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ON SC-MODULES

NGUYEN VAN SANH

Let R be a ring. A right R-module M is called an SC-module if every M-singular
right R-module is continuous. The purpose of this note is to give some character-
isations of SC-modules.

1. INTRODUCTION

Rings for which every singular right module is injective (briefly, Si-rings) were in-
troduced and studied by Goodearl [5]. Later, Dinh van Huynh and R. Wisbauer [3]
studied the structure of Si-modules. A right .R-module M is called an Si-module pro-
vided every M-singular right .R-module is M-injective. A generalisation of Si-rings is
SC-rings, that is, rings R for which every singular right .R-module is continuous. SC-
rings were introduced and studied by Rizvi and Yousif [9]. In this paper we introduce
and investigate SC-modules. A right .R-module M is called an SC- module provided
every M-singular right il-module is continuous. By investigating a (finitely generated)
self-projective SC-module we have more general statements which also include Propo-
sitions 3.4, 3.6 and 3.7 of [9].

2. DEFINITIONS AND PRELIMINARIES

Throughout the paper R is an associative ring with identity and Mod-ii the cat-
egory of unitary right .R-modules. For M € Mod-.R we denote by a[M] the full sub-
category of Mod-/? whose objects are submodules of M-generated modules (see [11]).
M is called self-projective (respectively self-injective) if it is M-projective (respectively
M-injective). Soc(M) (respectively Rad (M)) denotes the socle ( respectively radical)
of the module M.

We consider the following conditions on a module M:

(Ci ) Every submodule of M is essential in a direct summand of M;
( d ) Every submodule isomorphic to a direct summand of M is itself a direct

summand;
(C3 ) If Mi and Mz are direct summandsof M with M1IIM2 = 0 then

is a direct summand of M.
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M is called continuous if it satisfies conditions (Ci ) and (C2 ), quasi-continuous if
it satisfies (Ci) and (C3) and a CS-module if M satisfies condition (Ci) only.

It is easy to see that (C2) => (C3) and the hierarchy is as follows :

injective => self-injective => continuous => quasi-continuous => CS;

For more details we refer to [6].
In the following, we list a few known results which will be used often.

LEMMA 1. Let M be a cyclic module such that K/L is a CS-module for every
cyclic submodule K ofM and a submoduleL ofK. Then Mhas finite uniform dimension.

PROOF: See [8, Theorem 1] D

Let M and N be .R-modules. N is called singular in o~[M] or M-singular if there
exists a module L in <r[M] containing an essential submodule K such that N ~ L/K
(see [10]).

By definition, every M-singular module belongs to a[M). For M = R the notion
.R-singular is identical to the usual definition of singular .R-module (see [5]).

The class of all M-singular modules is closed under submodules, homomorphic
images and direct sums (for example, [11, 17.3 and 17.4]). Hence every module N £
a[M] contains a largest M-singular submodule which we denote by ZM(M). The
following properties of M-singular modules are shown in [10, 1.1] and [12, 2.4].

LEMMA 2 . Let M be an R-module.

(1) A simple R-module E is M-singular or M-projective.
(2) If Soc(M) = 0, then every simple module in <r[M] is M-singular.
(3) If M is self-projective and ZM{M) = 0, then the M-singular modules

form a hereditary torsion class in <r[M].

We extend the definition of right SC-rings (see [9]) to modules.

DEFINITION: An R-module M is called an SC-module if every M-singular module
is continuous. The module M is defined to be an Si-module if every M-singular module
is M-injective (see [3]).

3. RESULTS

Recall that an .R-module M is called V-module if every simple module (in o~[M])
is M-injective. In [10] V-modules are also called co-semisimple modules. The following
assertions also include Theorems 3.2 and 3.6 in [9]:

THEOREM 3 . Let M be a right R-module. Then the following conditions are
equivalent :

(1) M is an SC-module;
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(2) Every M-singular module is semisimple;
(3) Every (finitely generated) M-singular R-module is semisimple;

(4) Every (finitely generated) M-singular R-module is self-injective;

(5) Every finitely generated M-singular R-module is continuous;
(6) Every (finitely generated) M-singular R-module is quasi-continuous;

(7) M/K is semisimple for every essential submodule K of M;
(8) Every (cyclic) M-singular module is (M/Soc(M))-injective;
(9) M/Soc(M) is a locally noetherian V-module and for every essential sub-

module K ofM, Soc(M/K) ^ 0;

If M is finitely generated, then (l)-(9) are also equivalent to:

(10) M/Soc(M) is a V-module and for every essential submodule K ofM, M/K

is finitely cogenerated.

PROOF: The equivalences (2) O (7) & (8) •& (9) «• (10) follow from [10, 3.7].
(1) => (5) by definition.
(2) => (1) since every semisimple module is continuous.
(2) <& (3) => (4) => (5) => (6) is clear.
(6) => (7) We use an argument similar to one given in [9]. Let K be an essential
submodule of M. Put E = M/K. We have to show that every cyclic submodule L of
E is semisimple. Obviously L is M-singular. Consider a non-zero i £ l . Then L@xR
is finitely generated and M-singular, hence quasi-continuous by assumption. Therefore
xR is Z-injective by [11, 41.20] and consequently a direct summand of L. On the
other hand, since L is cyclic and M-singular, every subquotient of L is M-singular,
quasi-continuous and so is a CS-module. By Lemma 1, L has finite uniform dimension.
It follows that L is semisimple. D

COROLLARY 4 . For an SC-module M, we have :

(1) Rad(M)CSoc(M);
(2) ZM(M) C Soc(M).

PROOF: (1) For every essential submodule K of M, M/K is M-singular, hence is

semisimple by Theorem 3. This implies Rad {M/K) = 0 and therefore Rad(M) C K,

that is, Rad(M) C Soc(M).

(2) For every x 6 ZM(M), XR is M-singular, hence is semisimple by Theorem 3.

Therefore xR C Soc(M). This implies ZM(M) C Soc(M). D

COROLLARY 5 . Let M be a finitely generated SC-module. If M is CS then M is

noetherian.

PROOF: By Theorem 3, M/Soc(M) is noetherian. If M is moreover a CS-module,
then by using the same argument as that of [4, Lemma 1] we see that Soc(M) is finitely
generated. Hence M is noetherian. U
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A module M is called a GCO-module if every singular simple module is M-injective
or M-projective (see [10]).

PROPOSITION 6 . For a finitely generated self-projective right R-module M, the
following conditions are equivalent :

(1) Mis an SC-module with ZM{M) = 0;
(2) M is an Si-module;
(3) Every cyclic M-singular module is M-injective;
(4) M/K is semisimple for every essential submodule K of M and ZM{M) =

0;

(5) M is hereditary in er[M] and M-singular modules are semisimple;
(6) M is a GCO-module, M/Soc(M) is noetherian and Soc(M/K) ^ 0 for

every essential submodule K of M;
(7) Soc(M) is M-projective and M is an SC-module.

PROOF: The equivalences (2)<£> (3) <=> (4) <& (5) <=> (6) follow from the proposi-
tion 1.3 in [3] (for not necessarily finitely generated self-projective modules) and from
Theorem 3.
(2) =» (1) is clear.
(1) =» (4) by Theorem 3.
(1) =S> (7) Since ZM(M) = 0, every simple submodule of M is M-projective, and so
is Soc(M).
(7) => (1) By Corollary 7, ZM(M) C Soc(M). Since Soc(M) is M-projective, every
simple submodule of M is M-projective, therefore ZM{M) must be zero. U

COROLLARY 7 . If M is an SC-module, then M = M/Soc{M) is an Si-module.

PROOF: Since every M-singular module is M-singular, every M-singular module
is M-injective by Theorem 3. Hence M is an Si-module. D

COROLLARY 8 . For a module M the following conditions are equivalent:

(1) M is an SC-module with essential Soc(M);
(2) M = M/Soc(M) is semisimple.

PROOF: (1) => (2) is clear.
(2) => (1): By condition (7) in Theorem 3 it is enough to show that Soc(M) is essential
in M. Set S = Soc(M) and let A be a non-zero submodule of M such that SnA = 0.
Then A ~ A/{A 0 S) ~ (A + S)/S C M/S, hence A is semisimple. Therefore ACS,
a contradiction. U
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