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Abstract

For a convex domain, we use Klain’s cyclic rearrangement to obtain a sequence of convex domains with
increasing area and the same perimeter which converges to a disk. As a byproduct, we give a proof of the
classical isoperimetric inequality in the plane.
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1. Introduction

It is an interesting problem to deform a compact region in the n-dimensional Euclidean
space into another one. There are various schemes to solve the simplest case of this
problem, that is to deform a compact region into a ball. Some employ curvature
flows: the curve shortening flow can turn a planar compact region with C2 boundary
into a disk in a finite time (see [5–8]), the Gauss curvature flow can deform a
convex body into a ball in 3-dimensional Euclidean space (see [1]), and the mean
curvature flow can turn a convex body into a ball in n-dimensional Euclidean space
(see [9]). Another approach uses symmetrisation for compact regions, such as the
Steiner symmetrisation (see [2–4, 11, 12, 15]). In the 2-dimensional Euclidean plane,
the Steiner symmetrisation preserves the area and decreases the perimeter of a compact
domain. Klain [10] introduced another geometric method, the cyclic rearrangement,
which preserves the perimeter of a star body while increasing its area (see Section 2).

The purpose of this note is to prove the following theorem by Klain’s cyclic
rearrangement.
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Theorem 1.1. Let K be a planar convex domain. Then there exists a sequence of convex
domains with increasing area and the same perimeter which converges to a disk with
the same perimeter as K.

In order to prove this theorem, we have to solve two important problems. The first
is to guarantee that Klain’s cyclic rearrangement can be carried out. The second is
to ensure that the cyclic rearrangement does not terminate until the convex domain
turns into a disk. As an application of this theorem, we derive a proof of the classical
isoperimetric inequality which is different from that given by Klain [10].

2. Basic definitions and cyclic rearrangement

We denote by R2 the usual 2-dimensional Euclidean space with the canonical inner
product 〈·, ·〉. A nonempty bounded set M ⊆ R2 is called a convex domain if it has a
nonempty interior and for any points x, y ∈ M, the line segment with endpoints x, y
is contained in M. If a convex domain M is centrally symmetric with respect to the
origin o, then it is said to be o-symmetric.

Let M,N be two convex domains. The Minkowski sum of M and N is defined by

M + N = {x + y | x ∈ M, y ∈ N}.

Given a real number λ, the product λM is defined by

λM = {λx | x ∈ M}

and it is customary to write simply −M instead of (−1)M. The convex domain

MC = 1
2 (M + (−M))

is called the central symmetrisation of M.
The nonempty set S ⊆ R2 is called a star-shaped set with respect to a point c ∈ S ,

if for all z ∈ S the line segment with endpoints z, c lies entirely in S , and c is called a
centre of S . Let S 1 be the unit circle in R2 centred at the point c. The radial function
ρS : S 1 → [0,∞] of a star-shaped set S is a nonnegative function on the unit circle,
defined by

ρS (u) = max{a ∈ R | au ∈ S }.

If ρS is a positive continuous function, then the star-shaped set S is called a star body.
In order to make this note complete, we shall describe the cyclic rearrangement for

star bodies in almost the same terms as Klain [10]. Let {u, v} be a set of unit vectors
which forms a basis of R2, and denote by ϕ the angle between u and v; without loss of
generality, let 0 < ϕ ≤ 1

2π. Suppose that S is a star body such that there exist a point c
and two directions u, v satisfying

ρS (u) = ρS (−u) ∆
= a, ρS (v) = ρS (−v) ∆

= b. (2.1)

Klain [10] defined the cyclic rearrangement of S with respect to the point c and
the basis {u, v}, denoted by �S , to be the set formed by the four part dissection and
rearrangement shown in Figure 1.
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(a) Star body. (b) Star body's cyclic rearrangement.

Figure 1. Star body and its cyclic rearrangement.

A detailed definition of �S runs as follows. Let Qi, i = 1, 2, 3, 4, denote the four
quadrants of R2 induced by the basis {u, v}, listed counterclockwise starting with the
positive quadrant as shown in Figure 1(a). Let φ denote reflection across the line
passing through the point c and u + v. Set S i = S ∩ Qi, i = 1, 2, 3, 4, and

Ŝ1 = φS1 +
a − b

2
(u − v), Ŝ2 = S2 +

a − b
2

(u + v),

Ŝ3 = φS 3 +
a − b

2
(−u + v), Ŝ4 = S 4 +

a − b
2

(−u − v).

Denote by R the rhombus centred at the point c, with sides of length a − b and parallel
to u and v. Then, �S is defined by Figure 1(b), that is

�S = Ŝ1 ∪ Ŝ2 ∪ Ŝ3 ∪ Ŝ4 ∪ R.

It is clear that �S is a compact simply connected set, but not necessarily a star-shaped
set. Further, for the length L and area A,

L(�S ) = L(S ), A(�S ) = A(S ) + (a − b)2|sinϕ|.

If we can do a cyclic rearrangement for �S , then we denote it by �2S = �(�S ). In
general, �kS represents the kth cyclic rearrangement of S .

3. Proof of Theorem 1.1

In this section, we will first give some propositions and then prove the main result.

Proposition 3.1. Let S be a star body. If S is centrally symmetric with respect to a
point c, then so is �S .

Proof. Without loss of generality, we can choose the centre c as the origin. If S is
a disk, then the result is obvious. If S is not a disk, then as in (2.1) there exist two
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directions u, v such that a = ρS (u) = ρS (−u), b = ρS (v) = ρS (−v) and a , b. Let Ai be
the boundary points of S in directions±u and±v, where i = 1,2,3,4. Then, in the affine
coordinate system c − uv, the Ai can be expressed as A1(a, 0), A2(0, b), A3(−a, 0) and
A4(0,−b). Denote by Bi the points corresponding to Ai under the cyclic rearrangement.
From the definition of the cyclic rearrangement and a simple computation, it follows
that Bi can be expressed as

B1

(a − b
2

,
a + b

2

)
, B2

(a + b
2

,−
a − b

2

)
, B3

(
−

a − b
2

,−
a + b

2

)
, B4

(
−

a + b
2

,
a − b

2

)
,

which implies that �S is also centrally symmetric with respect to the origin. �

Corollary 3.2. If K is an o-symmetric convex domain, then �K is also o-symmetric.

Remark 3.3. Notice that �K is not necessarily a convex domain even if K is an o-
symmetric convex domain. For example, take K to be an ellipse, u the direction of
its semi-major axis and v an arbitrary direction which is not its semi-major axis or
semi-minor axis.

The next proposition will show that the convexity is maintained on special
directions in the process of the cyclic rearrangement for an o-symmetric convex
domain.

Proposition 3.4. If K is an o-symmetric convex domain, then we can find a cyclic
rearrangement such that �K is also an o-symmetric convex domain.

Proof. From Corollary 3.2, it follows that K is o-symmetric. Without loss of
generality, we may assume that K is not a disk. Denote by ρK the radial function of K.
Since ρK is a function on S 1, there exist two directions u, v such that ρK(u) = (ρK)max
and ρK(v) = (ρK)min. Since K is o-symmetric, u and v are directions of the maximum
width and minimum width. From [13, page 33], one can see that there are four points
A, B,C,D on the boundary of K such that AC and BD are on the directions of the
maximum width and minimum width and perpendicular to supporting lines at A,C
and B,D (see Figure 2). Thus, the convexity is maintained in the process of cyclic
rearrangement with respect to the directions u and v. �

The final proposition helps to determine the final shape of an o-symmetric convex
domain by a sequence of cyclic rearrangements.

Proposition 3.5. Let K be an o-symmetric convex domain and u, v the respective
directions of the maximum and minimum of its radial function. If the cyclic
rearrangement �K of K with respect to the basis {u, v}, is equal to K, then K must
be a disk.

Proof. Let a = ρK(u) = (ρK)max, b = ρK(v) = (ρK)min. From the proof of
Proposition 3.4, it follows that �K is also o-symmetric. If K is not a disk, then a , b.
From the definition of cyclic rearrangement, L(�K) = L(K) and

A(�K) = A(K) + (a − b)2|sinϕ| > A(K),

which contradicts �K = K. Thus, K must be a disk. �
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Figure 2. Centrally symmetric convex domain and its circumscribed parallelogram.

Proof of Theorem 1.1. If K is centrally symmetric, we may assume that K is
o-symmetric since we can choose the centre of symmetry of K as the origin.
From Corollary 3.2 and Proposition 3.4, it follows that there are two sequences of
directions ui and vi such that ρKi (ui) = (ρKi )max and ρKi (vi) = (ρKi )min, where Ki = �iK,
i = 1, 2, . . . . Hence, one can find a sequence of convex bodies Ki with the same
perimeter and increasing area such that Ki = �iK, i = 1, 2, . . . . The diameter D(Ki)
of Ki satisfies

D(Ki) ≤
L(Ki)

2
=

L(K)
2

.

So, from the Blaschke selection theorem and Proposition 3.5, the process of cyclic
rearrangement for an o-symmetric convex domain K will go on until it turns into a
disk with the same perimeter as K (that is, the sequence Ki converges to a disk with
the same perimeter as K in the Hausdorff metric on convex domains).

If K is not centrally symmetric, we first construct the central symmetrisation KC for
K, that is, KC = 1

2 (K + (−K)). By properties of central symmetrisation [14, Solutions
6–9(c)(d), pages 237–239], one has A(KC) ≥ A(K) and L(KC) = L(K). (Notice that the
proofs of these properties depend on geometric constructions which avoid using the
Brunn–Minkowski inequality.) Together with the definition of cyclic rearrangement,
this yields a sequence of convex bodies Ki defined by K1 = KC and Ki+1 = �iKC for
i = 1, 2, . . . , with the same perimeter and increasing area which converges to a disk
with the same perimeter as K, by applying the argument in the first part of the proof to
the sequence of centrally symmetric bodies �iKC . �
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4. A short proof of the isoperimetric inequality

As an application of Theorem 1.1, we can give a proof of the classical isoperimetric
inequality by Klain’s cyclic rearrangement.

Theorem 4.1. If K is a planar region with perimeter L(K) and area A(K), then

L(K)2 − 4πA(K) ≥ 0, (4.1)

and the equality in (4.1) holds if and only if K is a disk.

Proof. Since the convex hull for a planar set does not decrease its area and does not
increase its perimeter, without loss of generality, we assume that K is a convex domain.
It follows from Theorem 1.1 that we can obtain a sequence of convex domains Ki with
the same perimeter and increasing area which converges to a disk of radius L(K)/(2π),
where Ki = �iK when K is centrally symmetric or K1 = KC , Ki+1 = �iKC when K is
not centrally symmetric, and

ai = ρKi (ui) = (ρKi )max, bi = ρKi (vi) = (ρKi )min, i = 1, 2, . . . .

Denote by ϕi the angle between ui and vi. Then

L(K)2 − 4πA(K) ≥ L(K1)2 − 4πA(K1) ≥ · · · ≥ L(Kn)2 − 4πA(Kn), (4.2)

where L(Ki) = L(K), i = 1, 2, . . . , n, and

A(Kn) =


A(K) +

n∑
i=1

(ai − bi)2| sinϕi|, if K is centrally symmetric,

A(KC) +

n−1∑
i=1

(ai − bi)2| sinϕi|, if K is not centrally symmetric.

Since Ki converges to a disk, L(Kn)2 − 4πA(Kn)→ 0 as n→∞. Obviously, if K is a
disk, the equality in (4.1) holds. Conversely, it is obvious that (4.1) is strict, since at
least one inequality sign of (4.2) is strict when K is not a disk. �
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