\right), U\left(\mathbb{Z}_{3} D_{\infty}\right)$ and prove that the group $U\left(\mathbb{Z} D_{\infty}\right)$ is not finitely generated.

I would like to express my gratitude to Dr. Zbigniew Marciniak.
2. Notation. In this paper R will be a commutative domain with unity. The infinite dihedral group can be defined as the semi-direct product of the infinite cyclic group C_{∞} with the cyclic group of order two C_{2} :

$$
D_{\infty}=C_{\infty} C_{2}=\langle t\rangle\langle x\rangle
$$

with a well-known presentation $D_{\infty}=\left\langle t, x \mid x^{2}=1, x t=t^{-1} x\right\rangle$. Since each element of the group D_{∞} can be written as t^{i} or $t^{i} x$ for some $i \in \mathbb{Z}$ we can write any element $\alpha \in R D_{\infty}$ in the form:

$$
\alpha=\sum_{i \in \mathbf{Z}} \alpha_{i} t^{i}+\sum_{i \in \mathbf{Z}} b_{i} t^{i} x=a+b x \text { where } a, b \in R C_{\infty} .
$$

Let $*: R C_{\infty} \rightarrow R C_{\infty}$ be the involution of the group ring $R C_{\infty}$ which comes from the non-trivial automorphism of the group C_{∞}, i.e., let $\left(\sum a_{i} t^{i}\right)^{*}:=\sum a_{i} t^{-i}$. Using the relator $x t=t^{-1} x$ one can easily see that for any $a \in R C_{\infty}$ the relation $x a=a^{*} x$ holds. In particular: $(a+b x)(c+d x)=\left(a c+b d^{*}\right)+\left(a d+b c^{*}\right) x$. Applying this formula one can explicitly embed the group ring $R D_{\infty}$ into a matrix ring.

REMARK 2.1. The function $i_{R}: R D_{\infty} \rightarrow M_{2}\left(R C_{\infty}\right)$ defined as

$$
i_{R}(a+b x)=\left(\begin{array}{cc}
a & b \\
b^{*} & a^{*}
\end{array}\right)
$$

is a monomorphism of rings.
From now on we identify elements of the ring $R D_{\infty}$ with their images in $i_{R}\left(R D_{\infty}\right) \subseteq$ $M_{2}\left(R C_{\infty}\right)$.

Let $U(P)$ denote the group of invertible elements (units) of a ring P.
If $\alpha=a+b x \in U\left(R D_{\infty}\right)$ then there exists an element $\beta \in R D_{\infty}$ such that $\alpha \beta=1$. Since $R C_{\infty}$ is a commutative domain, determinants make sense and $\operatorname{det} \alpha \cdot \operatorname{det} \beta=$ $\operatorname{det}(\alpha \circ \beta)=\operatorname{det} 1=1$, which shows that $\operatorname{det} \alpha \in U\left(R C_{\infty}\right)$, i.e., it is a unit in the group ring $R C_{\infty}$. But $R C_{\infty}$ contains only trivial units (see [2]) so det $\alpha=r t^{i}$ for some $i \in \mathbb{Z}, r \in U(R)$. Moreover $r t^{-i}=(\operatorname{det} \alpha)^{*}=\left(a a^{*}-b b^{*}\right)^{*}=a a^{*}-b b^{*}=\operatorname{det} \alpha=r t^{-i}$; thus $i=0$ and $\operatorname{det} \alpha=r \in u(R)$. Conversely, if $\operatorname{det} \alpha=r \in U(R)$ then

$$
\alpha^{-1}=\left(\begin{array}{cc}
a^{*} r^{-1} & -b r^{-1} \\
-b^{*} r^{-1} & a r^{-1}
\end{array}\right) \in i_{R}\left(R D_{\infty}\right) \subseteq M_{2}\left(R C_{\infty}\right) .
$$

Thus we have proved the following:

REMARK 2.2. If R is a commutative domain then:

$$
\alpha=a+b x \in U\left(R D_{\infty}\right) \Longleftrightarrow \operatorname{det} \alpha=a a^{*}-b b^{*} \in U(R)
$$

For $0 \neq a \sum_{i \in \mathcal{Z}} \alpha_{i} t^{i} \in R C_{\infty}$ we set:

$$
\begin{aligned}
\max a & :=\max \left\{i \mid a_{i} \neq 0\right\} \\
\min b & :=\min \left\{i \mid a_{i} \neq 0\right\} \\
\operatorname{deg} a & =\max a-\min a=\max a a^{*}
\end{aligned}
$$

If $\alpha=a+b x \in R D_{\infty}$ is a non-trivial unit then $a \neq 0, b \neq 0$. By Remark 2.2 we have $a a^{*}-b b^{*} \in U(R)$ hence $\operatorname{deg} a=\max a a^{*}=\max b b^{*}=\operatorname{deg} b>0$. We define $\operatorname{deg} \alpha:=$ $\operatorname{deg} a=\operatorname{deg} b$. For trivial units α we extend this definition by setting $\operatorname{deg} \alpha:=0$.

We consider special nilpotents in the group ring $R D_{\infty}$:

$$
\begin{aligned}
n_{i j} & =\left(1+\operatorname{sgn}(i) t^{j} x\right) t^{|i|}\left(1-\operatorname{sgn}(i) t^{j} x\right) \\
& =\left(-t^{-|i|}+t^{|i|}\right)+\operatorname{sgn}(i) t^{j}\left(t^{-|i|}-t^{|i|}\right) x \quad \text { for } i, j \in \mathbb{Z} .
\end{aligned}
$$

where $\operatorname{sgn}(i)$ stands for the sign of i.
In fact $\left(n_{i j}\right)^{2}=0$ because

$$
\left(n_{i j}\right)^{2}=(\ldots)\left(1 \pm t^{j} x\right)\left(1 \mp t^{j} x\right)(\ldots)=(\ldots)\left(1-\left(t^{j} x\right)^{2}\right)(\ldots)=0 .
$$

For any $r \in \mathbb{R}, i, j \in \mathbb{Z}$ the element $1+r n_{i j}$ is a unit in $R D_{\infty}$ as

$$
\left(1+r n_{i j}\right)\left(1-r n_{i j}\right)=1-r^{2}\left(n_{i j}\right)^{2}=1 .
$$

We will further consider the subgroup of $U\left(R D_{\infty}\right)$ generated by all units of the above form, so it is useful to introduce the following notation:

$$
U=\left\langle 1+r n_{i j}\right\rangle_{i, j \in \mathbb{Z}, r \in \mathbb{R}}
$$

For all $k>0, j \in \mathbb{Z}$:

$$
\begin{gathered}
V_{j}^{k}=\left\langle 1+r n_{i j}\right\rangle_{0<i \leq k, r \in \mathbb{R}} \\
W_{j}^{k}= \begin{cases}\left\langle 1+r n_{i j}\right\rangle_{0>i \geq-k, r \in \mathbb{R}} & \text { if char } R \neq 2 \\
\{1\} & \text { if char } R=2\end{cases}
\end{gathered}
$$

Obviously, the groups $\left\{V_{j}^{k}\right\}_{k=1}^{\infty}$ (respectively $\left\{W_{j}^{k}\right\}_{k=1}^{\infty}$) form an ascending system. We set:

$$
V_{j}=\underline{\lim } V_{j}^{k}, W_{j}=\underline{\lim } W_{j}^{k}
$$

Natural inclusions induce homomorphisms from the free products:

$$
\begin{aligned}
& \Phi_{k}: \star_{j} V_{j}^{k} * \star_{j} W_{j}^{k} \rightarrow U \text { for } k>0 \text { and } \\
& \Phi=\frac{\lim }{k} \Phi_{k}: \star_{j} V_{j} * \star_{j} W_{j} \rightarrow U
\end{aligned}
$$

By $l(w)$ we will denote the length of word w in a corresponding free product.
3. A sabgroup of obvious units in $R D_{\infty}$. Let us start from the description of groups V_{j}^{k} and W_{j}^{k} (in any place where we consider groups W_{j}^{k} we assume that char $R \neq 2$). If $\operatorname{sgn}(i)=\operatorname{sgn}(l)$ then

$$
n_{i j} \cdot n_{l j}=(\ldots)\left(1-\operatorname{sgn}(i) t^{j} x\right)\left(1+\operatorname{sgn}(l) t^{j} x\right)(\ldots)=(\ldots) \cdot 0 \cdot(\ldots)=0,
$$

therefore the function $R^{k} \rightarrow V_{j}^{k}\left(R^{k} \rightarrow W_{j}^{k}\right)$ given by the formula :

$$
\begin{aligned}
\left(r_{1}, \ldots, r_{k}\right) & \rightarrow 1+r_{1} n_{1 j}+\cdots+r_{k} n_{k j} \\
& =\left(-r_{k} t^{-k}-\cdots-r_{1} t^{-1}+1+r_{1} t^{1}+\cdots+r_{k} t^{k}\right) \\
& +t^{j}\left(r_{k} t^{-k}+\cdots+r_{1} t^{-1}-r_{1} t-\cdots-r_{k} t^{k}\right) x
\end{aligned}
$$

respectively

$$
\begin{aligned}
\left(r_{1}, \ldots, r_{k}\right) & \rightarrow 1+r_{1} n_{-1 j}+\cdots+r_{k} n_{-k j} \\
& =\left(-r_{k} t^{-k}-\cdots-r_{1} t^{-1}+1+r_{1} t^{1}+\cdots+r_{k} t^{k}\right) \\
& +t^{j}\left(-r_{k} t^{-k}-\cdots-r_{1} t^{-1}+r_{1} t+\cdots+r_{k} t^{k}\right) x
\end{aligned}
$$

is an isomorphism from the additive group of R^{k} onto the multiplicative group $V_{j}^{k}\left(W_{j}^{k}\right)$. Therefore we obtain isomorphisms $V_{j}^{k} \cong R^{k}\left(W_{j}^{k} \cong R^{k}\right)$ and $V_{j} \cong \oplus_{i>0} R\left(W_{j} \cong \oplus_{i>0} R\right)$.

Lemma 3.1. Let $k>0$ and let $\omega \in \star_{j \in \mathbb{Z}} V_{j}^{k} * \star_{j \in \mathbb{Z}} W_{j}^{k}$ be a non-empty, reduced word with the last letter $g\left(\right.$ i.e., $\left.l\left(w g^{-1}\right)<l(w)\right)$. If $\Phi_{k} w=a+b x \in U \subseteq U\left(R D_{\infty}\right)$, then:
(i) $\operatorname{deg} \Phi_{k} w>0$ (in particular Φ_{k} is a monomorphism)
(ii) $g \in V_{j}^{k} \Longleftrightarrow \max \left(t^{-j} b+a\right)<\max \left\{\max a, \max t^{-j} b\right\}$ or $\min \left(t^{-j} b+a\right)>$ $\min \left\{\min a, \min t^{-j} b\right\}$
$g \in W_{j}^{k} \Longleftrightarrow$ char $R \neq 2$ and: $\max \left(t^{-j} b-a\right)<\max \left\{\max a, \max t^{-j} b\right\}$ or $\min \left(t^{-j} b-a\right)>\min \left\{\min a, \min t^{-j} b\right\}$.

Proof. Induction on the length of word w. From the explicit form of elements of V_{j}^{k}, W_{j}^{k} (that is words of length one) we conclude that for all words of length one our Lemma holds. We also observe that
(v) for $c+d x \in V_{j}^{k}$ we have $c^{*}=-c, d^{*}=-t^{-2 j} d, c+t^{-j} d=1$,
(w) for $e+f x \in W_{j}^{k}$ we have $e^{*}=-e, f^{*}=-t^{-2 j} f, e-t^{-j} f=1$.

Now let us assume that lemma holds for words of the length $n \geq 1$. Let w be a reduced word with $l(w)=n+1, w=v \cdot g, l(v)=n$. There exists $j \in \mathbb{Z}$ such that $g \in V_{j}^{k}$ or $g \in W_{j}^{k}$. Consider the case $g \in V_{j}^{k}$. Let $\Phi_{k}(v)=y=z x, g=c+d x, \Phi_{k}(w)=a+b x=$ $(y+z x)(c+d x)=\left(y c+z d^{*}\right)+\left(y d+z c^{*}\right) x$. Since w is a reduced word, so that last letter of v does not belong to V_{j}^{k} and by the inductive assumption (ii) we obtain the following inequalities:

$$
\begin{align*}
\max \left(t^{-j} z+y\right) & \geq \max \left\{\max y, \max t^{-j} z\right\} \\
\min \left(t^{-j} z+y\right) & \leq \min \left\{\min y, \min t^{-j} z\right\} \tag{3.1.1}
\end{align*}
$$

We calculate

$$
\begin{aligned}
a & =y c+z d^{*}=y c-t^{-2 j} z d=y c-t^{-j} z\left(t^{-j} d\right)=y c-t^{-j} z(1-c) \\
& =c\left(y+t^{-j} z\right)-t^{-j} z .
\end{aligned}
$$

From (3.1.1) it follows that

$$
\max \left(c\left(y+t^{-j} z\right)\right)=\max c+\max \left(y+t^{-j} z\right)>\max t^{-j} z
$$

which implies the equality $\max a=\max \left(c\left(y+t^{-j} z\right)-t^{-j} z\right)=\max \left(c\left(y+t^{-j} z\right)\right)$. On the other hand by (3.1.1) we have $\max \left(y+t^{-j} z\right) \geq \max y$, so $\max a=\max \left(c\left(y+t^{-j} z\right)\right)=$ $\max c+\max \left(y+t^{-j} z\right)>\max y$. Replacing "max" by "min" and repeating the above calculations we obtain $\min a<\min y$. Thus $\operatorname{deg} \Phi_{k}(w)=\operatorname{deg} a=\max a-\min a>$ $\max y-\min y=\operatorname{deg} \Phi_{k}(v)>0$. Similarly we obtain $\operatorname{deg} \Phi_{k}(w)>\operatorname{deg} \Phi_{k}(v)>0$ for $g \in W_{j}^{k}$, which completes the inductive step for (i).

Now, we will show that implications " \Rightarrow " in part (ii) are valid. Let $g \in V_{j}^{k}$; then

$$
\begin{aligned}
t^{-j} b+a & =t^{-j}\left(y d+z c^{*}\right)+\left(y c+z d^{*}\right)=t^{-j} y d-t^{-j} z c+y c-t^{-2 j} z d \\
& =t^{-j} d\left(y-t^{-j} z\right)+c\left(y-t^{-j} z\right)=\left(y-t^{-j} z\right)\left(c+t^{-j} d\right)=y-t^{-j} z .
\end{aligned}
$$

Therefore $\max \left(t^{-j} b+a\right)=\max \left(y-t^{-j} z\right) \leq \max \left\{\max y, \max t^{-j_{z}}\right\}$. But we have shown that $\max y<\max a$. Using similar calculations and applying inequality (3.1.1) we obtain
$\max t^{-j} b=\max \left(y-c\left(y+t^{-j} z\right)\right)=\max c+\max \left(y+t^{-j} z\right)>\max t^{-j} z$, so $\max \left(t^{-j} b+a\right) \leq$ $\max \left\{\max y, \max t^{-j} z\right\}<\max \left\{\max a, \max t^{-j} b\right\}$. In analogous way for $g \in W_{j}^{k}$ we obtain $\max \left(t^{-j} b-a\right)<\max \left\{\max a, \max t^{-j} b\right\}$. Considering "min" instead of "max" one can easily verify that:

$$
\begin{aligned}
& g \in V_{k}^{j} \Rightarrow \min \left(t^{-j} b+a\right)>\min \left\{\min a, \min t^{-j} b\right\} \text { and } \\
& g \in W_{k}^{j} \Rightarrow \min \left(t^{-j} b+a\right)>\min \left\{\min a, \min t^{-j} b\right\}
\end{aligned}
$$

Hence to complete proof of (ii) it is enough to show that left sides of equivalences (ii) exclude one another. First let us notice that if $\max \left(t^{j} b \pm a\right)<\max \left\{\max a, \max t^{j} b\right\}$ then $\max a=\max t^{j} b$ and hence $\max \left(t^{j} b \pm a\right)<\max t^{j} b=j+\max b$. Therefore if $\max \left(t^{j} b+\varepsilon a\right)<\max \left\{\max a, \max t^{j} b\right\} \max \left(t^{l} b+\delta a\right)<\max \left\{\max a, \max t^{l} b\right\}$ for $j, l \in$ $\mathbb{Z}, \varepsilon, \delta \in\{ \pm 1\}$ then $\max \left(t^{j} b+\varepsilon a-\varepsilon \delta^{-1}\left(t^{l} b+\delta a\right)\right)=\max \left(t^{j} b-\varepsilon \delta^{-1} t^{l} b\right)=\max b+$ $\max \left(t^{j}-\varepsilon \delta^{-1} t^{l}\right)<\max \{j+\max b, l+\max b\}$. Eventually we have $\max \left(t^{j}-\varepsilon \delta^{-1} t^{l}\right)<$ $\max (l, j)$. But if $t^{j}-\varepsilon \delta^{-1} t^{l} \neq 0$ then $\max \left(t^{j}-\varepsilon \delta^{-1} t^{l}\right)=\max \{l, j\}$ which would lead to a contradiction, therefore $t^{j}-\varepsilon \delta^{-1} t^{\prime}=0$, i.e., $j=1$ and $\varepsilon=\delta$-what was to be shown.

Let R be a commutative domain with unity. By D we denote the group of trivial units of the group ring $R D_{\infty}$. We have an obvious isomorphism $D \cong D_{\infty} \times U(R)$. The groups U, V_{j}, W_{j} are defined as in Section 2.

Theorem 3.2. Let $G=\langle U, D\rangle$. Then:
(i) $U \cong \star_{j \in \mathbb{Z}} V_{j} * \star_{j \in \mathbb{Z}} W_{j} \cong \star_{\mathbf{Z}} \oplus_{\mathcal{N}} R^{+}$, where R^{+}denotes the additive group of the ring R.
(ii) $G=U D$.

PROOF. (i) We have shown in the proof of Lemma 3.1 that $V_{j} \cong \oplus_{N} R^{+}$(and for char $R \neq 2$: $W_{j} \cong \oplus_{N} R^{+}$). In order to prove (i) we should check that the homomorphism $\Phi=\underset{\vec{k}}{\lim } \Phi_{k}: \star V_{j} * \star W_{j} \rightarrow U$ is an isomorphism. Φ is an epimorphism because each generator $1+r n_{i j}$ lies in the image of Φ. Φ is a monomorphism because for $1 \neq w \in$ $\star_{j} V_{j} * \star_{j} W_{j}$ there exists $k \in \mathbb{N}$ such that $w \in \star_{j} V_{j}^{k} * \star_{j} W_{j}^{k}$ and then by Lemma 3.1. (i) $\Phi(w)=\Phi_{k}(w) \neq 1$.
(ii) In order to prove (ii) it is enough to verify that:

$$
1^{\circ}: U \cap D=\{1\} \quad 2^{\circ}: U \text { is a normal subgroup of } G
$$

1° : If $1 \neq \alpha \in U$ then by Lemma 3.1.(i) $\operatorname{deg} \alpha>0$ so $\alpha \notin D$.
$2^{\circ}: D=D \times U(R) . U(R)$ is contained in the centre of $R D_{\infty}$ so it is sufficient to show that $t \circ U \circ t^{-1} \subseteq U$ and $x \circ U \circ x^{-1} \subseteq U$.

We calculate:

$$
\begin{align*}
t\left(1+r n_{i j}\right) t^{-1} & =1+r t n_{i j} t^{-1}=1+r n_{i(j+Z)} \in U \\
x\left(1+r n_{i j}\right) x^{-1} & =1+r x n_{i j} x^{-1}=1+r n_{i(-j)} \in U \tag{3.2.1}
\end{align*}
$$

which completes the proof of the Theorem.

Corollary 3.3.

$$
\left\langle\operatorname{im} \Phi_{k}, D\right\rangle=\operatorname{im} \Phi_{k} D
$$

Proof. From Lemma 3.1. (i) it follows that for $1 \neq \alpha \in \operatorname{im} \Phi_{k}$ holds: $\operatorname{deg} \alpha>0$ so im $\Phi_{k} \cap D=\{1\}$. But by (3.2.1) im Φ_{k} is a normal subgroup of $\left\langle\operatorname{im} \Phi_{k}, D\right\rangle$ which complete the proof.

Proposition 3.4. The groups U, G are not finitely generated.
PROOF. If $\alpha_{1}, \ldots, \alpha_{n} \in U$ then there exist $k \in \mathbb{N}$ such that: $\alpha_{1} \ldots, \alpha_{n} \in \Phi\left(\star_{j} V_{j}^{k} *\right.$ $\left.\star_{j} W_{j}^{k}\right)$. Then $\left\langle\alpha_{1} \ldots, \alpha_{n}\right\rangle \subseteq \operatorname{im} \Phi_{k}$. But $1+n_{(k+1) j} \notin \operatorname{im} \Phi_{k}$ because Φ_{k+1} is a monomorphism. Therefore $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \neq U$. Similarly if $\beta_{1}, \ldots, \beta_{n} \in G$ then by Theorem 3.2 there exists $k \in \mathbb{N}$ such that $\left\langle\beta_{1}, \ldots, \beta_{n}\right\rangle \subseteq \operatorname{im} \Phi_{k} D$ but by the Corollary 3.3, $1+n_{(k+1) j} \notin \operatorname{im} \Phi_{k} D$ so $\left\langle\beta_{1}, \ldots, \beta_{n}\right\rangle \neq G$.
4. Description of groups $U\left(Z_{2} D_{\infty}\right), U\left(Z_{3} D_{\infty}\right)$. In this section the group G defined in Section 3 for the rings $\mathbb{Z}_{2} D_{\infty}$ and $\mathbb{Z}_{3} D_{\infty}$ will be denoted by G_{2} and G_{3} respectively.

Theorem 4.1.

$$
\begin{aligned}
& U\left(\mathbb{Z}_{2} D_{\infty}\right)=G_{2} \cong\left(\star_{\mathbb{Z}} \oplus_{N} \mathbb{Z}_{2}\right) D_{\infty} \\
& U\left(\mathbb{Z}_{3} D_{\infty}\right)=G_{3} \cong\left(\star_{\mathbb{Z}} \oplus_{N} \mathbb{Z}_{3}\right) D_{\infty}
\end{aligned}
$$

Proof. In both cases it is enough to prove that trivial units together with units of the form $1 \pm n_{i j}$ for $i, j \in \mathbb{Z}$ generate the whole group of units. We will prove this fact for the group $U\left(\mathbb{Z}_{3} D_{\infty}\right)$ only but it can be easily seen that the proof is valid also for the group $U\left(\mathbb{Z}_{2} D_{\infty}\right)$.

Let $\alpha \in U\left(\mathbb{Z}_{3} D_{\infty}\right), \alpha=a+b x$. If $\operatorname{deg} \alpha=0$ then α is a trivial unit. Hence we can assume that $\operatorname{deg} \alpha>0$. Let $j=\max a-\max b$,

$$
\begin{gathered}
\varepsilon=-a_{\max a} \circ\left(b_{\max b}\right)^{-1}= \pm 1, \\
k=\min \left\{\min \left(a+\varepsilon t^{j} b\right)-\min a, \max a-\max \left(a+\varepsilon t^{j} b\right)\right\}
\end{gathered}
$$

Let us notice that $a a^{*}-b b^{*}= \pm 1$ (Remark 2.2) $\Rightarrow a a^{*} \neq b b^{*} \Rightarrow a \neq \pm t^{j} b \Rightarrow$ $a+\varepsilon t^{j} b \neq 0$; thus k is well-defined. Moreover, $k \geq 1$ because $a_{\max a}=-\varepsilon b_{\max b}$ and $a_{\min a}=-\varepsilon b_{\min b}$-the second equality follows from the equality $a a^{*}-b b^{*}= \pm 1$ and the assumption: $\operatorname{deg} \alpha=\operatorname{deg} a=\operatorname{deg} b>0$. As $a_{\max a} a_{\min a}=a a_{\max a a^{*}}^{*}=b b_{\max b b^{*}}^{*}=$ $b_{\max b} b_{\min b}$ hence $a_{\min a}=b_{\max b} \circ b_{\min b} \circ\left(a_{\max a}\right)^{-1}=-\varepsilon b_{\min b}$. We will show that for $s=1$ or $s=-1$ holds $\operatorname{deg}\left(\alpha \circ\left(1+s n_{(\varepsilon k j)}\right)\right)<\operatorname{deg} \alpha$.

$$
\begin{aligned}
\alpha \circ\left(1+s n_{(\varepsilon k) j}\right) & =\left[a+s\left(-t^{-k}+t^{k}\right) a+s\left(-t^{-k}+t^{k}\right) \varepsilon t^{j} b\right]+[\ldots] x \\
& =\left[a+s\left(-t^{-k}\left(a+\varepsilon t^{j} b\right)+t^{k}\left(a+\varepsilon t^{j} b\right)\right)\right]+[\ldots] x .
\end{aligned}
$$

Let $h=-t^{-k}\left(a+\varepsilon t^{j} b\right)+t^{k}\left(a+\varepsilon t^{j} b\right)$.
Directly from the definition of k we have:

$$
\begin{align*}
\max h & =\max t^{k}\left(a+\varepsilon t^{j} b\right)=k+\max \left(a+\varepsilon t^{j} b\right) \leq \max a \tag{4.1.1}\\
\min h & =\min t^{-k}\left(a+\varepsilon t^{j} b\right)=-k+\min \left(a+\varepsilon t^{j} b\right) \geq \min a
\end{align*}
$$

and at least one inequality is an equality. First let us assume that equality occurs in (4.1.1). The $h_{\max h}=h_{\max a} \in\{ \pm 1\}=\mathbb{Z}_{3}-\{0\}$. Also $a_{\max a} \in\{ \pm 1\}$ thus we can choose $s \in\{ \pm 1\}$ in such a way that $\max (a+s h)<\max a\left(s=-h_{\max h} \circ a_{\max a}^{-1}\right)$. Similarly if equality occurs in (4.1.2) then we can choose $s \in\{ \pm 1\}\left(s=-h_{\min h} \circ a_{\min a}^{-1}\right)$ such that $\min (a+s h)>\min a$. As a result we obtain:

$$
\begin{aligned}
\operatorname{deg}\left(\alpha \circ\left(1+s n_{(\varepsilon k) j}\right)\right. & =\operatorname{deg}(a+s h)=\max (a+\operatorname{sh})-\min (a+s h) \\
& <\max a-\min a=\operatorname{deg} a=\operatorname{deg} \alpha
\end{aligned}
$$

Simple inductive argument completes the proof.
THEOREM 4.2. Groups $U\left(\mathbb{Z} D_{\infty}\right), U\left(\mathbb{Z}_{3} D_{\infty}\right)$ and $U\left(\mathbb{Z}_{2} D_{\infty}\right)$ are not finitely generated.

Proof. For groups $U\left(\mathbb{Z}_{3} D_{\infty}\right), U\left(\mathbb{Z}_{2} D_{\infty}\right)$ the assertion follows directly from Theorem 4.1 and Proposition 3.4. The homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ induces a homomorphism of rings $\Psi: \mathbb{Z} D_{\infty} \rightarrow \mathbb{Z}_{2} D_{\infty}$ which restricted to $U\left(\mathbb{Z} D_{\infty}\right)$ gives us a homomorphism of groups $\Psi: U\left(\mathbb{Z} D_{\infty}\right) \rightarrow U\left(\mathbb{Z}_{2} D_{\infty}\right)$. Let us notice that for $1 \circ x, 1 \circ t, n_{i j} \in \mathbb{Z} D_{\infty}$ we have: $\Psi(1 \circ x)=1 \circ x \in \mathbb{Z}_{2} D_{\infty}, \Psi\left(1 \circ t \in \mathbb{Z}_{2} D_{\infty}, \Psi\left(n_{i j}\right)=n_{i j} \in \mathbb{Z}_{2} D_{\infty}\right.$ so $G_{2} \subseteq \mathrm{im} \Psi$. But by Theorem $4.1 G_{2}=U\left(\mathbb{Z}_{2} D_{\infty}\right)$ thus $\Psi: U\left(\mathbb{Z} D_{\infty}\right) \rightarrow U\left(\mathbb{Z}_{2} D_{\infty}\right)$ is an epimorphism. Therefore $U\left(\mathbb{Z} D_{\infty}\right)$ cannot be a finitely generated group.

References

1. K. W. Roggenkamp, L. L. Scott, Isomorphisms of p-adic group rings, Ann. of Math. (1987).
2. S. K. Sehgal, Topics in group rings, M. Dekker (1978).
3. A. Weiss, p-adic ridigity of p-torsion, Ann. of Math. (1988).
