Bull. Austral. Math. Soc.

ON SC-MODULES

Nguyen Van Sanh

Let R be a ring. A right R -module M is called an SC-module if every M -singular right R -module is continuous. The purpose of this note is to give some characterisations of SC-modules.

1. Introduction

Rings for which every singular right module is injective (briefly, SI-rings) were introduced and studied by Goodearl [5]. Later, Dinh van Huynh and R. Wisbauer [3] studied the structure of SI-modules. A right R-module M is called an SI-module provided every M-singular right R-module is M-injective. A generalisation of SI-rings is SC-rings, that is, rings R for which every singular right R-module is continuous. SCrings were introduced and studied by Rizvi and Yousif [9]. In this paper we introduce and investigate SC-modules. A right R-module M is called an SC- module provided every M-singular right R-module is continuous. By investigating a (finitely generated) self-projective SC-module we have more general statements which also include Propositions $3.4,3.6$ and 3.7 of [9].

2. Definitions and Preliminaries

Throughout the paper R is an associative ring with identity and Mod- R the category of unitary right R-modules. For $M \in \operatorname{Mod}-R$ we denote by $\sigma[M]$ the full subcategory of Mod- R whose objects are submodules of M-generated modules (see [11]). M is called self-projective (respectively self-injective) if it is M-projective (respectively M-injective). $S o c(M)$ (respectively $\operatorname{Rad}(M)$) denotes the socle (respectively radical) of the module M.

We consider the following conditions on a module M :
$\left(C_{1}\right) \quad$ Every submodule of M is essential in a direct summand of M ;
$\left(C_{2}\right)$ Every submodule isomorphic to a direct summand of M is itself a direct summand;
$\left(C_{3}\right)$ If M_{1} and M_{2} are direct summands of M with $M_{1} \cap M_{2}=0$ then $M_{1} \oplus M_{2}$ is a direct summand of M.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.
M is called continuous if it satisfies conditions (C_{1}) and (C_{2}), quasi-continuous if it satisfies (C_{1}) and (C_{3}) and a $C S$-module if M satisfies condition (C_{1}) only.

It is easy to see that $\left(C_{2}\right) \Rightarrow\left(C_{3}\right)$ and the hierarchy is as follows :

$$
\text { injective } \Rightarrow \text { self-injective } \Rightarrow \text { continuous } \Rightarrow \text { quasi-continuous } \Rightarrow \mathrm{CS}
$$

For more details we refer to [6].
In the following, we list a few known results which will be used often.
Lemma 1. Let M be a cyclic module such that K / L is a CS-module for every cyclic submodule K of M and a submodule L of K. Then M has finite uniform dimension.

Proof: See [8, Theorem 1]
Let M and N be R-modules. N is called singular in $\sigma[M]$ or M-singular if there exists a module L in $\sigma[M]$ containing an essential submodule K such that $N \simeq L / K$ (see [10]).

By definition, every M-singular module belongs to $\sigma[M]$. For $M=R$ the notion R-singular is identical to the usual definition of singular R-module (see [5]).

The class of all M-singular modules is closed under submodules, homomorphic images and direct sums (for example, $[11,17.3$ and 17.4]). Hence every module $N \in$ $\sigma[M]$ contains a largest M-singular submodule which we denote by $Z_{M}(M)$. The following properties of M-singular modules are shown in [10, 1.1] and [12, 2.4].

Lemma 2. Let M be an R-module.
(1) A simple R-module E is M-singular or M-projective.
(2) If $\operatorname{Soc}(M)=0$, then every simple module in $\sigma[M]$ is M-singular.
(3) If M is self-projective and $Z_{M}(M)=0$, then the M-singular modules form a hereditary torsion class in $\sigma[M]$.
We extend the definition of right SC-rings (see [9]) to modules.
Definition: An R-module M is called an SC-module if every M -singular module is continuous. The module M is defined to be an SI-module if every M -singular module is M-injective (see [3]).

3. Results

Recall that an R-module M is called V-module if every simple module (in $\sigma[M]$) is M-injective. In [10] V-modules are also called co-semisimple modules. The following assertions also include Theorems 3.2 and 3.6 in [9]:

Theorem 3. Let M be a right R-module. Then the following conditions are equivalent :
(1) M is an $S C$-module;
(2) Every M-singular module is semisimple;
(3) Every (finitely generated) M-singular R-module is semisimple;
(4) Every (finitely generated) M-singular R-module is self-injective;
(5) Every finitely generated M-singular R-module is continuous;
(6) Every (finitely generated) M-singular R-module is quasi-continuous;
(7) M / K is semisimple for every essential submodule K of M;
(8) Every (cyclic) M-singular module is ($M / S o c(M)$)-injective;
(9) $M / \operatorname{Soc}(M)$ is a locally noetherian V-module and for every essential submodule K of $M, S o c(M / K) \neq 0$;
If M is finitely generated, then (1)-(9) are also equivalent to:
(10) $M / \operatorname{Soc}(M)$ is a V-module and for every essential submodule K of $M, M / K$ is finitely cogenerated.

Proof: The equivalences (2) $\Leftrightarrow(7) \Leftrightarrow(8) \Leftrightarrow(9) \Leftrightarrow(10)$ follow from $[10,3.7]$.
(1) \Rightarrow (5) by definition.
(2) \Rightarrow (1) since every semisimple module is continuous.
$(2) \Leftrightarrow(3) \Rightarrow(4) \Rightarrow(5) \Rightarrow(6)$ is clear.
(6) \Rightarrow (7) We use an argument similar to one given in [9]. Let K be an essential submodule of M. Put $E=M / K$. We have to show that every cyclic submodule L of E is semisimple. Obviously L is M-singular. Consider a non-zero $x \in L$. Then $L \oplus x R$ is finitely generated and M-singular, hence quasi-continuous by assumption. Therefore $x R$ is L-injective by $[11,41.20]$ and consequently a direct summand of L. On the other hand, since L is cyclic and M-singular, every subquotient of L is M-singular, quasi-continuous and so is a CS-module. By Lemma $1, L$ has finite uniform dimension. It follows that L is semisimple.

Corollary 4. For an SC-module M, we have :
(1) $\operatorname{Rad}(M) \subseteq \operatorname{Soc}(M)$;
(2) $\quad Z_{M}(M) \subseteq S o c(M)$.

Proof: (1) For every essential submodule K of $M, M / K$ is M-singular, hence is semisimple by Theorem 3. This implies $\operatorname{Rad}(M / K)=0$ and therefore $\operatorname{Rad}(M) \subseteq K$, that is, $\operatorname{Rad}(M) \subseteq S o c(M)$.
(2) For every $x \in Z_{M}(M), x R$ is M-singular, hence is semisimple by Theorem 3. Therefore $x R \subseteq \operatorname{Soc}(M)$. This implies $Z_{M}(M) \subseteq \operatorname{Soc}(M)$.

Corollary 5. Let M be a finitely generated $S C$-module. If M is $C S$ then M is noetherian.

Proof: By Theorem 3, $M / \operatorname{Soc}(M)$ is noetherian. If M is moreover a CS-module, then by using the same argument as that of [4, Lemma 1] we see that $\operatorname{Soc}(M)$ is finitely generated. Hence M is noetherian.

A module M is called a $G C O$-module if every singular simple module is M-injective or M-projective (see [10]).

Proposition 6. For a finitely generated self-projective right R-module M, the following conditions are equivalent :
(1) M is an $S C$-module with $Z_{M}(M)=0$;
(2) M is an SI-module;
(3) Every cyclic M-singular module is M-injective;
(4) M / K is semisimple for every essential submodule K of M and $Z_{M}(M)=$ 0 ;
(5) M is hereditary in $\sigma[M]$ and M-singular modules are semisimple;
(6) M is a $G C O$-module, $M / S o c(M)$ is noetherian and $S o c(M / K) \neq 0$ for every essential submodule K of M;
(7) $\operatorname{Soc}(M)$ is M-projective and M is an SC-module.

Proof: The equivalences (2) $\Leftrightarrow(3) \Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6)$ follow from the proposition 1.3 in [3] (for not necessarily finitely generated self-projective modules) and from Theorem 3.
$(2) \Rightarrow(1)$ is clear.
$(1) \Rightarrow(4)$ by Theorem 3 .
(1) \Rightarrow (7) Since $Z_{M}(M)=0$, every simple submodule of M is M-projective, and so is $\operatorname{Soc}(M)$.
(7) \Rightarrow (1) By Corollary $7, Z_{M}(M) \subseteq S o c(M)$. Since $S o c(M)$ is M-projective, every simple submodule of M is M-projective, therefore $Z_{M}(M)$ must be zero.

Corollary 7. If M is an SC-module, then $\bar{M}=M / S o c(M)$ is an SI-module.
Proof: Since every \bar{M}-singular module is M-singular, every \bar{M}-singular module is \bar{M}-injective by Theorem 3. Hence \bar{M} is an SI-module.

Corollary 8. For a module M the following conditions are equivalent:
(1) M is an SC-module with essential $\operatorname{Soc}(M)$;
(2) $\bar{M}=M / \operatorname{Soc}(M)$ is semisimple.

Proof: (1) \Rightarrow (2) is clear.
(2) \Rightarrow (1): By condition (7) in Theorem 3 it is enough to show that $\operatorname{Soc}(M)$ is essential in M. Set $S=S o c(M)$ and let A be a non-zero submodule of M such that $S \cap A=0$. Then $A \simeq A /(A \cap S) \simeq(A+S) / S \subseteq M / S$, hence A is semisimple. Therefore $A \subseteq S$, a contradiction.

References

[1] V. Camillo and M.F. Yousif, 'CS-modules with acc or dec on essential submodules', Comm. Algebra 19 (1991), 655-662.
[2] D. van Huynh, P.F. Smith and R. Wisbauer, 'A note on GV-modules with Krull dimension', Glasgow Math. J. 32 (1990), 389-390.
[3] D. van Huynh and R. Wisbauer, 'A structure theorem for SI-modules', Glasgow Math. J. 34 (1992), 83-89.
[4] D. van Huynh, N.V. Dung and R. Wisbauer, 'Quasi-injective modules with acc or dec on essential submodules', Arch. Math. 53 (1989), 252-255.
[5] K.R. Goodearl, 'Singular torsion and the splitting properties', Mem. Amer. Math. Soc. 124 (1972).
[6] S.H. Mohamed and B.J. Müller, Continuous and discrete modules, London Math. Soc. Lecture Notes 147 (Cambridge Univ. Press, 1990).
[7] B.J. Müller and S.T. Rizvi, 'On injective and quasi-continuous modules', J. Pure Appl. Algebra 28 (1983), 197-262.
[8] B.L. Osofsky and P.F. Smith, 'Cyclic modules whose quotients have complement direct summands', J. Algebra 139 (1991), 342-354.
[9] S.T. Rizvi and M.F. Yousif, 'On continuous and singular modules', in Non-commutative ring theory, Lecture Notes in Mathematics 1448, Proc. Conf., Athens/OH(USA) 1989 (Springer-Verlag, Berlin, Heidelberg, New York, 1990), pp. 116-124.
[10] R. Wisbauer, 'Generalized co-semisimple modules', Comm. Algebra 18 (1990), 4235-4253.
[11] R. Wisbauer, Foundation of module and ring theory (Gordon and Breach, London, Tokyo, 1991).
[12] R. Wisbauer, 'Localization of modules and the central closure of rings', Comm. Algebra 9 (1981), 1455-1493.

[^1]
[^0]: Received 22nd September, 1992
 I would like to thank Professors Dinh van Huynh and Robert Wisbauer for drawing my attention to the subject, and for many useful discussions and helpful comments.

[^1]: Department of Mathematics
 Hue Teachers' Training College
 32 Le Loi Street
 Hue
 Vietnam

