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On conjugacy classes in

certain isogenous groups

T.A. Ketter and G.I. Lehrer

We give some results on the number of G-orbits [G = GL(n, q))

on groups isogenous (in the algebraic-geometric sense) to

SL(n, q) . The conjectured isogeny invariance of this number is

contradicted by computer calculations.

Introduction and notation

Let G be the group GL(n, q) of non-singular matrices over

For each divisor d of (<7~1) define the group P, as follows: l e t S ,

be the unique subgroup of G which contains SL(n, q) and has index d

in G ; if d' = (q-l)/d take P , = SJZ,, > where Z,, i s the unique

subgroup of Z(G) of order d' • The following duality theorem was proved

in [3] .

THEOREM. G acts by conjugation on P, and has the same number of

orbits on P, and P if de = (q-l) .
a &

We shall denote the number of C-orbits on P , by N, .
d d

It was remarked in [3] that one might expect to be able to prove the

related result that G has the same number of orbits on all groups in the

isogeny class of SL(n, q) . The main purpose of this note is to report

that some computer studies have been carried out and show that the isogeny-

invariance of the number of orbits may or may not occur, and so is not a

theorem. In this note we tabulate the results, give an indication of the
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methods used in the computation and prove a result about F* orbits of

irreducible polynomials over a finite field F which expedites the

computation.

Isogenous groups

The groups isogenous to SL(n, q) arise as follows: let

S = SL(n, F) where F is the algebraic closure of GF(q) and let a be

the Frobenius (^-automorphism of F ; denote by a also the endomorphism

(a. .) ->• o*?. of S . The centre Z of S is cyclic, of order n .

Hence for each d dividing n , Z has a unique subgroup D of order

d , and we have an isogeny (rational surjection with finite central kernel)

•n : S •+ ~S/D . Since a(D) 5 D , a acts on ~S/V and we define P as

the group (S/0)a of a-fixed points of S/D . Thus P? = PGL(rt, q) and

P, = SL(n, q) . While it is not true that P_ is always isomorphic to

one of the groups P, (in contradiction of the statement in [3]; an

example is P. where \D\ = 2 , n = k , and q = 5 - one obtains a split

extension of SL(U, 5)/D which is not isomorphic to P^ ), one always has

|P_| = |SL(w, q)\ (see [?]) and one can .often compute the number of

<?-orbits on P_ [G = GL(n, q)) in terms of the N„ . We give below a

selection of precise results (all easy to prove), relevant to the present

work {G is GL(n, F) and Z is the centre of G ) .

LEMMA 1. For x € S , the following are equivalent:

(i) xD ie a-fixed;

(ii) x = xz with z (. D ,

(Hi) 3z € ? with a ^ " 1 ^ = 1 such that xz € G .

Moreover if e - n/d and e\{q-l) these conditions are equivalent to

(iv) 3z Z Z such that xz € S (see Introduction).

For simplicity, we assume henceforth that n divides (<7~1) . We

then have (using Lemma 1)
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2. Let ~Z~d= {z I • z | 3 d ( c ? " 1 ) = l } and define

ff, = G'Z , . Then
a a

= (S/D)gsi

GjnS

general isomorphic to S, -,\/J (for example, q = 5 » n = U , d = 2 ) .

By selecting coset representatives for S in G ^ n S appropriately and

combining with Lemma 1 ( (iii) and (iv) ) one can show:

PROPOSITION 3. The number of G-alasses in (pd n S}/Z3 is equal to

— # [G classes of S /D) , where m = (q-l)/n .# [G classes of S /

If id, m) = 1 , coset representatives for S, -i\//j ^n & c a n ̂

chosen from z[s ) = Z(C) = Z (say). Thus we have:

COROLLARY 31. If n\(q-l) and (d, m) = 1 (where \D\ = d and

m = (q-l)/n ) then § [G-alasses of P^) = # (G-alasses of pt

On the other hand i f X i s the subgroup of Z(G) of order {q-l)/e

(e = n/d) , then provided ( e , nr) = 1 , Y n Z = O . Hence no element of

y/Z3 fixes any C-class of S ID (any element of Z(G) f ixing a G-class

must be i n Z/D ) . We deduce:

COROLLARY 3 " . If n\(q-l) and (e, m) = 1 (where d = \D\ ,

e = n/d and m = (q-l)/n ) then

ff(G-classes of P^) = # [G-alasses of Pg) = Sg .

Putting these two corollaries together we obtain:

COROLLARY 3 " ' . . With notation as above, if (n, m) = 1 then
NJ

 = *„ •a e

We shall refer to Corollaries 31 and 3" in the section presenting the

results.
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METHOD

Let F denote the set of irreducible polynomials over F = GF(q) .

The number N •, of G-orbits on P, is computed as the number of orbits of

a subgroup of F* acting on 4> , a certain set of partition-valued

functions on F . The reader is referred to [3] for details and notation.

We recall that if K is a finite extension of F, then an irreducible

polynomial over F may be identified with its set of roots in K , which

forms a a-orbit, 0 being the Frobenius automorphism a '—• a of K .

Now F* acts on F in a degree-preserving fashion by taking <a> to

<aa> for a 6 K , a € F* . Thus F* acts contragrediently on $ ,

taking X € $ to Xa , where Xa(/) = X (/*) . Let d\(q-l) and let H

be the subgroup of F* of order e = (q-l)/d . We then have

#{G-orbits on P^\ = #{ff-orbits H\ on $ : 6(X) € 5} = il^ .

For precise definitions of 4> and 6 , see [3]. N-, is computed by

dividing the functions X £ $ into types which are preserved by the F*

action. These types are equivalent to those discussed by Green in [2]. To

compute the number of H orbits of a given type, the following algorithm

is used.

(1) Order the functions in the type in some fashion.

(2) Taking each function with determinant (that is, 6 value) in H

in order, generate its H orbit.

(3) Inspect the orbit for any function previous to the present

function and discard the orbit if one appears.

(h) Find the size of the orbit for verification purposes and record

the orbit.

We conclude this section by proving a result which makes it possible

to confine attention to functions taking non-zero values only on

polynomials of degree less than n (in the case GL(n, q) ) . Let K be a

finite extension of F = GF(q) (as above) of degree n . let N^ be the

norm function # : K* -*- F* . For an irreducible polynomial (that is,
Kr

o-orbit) f = <a> in K define 6(/) = ^vy(a) (assume a t 0 ).
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PROPOSITION. Let H be any subgroup of F* and let FD be the set
a

of H-orbits of irreducible polynomials f in K* such that 6(f) € H .

Then |FJ is independent of H .

Proof. Consider the complex character group (K*/H)~ '=s K*/H . We

compute [(K*/H)/(F*/H)]~ in two different ways. Now

[(K*/H)/(F*/H)r 3 (X € (K*IH)" : x{F*/E) = 1}

= |X € (X*/fl)"|x^ -
1)/(<7-l) = 1 € (X*/fl)4 = {a € X*/fl|6(a) € H] .

Note that X*/fl is the group of H-orbits in K* . On the other hand

{K*/H)/{F*/H) =K*/F* , whence K*/F* 3 {a € K*/H\&{a) € 5} .

Now a acts on these (isomorphic) groups, and the set of a-orbits

on the right hand side is ¥„ , while that on the left is F-,,, . Thus

|Fg| = \fpt\ for each H and the result follows.

Results

Computer studies were done for the cases n = h with q = 5, 13 , and

n = 6 with q = 7 and 13 . If \D\ = d ( S 5 Z ) we write M, for the

number of G-orbits on P_ (see above) and for f\(q-l) , N~ is the

number of G-orbits on P. . From Corollary 3"' we have that

Mx = Mi = N = N, and M£ = N2 for n = h and q = 5 or 13 .

Similarly for n = 6 , q - 1 we have M, = tf, = ffg = M, , and

M2 = M = N2 = N . By Corollaries 31 and 3", for n = 6 , $ = 13 we

have ^ = ffx , Mz = N = M , Wg = » 1 2 = ̂  = M± . The ff were also

computed for n = h , q = 17 but these do not yield the M, here (as

was erroneously stated in Corollary A' of [3]).

The results are as follows (making use of the observations above to

relate the N. to the M, ).
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GL(U, 5) : N± = Nk = 163 ,

N2 = 168 ,

M± = Mk = 163 ,

«„ = 168 .

GL(U, 13) : Nx = N3 = Nk = N^ = 2395 ,

N2 = N6 = 21*08 ,

M±= Mk= 2395 ,

M2 = 21*08 .

GL(1+, 1 7 ) : Nx = N ^ = 5239 ,

N. = i?A = 5258 ,

^ = 5260 .

GL(6, 7) : N1 = N2 = N3 ^ S6 = 1967k ,

GL(6, 13) : Let o be the number of irreducible polynomials f

of degree 6 over GF(13) such that 6{f) = 1 .

Then

Nx = N3 = Nk = N12 = 3351+60 + a ,

N2 = N6= 3356UU + o ,

W l = M6 = 3 3 5 l t 6 ° + a '

M2 = W3 = 33561 | l t + c '

The orbits of the irreducible polynomials as well as their sizes and

the sizes of the G-classes were also computed and tabulated for

verification purposes.
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