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Before we dig into any particular machine learning method, we will first
review some important subjects in mathematics and statistics because they
form the foundation for almost all machine learning methods. In particular,
we will cover some relevant topics in linear algebra, probability and statistics,
information theory, and mathematical optimization. This chapter stresses the
mathematical knowledge that is required to understand the following
chapters, and meanwhile, it presents many examples to prepare readers
for the notation used in this book. Moreover, the coverage in this chapter
is intended to be as self-contained as possible so that readers can study
it without referring to other materials. All readers are encouraged to go
over this chapter first so as to become acquainted with the mathematical
background as well as the notation used in the book.

2.1 Linear Algebra

2.1.1 Vectors and Matrices

A scalar is a single number, often denoted by a lowercase letter, such as x
or n. We also use x ∈ R to indicate that x is a real-valued scalar and n ∈ N

for that n is a natural number. A vector is a list of numbers arranged in
order, denoted by a lowercase letter in bold, such as x or y. All numbers in
a vector can be aligned in a row or column, called a row vector or column
vector, accordingly. We use x ∈ Rn to indicate that x is an n-dimensional
vector containing n real numbers. This book adopts the convention of
writing a vector in a column, such as the following:

x =


x1

x2
...

xn


y =


y1

y2
...
ym


.

A matrix is a group of numbers arranged in a two-dimensional array, often
denoted by an uppercase letter in bold, such as A or B. For example,
a matrix containing m rows and n columns is called an m × n matrix,
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20 2 Mathematical Foundation

represented as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


.

We use A ∈ Rm×n to indicate that A is an m × n matrix containing all real
numbers.

Along the same lines, we can arrange a
group of numbers in a three-dimensional
or higher-dimensional array, which is of-
ten called a tensor.

2.1.2 Linear Transformation as Matrix Multiplication

A common question that beginners have is why we need vectors and
matrices and what we can do with them. We can easily spot that vectors
may be viewed as special matrices. However, it must be noted that vectors
and matrices represent very different concepts in mathematics. An n-
dimensional vector can be viewed as a point in an n-dimensional space
if we interpret each number in the vector as the coordinate along an axis.
Each axis in turn can be viewed as some measurement of one particular
characteristic of an object. In other words, vectors can be viewed as an
abstract way to represent objects in mathematics. On the other hand, a
matrix represents a motion of all points in a space (i.e., one particular way
to move any point in a space into a different position in another space).
Alternatively, a matrix can be viewed as a particular way to transform the
representations of objects from one space to another. More importantly,
the exact algorithm to implement such motion is to take advantage of a
matrix operation, called matrix multiplication, which is defined as shown
in Figure 2.1.

Figure 2.1: An illustration of how to im-
plement linear transformation using ma-
trix multiplication.

We denote this as y = Ax for short. Using the matrix multiplication, any
point x in the first space Rn is transformed into another point y in a
different space Rm. The exact mapping between x and y depends on all
numbers in the matrix A. If A is a square matrix in Rn×n, this mapping
can also be viewed as transforming one point x ∈ Rn into another point y
in the same space Rn.

However, this matrix multiplication cannot implement any arbitrary map-
ping between two spaces. The matrix multiplication actually can only
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Figure 2.2: An illustration of mapping a
point from one space Rn to another space
Rm through a linear transformation.

Figure 2.3: An illustration of composing
two linear transformations into another
linear transformation by matrix multipli-
cation.

implement a small subset of all possible mappings called linear transforma-
tions. As shown in Figure 2.2, a linear transformation is a mapping from
the first space Rn to another space Rm that must satisfy two conditions:
(i) the origin in Rn is mapped to the origin in Rm; (ii) every straight line
in Rn is always mapped to a straight line (or a single point) in Rm. Other
mappings that do not satisfy these two conditions are called nonlinear
transformations, which must be implemented by other methods rather than
matrix multiplication.

This matrix multiplication method can be done between two matrices. For
example, we can have the following:

We denote this as C = AB for short. Note that the column number of the
first matrix A must match the row number of the second matrix B so that
they can be multiplied together.

Conceptually speaking, this matrix multiplication corresponds to a compo-
sition of two linear transformations. As shown in Figure 2.3, A represents
a linear transformation from the first space Rn to the second space Rr ,
and B represents another linear transformation from the second space Rr

to the third space Rm. The matrix multiplication C = AB composes these
two transformations to derive a direct linear transformation from the first
space Rn to the third one Rm. Because this process has to go through the
same space in the middle, these two matrices must match each other in
their dimensions, as described previously.

2.1.3 Basic Matrix Operations

The transpose of a matrix A is an operator that flips the matrix over its
diagonal so that all rows become columns, and vice versa. The new matrix
is denoted as Aᵀ. If A is an m × n matrix, then Aᵀ will be an n ×m matrix.

A =



a11 a12 · · · · · · a1n
...

...
...

...
...

ai1 · · · ai j · · · ain
...

...
...

...
...

am1 am2 · · · · · · amn


=⇒ Aᵀ =



a11 a21 · · · · · · am1
...

...
...

...
...

a1i · · · aji · · · ami

...
...

...
...

...
a1n a2n · · · · · · amn


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w =


w1
w2
...
wn


=⇒ wᵀ =

[
w1 w2 · · · wn

]
.

For any square matrix A ∈ Rn×n, we can compute a real number for it,
called the determinant, denoted as |A| (∈ R). As we know, a square matrix
A represents a linear transformation from Rn to Rn, and it will transform
any unit hypercube in the original space into a polyhedron in the new
space. The determinant |A| represents the volume of the polyhedron in
the new space.

We have (
Aᵀ

)ᵀ
= A(

AB
)ᵀ
= BᵀAᵀ(

A ±B
)ᵀ
= Aᵀ ±Bᵀ

A square matrix A is symmetric if and
only if

Aᵀ = A.

I =



1 0 · · · 0

0 1
... 0

...
...

. . .
...

0 0 · · · 1


For any A ∈ Rn×n , we have

AI = IA = A.

We can verify that

|A−1 | =
1
|A |

.

We often use I to represent a special square matrix, called an identity matrix,
that has all 1s in its diagonal and 0s everywhere else. For a square matrix
A, if we can find another square matrix, denoted as A−1, that satisfies

A−1A = AA−1 = I,

we call A−1 the inverse matrix of A. We say A is invertible if its inverse
matrix A−1 exists.

The inner product between any two n-dimensional vectors (e.g., w ∈ Rn

and x ∈ Rn) is defined as the sum of all element-wise multiplications
between them, denoted as w · x (∈ R) . We can further represent the inner
product using the matrix transpose and multiplication as follows:

w =


w1
w2
...

wn


x =


x1
x2
...
xn



w · x ∆=
n∑
i=1

wi xi = wᵀx = xᵀw.

The norm of a vector w (a.k.a. the L2 norm), denoted as ‖w‖, is defined as
the square root of the inner product with itself. The meaning of the norm
‖w‖ represents the length of the vector w in the Euclidean space:

‖w‖2 = w ·w =
n∑
i=1

w2
i = wᵀw.

Example 2.1.1 Given two n-dimensional vectors, x ∈ Rn and z ∈ Rn,
and an n × n matrix A ∈ Rn×n, reparameterize the following norms
using matrix multiplication:

‖z − x‖2 and ‖z −Ax‖2.

‖z − x‖2 =
(
z − x

)ᵀ (z − x
)
=

(
zᵀ − xᵀ

) (
z − x

)
= zᵀz + xᵀx − 2 zᵀx.
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2.1 Linear Algebra 23

‖z −Ax‖2 =
(
z −Ax

)ᵀ (z −Ax
)
=

(
zᵀ − xᵀAᵀ

) (
z −Ax

)
= zᵀz + xᵀAᵀAx − 2 zᵀAx

�

We can verify:

zᵀx = xᵀz

zᵀAx = xᵀAᵀz

because we have the following:

1. Both sides of each question are sym-
metric to each other because trans-
posing the left-hand side leads to
the right.

2. All of them are actually scalars.

Example 2.1.2 Given an n-dimensional vector, x ∈ Rn, compare xᵀx
with x xᵀ.

We can first show that

xᵀx =
[
x1 x2 · · · xn

] 
x1
x2
...

xn


=

n∑
i=1

x2
i .

On the other hand, we have

x xᵀ =


x1
x2
...

xn


[
x1 x2 · · · xn

]
=


x2

1 x1x2 · · · x1xn
x1x2 x2

2 · · · x2xn
...

...
. . .

...
x1xn x2xn · · · x2

n


.

Therefore, x xᵀ is actually an n × n symmetric matrix. �

The trace of a square matrix A ∈ Rn×n is defined to be the sum of all
elements on the main diagonal of A, denoted as tr(A); we thus have

tr(A) =
n∑
i=1

aii .

We can verify that xᵀx = tr(x xᵀ) in this example.

For any two matrices, A ∈ Rm×n and B ∈
Rm×n , we can verify that

tr(AᵀB) = tr(ABᵀ)

= tr(BAᵀ) = tr(BᵀA)

=

m∑
i=1

n∑
j=1

ai jbi j .

For any two square matrices (i.e., X ∈
Rn×n and Y ∈ Rn×n), we can also verify

tr(XY) = tr(YX).

2.1.4 Eigenvalues and Eigenvectors

Given a square matrix A ∈ Rn×n, we can find a nonzero vector u ∈ Rn that
satisfies

A u = λ u,

where λ is a scalar. We call u an eigenvector of A, and λ is an eigenvalue
corresponding to u. As we have learned, a square matrix A can be viewed
as a linear transformation that maps any point in a space Rn into another
point in the same space. An eigenvector u represents a special point in
the space whose direction is not changed by this linear transformation.
Depending on the corresponding eigenvalue λ, it can be stretched or
contracted along the original direction. If the eigenvalue λ is negative, it
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is flipped into the opposite direction after the mapping. The eigenvalues
and eigenvectors are completely determined by matrix A itself and are
considered as an inherent characteristic of matrix A.

Example 2.1.3 Given A ∈ Rn×n, assume we can find n orthogonal
eigenvectors ui (i = 1, 2, · · · , n) as follows:

A ui = λi ui (assuming ‖ui ‖
2 = 1),

where λi is the eigenvalue corresponding to ui . Show that the matrix A
can be factorized.

Any two vectors, ui and u j , are orthogo-
nal if and only if

ui · u j = 0.

First, we align both sides of the equations column by column:


�� �� ��

Au1 Au2 · · · Aun�� �� ��
 =


�� �� ��

λ1u1 λ2u2 · · · λnun�� �� ��
 .

Next, we can move A out in the left-hand side and arrange the right-hand
side into two matrices according to the multiplication rule:

A diagonal matrix has nonzero elements
only on the main diagonal.

A

�� �� ��

u1 u2 · · · un�� �� ��
︸                     ︷︷                     ︸

U

=


�� �� ��

u1 u2 · · · un�� �� ��
︸                     ︷︷                     ︸

U


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

︸                    ︷︷                    ︸
Λ

,

where the matrix U ∈ Rn×n is constructed by using all eigenvectors as its
columns, and Λ ∈ Rn×n is a diagonal matrix with all eigenvalues aligned
on the main diagonal. Because all eigenvectors are normed to 1 and they
are orthogonal to each other, we have

uᵀi uj =

{
1 i = j
0 i , j

.

Therefore, we can show that UᵀU = I. This means that U−1 = Uᵀ. If we
multiply the previous equation by this from the right, we finally derive

A = UΛUᵀ.

�

A square matrix A ∈ Rn×n is said to be positive definite (or positive semidefi-
nite) if xᵀAx > 0 (or ≥ 0) holds for any x ∈ Rn, denoted as A � 0 (or A � 0).
A symmetric matrix A is positive definite (or semidefinite) if and only if
all of its eigenvalues are positive (or nonnegative).

The idea of eigenvalues can be extended
to nonsquare matrices, leading to the so-
called singular values. A nonsquare matrix
A ∈ Rm×n can be similarly factorized us-
ing the singular value decomposition (SVD)
method. (See Section 7.3 for more.)
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2.1.5 Matrix Calculus

In mathematics, matrix calculus is a specialized notation to conduct mul-
tivariate calculus with respect to vectors or matrices. If y is a function
involving all elements of a vector x (or a matrix A), then ∂y/∂x (or ∂y/∂A)
is defined as a vector (or a matrix) in the same size as x (or A), where
each element is defined as a partial derivative of y with respect to the
corresponding element in x (or A).

Assuming we are given

x =


x1
x2
...

xn


and A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


,

then we have

∂y

∂x
∆
=



∂y
∂x1
∂y
∂x2
...
∂y
∂xn


and

∂y

∂A
∆
=



∂y
∂a11

∂y
∂a12

· · ·
∂y
∂a1n

∂y
∂a21

∂y
∂a22

· · ·
∂y
∂a2n

...
...

. . .
...

∂y
∂am1

∂y
∂am2

· · ·
∂y

∂amn


.

Example 2.1.4 Given x ∈ Rn and A ∈ Rn×n, show the following identi-
ties:

∂

∂x

(
xᵀAx

)
= Ax +Aᵀx

∂

∂A

(
xᵀAx

)
= xxᵀ.

Let’s denote y = xᵀAx; we thus have

y =
[
x1 · · · xn

] 
a11 · · · a1n

...
. . .

...
an1 · · · ann



x1
...

xn

 =
n∑
i=1

n∑
j=1

xiai j xj .

For any t ∈
{
1, 2, · · · , n

}
, we have

∂y

∂xt
=

n∑
j=1

at j xj︸    ︷︷    ︸
when i=t

+

n∑
i=1

xiait︸    ︷︷    ︸
when j=t

.

If we denote Ax +Aᵀx as a column vector: Ax +Aᵀx =


z1
z2
...
zn

Ax +Aᵀx =
[
z1 z2 · · · zn

]ᵀ ,
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then for any t ∈
{
1, 2, · · · , n

}
, we can compute

zt =
n∑
j=1

at j xj +
n∑
i=1

xiait .

Therefore, we have proved that (∂/∂x)
(
xᵀAx

)
= Ax +Aᵀx.

Similarly, we can compute

∂y

∂ai j
= xi xj (∀i, j ∈ {1, 2, · · · , n}).

Then we have

∂y

∂A
=


x2

1 x1x2 · · · x1xn
x1x2 x2

2 · · · x2xn
...

...
. . .

...
x1xn x2xn · · · x2

n


.

As shown in Example 2.1.2, this matrix equals to xxᵀ. Therefore, we have
shown that (∂/∂A)

(
xᵀAx

)
= xxᵀ holds. �

The following box lists all matrix calculus identities that will be used in
the remainder of this book. Readers are encouraged to examine them for
future reference.

Matrix Calculus Identities for Machine Learning

∂

∂x

(
xᵀx

)
= 2x

∂

∂x

(
xᵀy

)
= y

∂

∂x

(
xᵀAx

)
= Ax +Aᵀx

∂

∂x

(
xᵀAx

)
= 2Ax (symmetric A)

∂

∂A

(
xᵀAy

)
= xyᵀ

∂

∂A

(
xᵀA−1y

)
= −(Aᵀ)−1xyᵀ(Aᵀ)−1 (square A)

∂

∂A

(
ln |A|

)
= (A−1)ᵀ = (Aᵀ)−1 (square A)

∂

∂A

(
tr

(
A

) )
= I (square A)
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2.2 Probability and Statistics

Probability theory is a mathematical tool to deal with uncertainty. Proba-
bility is a real number between 0 and 1, assigned to indicate how likely an
event is to occur in an experiment. The higher the probability of an event,
the more likely it is the event will occur. A sample space is defined as a
collection of all possible outcomes in an experiment. Any subset of the
sample space can be viewed as an event. The probability of a null event
is 0, and that of the full sample space is 1. For example, in an experiment
of tossing a fair six-faced dice only once, the sample space includes six
outcomes in total: {1, 2, · · · , 6}. We can define many events for this experi-
ment, such as A = "observing an even number," B = "observing the digit 6,"
C = "observing a natural number," and D = "observing a negative number".
We can easily calculate the probabilities for these events as Pr(A) = 1/2,
Pr(B) = 1/6, Pr(C) = 1, and Pr(D) = 0.

2.2.1 Random Variables and Distributions

Random variables are a formal tool to study a random phenomenon in
mathematics. A random variable is defined as a variable whose values de-
pend on the outcomes of a random experiment. In other words, a random
variable could take different values in different probabilities based on
the experimental outcomes. Depending on all possible values a random
variable can take, there are two types of random variables: discrete and
continuous. A discrete random variable can take on only a finite set of dis-
tinct values. For example, if we define a random variable X to indicate
the digit observed in the previous dice-tossing experiment, X is a discrete
random variable that can take only six different values. On the other hand,
a continuous random variable may take an infinite number of possible val-
ues. For example, if we define another random variable Y to indicate a
temperature measurement by a thermometer, Y is continuous because it
may take any real number.

If we want to fully specify a random variable, we have to state two ingre-
dients for it: (i) its domain, the set of all possible values that the random
variable can take, and (ii) its probability distribution, how likely it is that
the random variable may take each possible value. In probability theory,
these two ingredients are often characterized by a probability function.

For any discrete random variable X , we can specify these two ingredients
with the so-called probability mass function (p.m.f.), which is defined on the
domain of X (i.e., {x1, x2, · · · }) as follows:

p(x) = Pr(X = x) for all x ∈ {x1, x2, · · · }.
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Figure 2.4: An illustration of a simple
probability density function (p.d.f.) of a
continuous random variable taking val-
ues in (−∞,+∞).

If we sum p(x) over all values in the domain, it satisfies the sum-to-1
constraint: ∑

x

p(x) = 1. (2.1)

A p.m.f. can be conveniently represented in a table. The table shown in
the left margin represents a simple p.m.f. of a random variable that can
take four distinct values.

x x1 x2 x3 x4

p(x) 0.4 0.3 0.2 0.1
A p.m.f. of a random variable X that takes
four distinct values (i.e. {x1, x2, x3, x4 }) in
the probabilities specified in the table.

For any continuous random variable, we cannot define its probability of
taking a single value. This probability will end up with 0s for all values
because a continuous random variable can take an infinite number of
different values. In probability theory, we instead consider the probability
for a continuous random variable to fall within any interval. For example,
given a continuous random variable X and any interval [a, b] inside its
domain, we try to measure the probability Pr(a ≤ X ≤ b), which is often
nonzero. As shown in Figure 2.4, we define a function p(x) in such a way
that this probability equals to the area of the shaded region under the
function p(x) between a and b. In other words, we have

Pr(a ≤ X ≤ b) =
∫ b

a

p(x) dx,

which holds for any interval [a, b] inside the domain of the random vari-
able. We usually call p(x) the probability density function (p.d.f.) of X (see the
margin note for an explanation). If we choose the entire domain as the
interval, by definition, the probability must be 1. Therefore, we have the
sum-to-1 constraint ∫ +∞

−∞

p(x) dx = 1, (2.2)

which holds for any probability density function.

By definition, we have

p(x) = lim
∆x→0

Pr
(
x ≤ X ≤ x + ∆x

)
∆x

=
probability

interval
= probability density.

In addition to p.d.f., we can also define
another probability function for any con-
tinuous random variable X as

F(x) = Pr
(
X ≤ x

)
(∀x),

which is often called the cumulative distri-
bution function (c.d.f.). By definition, we
have

lim
x→−∞

F(x) = 0 and lim
x→+∞

F(x) = 1,

and
F(x) =

∫ x

−∞

p(x) dx

p(x) =
d

dx
F(x).

2.2.2 Expectation: Mean, Variance, and Moments

As we know, a random variable is fully specified by its probability function.
In other words, the probability function gives the full knowledge on the
random variable, and we are able to compute any statistics of it from the
probability function. Here, let us look at how to compute some important
statistics for random variables from a p.d.f. or p.m.f. Thereafter, we will
use p(x) to represent the p.m.f. for a discrete random variable and the p.d.f.
for a continuous random variable.

Given a continuous random variable X , for any function f (X) of the
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random variable, we can define the expectation of f (X) as follows:

E
[

f (X)
]
=

∫ +∞

−∞

f (x) p(x) dx.

If X is a discrete random variable, we replace the integral with summation
as follows:

E
[

f (X)
]
=

∑
x

f (x) p(x).

Because X is a random variable, the function f (X) also yields different val-
ues in different probabilities. The expectation E

[
f (X)

]
gives the average

of all possible values of f (X). Relying on the expectation, we may define
some statistics for random variables. For example, the mean of a random
variable is defined as the expectation of the random variable itself (i.e.,
E

[
X
]
). The rth moment of a random variable is defined as the expectation

of its rth power (i.e., E
[
Xr

]
; for any r ∈ N). The variance of a random

variable is defined as follows:

var
(
X
)
= E

[ (
X −E[X]

)2] .

Intuitively speaking, the mean of a random variable indicates the center
of its distribution, and the variance tells how much it may deviate from
the center on average.

For any constant c irrelevant of X, it is
easy to show

E[c] = c

E[c · X] = c ·E[X].

Example 2.2.1 For any random variable X , show that

var
(
X
)
= E

[
X2] − (

E[X]
)2.

E[X] can be viewed as a constant because
it is a fixed value for any random variable
X.

var
(
X
)
= E

[ (
X −E[X]

)2]
= E

[
X2 − 2 · X ·E[X] +

(
E[X]

)2
]

= E
[
X2] − 2E[X] ·E[X] +

(
E[X]

)2

= E
[
X2] − (

E[X]
)2.

�

Next, let us revisit the general principle of the bias–variance trade-off dis-
cussed in the previous chapter. In any machine learning problem, we
basically need to estimate a model from some training data. The true
model is usually unknown but fixed, denoted as f . Hence, we can treat
the true model f as an unknown constant. Imagine that we can repeat the
model estimation many times. At each time, we randomly collect some
training data and run the same learning algorithm to derive an estimate,
denoted as f̂ . The estimate f̂ can be viewed as a random variable because
we may derive a different estimate each time depending on the training
data used, which differ from one collection to another. Generally speaking,
we are interested in the average learning error between an estimate f̂ and
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the true model f :
error = E

[
( f̂ − f )2

]
.

The bias of a learning method is defined as the difference between the true
model and the mean of all possible estimates derived from this method:

bias =
��� f −E

[
f̂
] ���.

The variance of an estimate is as defined previously:

variance = var
(
f̂
)
= E

[ (
f̂ −E[ f̂ ])2

]
.

Example 2.2.2 The Bias-Variance Trade-Off

Show that the bias and variance decomposition holds as follows:

error = bias2 + variance.

Because both f and E[ f̂ ] are constants,
we have

E
[ (
f −E[ f̂ ]

) (
f̂ −E[ f̂ ]

) ]
=

(
f −E[ f̂ ]

)
E

[
f̂ −E[ f̂ ]

]
=

(
f −E[ f̂ ]

)
���

���:
= 0(

E[ f̂ ] −E[ f̂ ]
)

= 0.

error = E
[
( f − f̂ )2

]
= E

[ (
f −E[ f̂ ] − f̂ +E[ f̂ ]

)2
]

= E
[ (

f −E[ f̂ ]
)2

]
+E

[ (
f̂ −E[ f̂ ]

)2
]

−2 ·
((((

(((
((((

E
[ (

f −E[ f̂ ]
) (

f̂ −E[ f̂ ]
) ]

=
(
f −E[ f̂ ]

)2︸         ︷︷         ︸
bias2

+E
[ (

f̂ −E[ f̂ ]
)2

]
︸              ︷︷              ︸

variance

.

�

2.2.3 Joint, Marginal, and Conditional Distributions

We have discussed the probability functions for a single random variable.
If we need to consider multiple random variables at the same time, we
can similarly define some probability functions for them in the product
space of their separate domains.

Assume the domains of two random vari-
ables, X and Y , are

X ∈
{
x1, x2

}
and Y ∈

{
y1, y2

}
.

The product space of X andY includes all
pairs like the following:{

(x1, y1), (x1, y2), (x2, y1), (x2, y2)
}
.

If we have multiple discrete random variables, a multivariate function can
be defined in the product space of their domains as follows:

p(x, y) = Pr(X = x,Y = y) ∀x ∈ {x1, x2, · · · }, y ∈ {y1, y2, · · · },

where p(x, y) is often called the joint distribution of two random variables
X and Y . The joint distributions of discrete random variables can also
be represented with some multidimensional tables.

y \ x x1 x2 x3

y1 0.03 0.24 0.17
y2 0.23 0.11 0.22 For example, a joint

distribution p(x, y) of two discrete random variables, X and Y , is shown
in the left margin, where each entry indicates the probability for X and
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Figure 2.5: An illustration of a joint distri-
bution (p.d.f.) of two continuous random
variables p(x, y).

Y to take the corresponding values. If we sum over all entries in a joint
distribution, it must satisfy the sum-to-1 constraint

∑
x

∑
y p(x, y) = 1.

For multiple continuous random variables, we can follow the same idea
of the p.d.f. to define a joint distribution, as in Figure 2.5, to ensure that
the probability for them to fall into any region Ω in their product space
can be computed by the following multiple integral:

Pr
( (

x, y
)
∈ Ω

)
=

∫
· · ·

∫
Ω

p(x, y) dxdy.

Similarly, if we integrate the joint distribution over the entire space, it
satisfies the sum-to-1 constraint:

∫ +∞
−∞

∫ +∞
−∞

p(x, y) dxdy = 1.

A joint distribution fully specifies all underlying random variables. From
a joint distribution, we should be able to derive any information regarding
each underlying random variable. From a joint distribution of multiple
random variables, we can derive the distribution function of any subset of
these random variables by an operation called marginalization. The derived
distribution of a subset is often called a marginal distribution. A marginal
distribution is derived by marginalizing all irrelevant random variables,
namely, integrating out each continuous random variable or summing out
each discrete random variable. For example, given a joint distribution of
two random variables p(x, y), we can derive the marginal distribution of
one random variable by marginalizing out the other one:

p(x) =
∫ +∞

−∞

p(x, y)dy,

if y is a continuous random variable, or

p(x) =
∑
y

p(x, y),

if y is a discrete random variable. This marginalization can be applied to
any joint distribution to derive a marginal distribution of any subset of
random variables that we are interested in. This marginalization is often
called the rule of sum in probability.

If x is a discrete random variable, we have

p(x | y) =
p(x, y)
p(y)

=
p(x, y)∑
x p(x, y)

Moreover, we can further define the so-called conditional distributions
among multiple random variables. For example, the conditional distribu-
tion of x given y is defined as follows:

p(x | y) ∆=
p(x, y)
p(y)

=
p(x, y)∫
p(x, y) dx

.

The conditional distribution p(x | y) is a function of x, and it only describes
how x is distributed when y is known to take a particular value. Using a
conditional distribution, we can compute the conditional expectation of
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f (X)when Y is given as Y = y0:

EX

[
f (X)

��Y = y0

]
=

∫ +∞

−∞

f (x) · p(x | y0) dx.

If X is discrete, we have

EX

[
f (X)

��Y = y0

]
=

∑
x

f (x) · p(x | y0).

Example 2.2.3 Assuming the joint distribution of two continuous ran-
dom variables, X and Y , is given as p(x, y), compare the regular mean of
X (i.e., E

[
X
]
) and a conditional mean of X when Y = y0 (i.e., EX

[
X

��Y =
y0

]
).

E
[
X
]
=

∫ +∞

−∞

x · p(x) dx =
∫ +∞

−∞

∫ +∞

−∞

x · p(x, y) dxdy

EX

[
X

��Y = y0
]
=

∫ +∞

−∞

x · p(x | y0) dx =
∫ +∞

−∞

x ·
p(x, y0)

p(y0)
dx

=

∫ +∞
−∞

x · p(x, y0) dx∫ +∞
−∞

p(x, y0) dx
.

From this, we can see that both means can be computed from the joint
distribution, but they are two different quantities. �

Two random variables, X and Y , are said to be independent if and only if
their joint distribution p(x, y) can be factorized as a product of their own
marginal distributions:

p(x, y) = p(x) p(y) (∀x, y).

From the previous definition of conditional distributions, we can see that
X and Y are independent if and only if p(x |y) = p(x) holds for all y.

If X and Y are discrete,

cov
(
X,Y

)
=∑

x

∑
y

(
x −E[X]

) (
y −E[Y]

)
p(x, y).

For any two random variables, X and Y , we can define the covariance
between them as

cov
(
X ,Y

)
= E

[ (
X −E[X]

) (
Y −E[Y ]

) ]
=

∫ +∞

−∞

∫ +∞

−∞

(
x −E[X]

) (
y −E[Y ]

)
p(x, y) dxdy.

If cov
(
X ,Y

)
= 0, we say that two random variables, X and Y , are un-

correlated. Note that uncorrelatedness is a much weaker condition than
independence. If two random variables are independent, we can show
from the previous definition that they must be uncorrelated. However, it
is generally not true the other way around.

Relying on the concept of the conditional distribution, we can factorize
any joint distribution involving many random variables by following a
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particular order of these variables. For example, we have

p(x1, x2, x3, x4, · · · ) = p(x1) p(x2 |x1) p(x3 |x1, x2) p(x4 |x1, x2, x3) · · ·

Note that there exist many different ways to correctly factorize any joint
distribution as long as the probability of each variable is conditioned on
all previous variables prior to the current one in the order. In probabil-
ity theory, this factorization rule is often called the multiplication rule of
probability, also known as the general product rule of probability.

For example, we can also do the follow-
ing:

p(x1, x2, x3, x4, · · · ) = p(x3) p(x1 |x3)

p(x4 |x1, x3) p(x2 |x1, x3, x4) · · ·

When we have a joint distribution of a large number of random variables,
for notational convenience, we often group some related random variables
into random vectors so that we represent it as a joint distribution of
random vectors:

p
(

x1, x2, x3︸    ︷︷    ︸
x

, y1, y2, y3, y4︸         ︷︷         ︸
y

)
= p(x, y).

We can use the same rule as previously to similarly derive the marginal
and conditional distributions for random vectors, as follows:

If y is discrete, we have

p(x) =
∑

y
p(x, y).

p(x) =
∫

p(x, y) dy

p(x | y) ∆=
p(x, y)
p(y)

.

The mean of a random vector x is a vector, denoted as E[x]:

E
[
x
]
=

∫
x p(x) dx =

∫ ∫
x p(x, y) dxdy.

The covariance between two random vectors, x and y, becomes a matrix,
which is often called the covariance matrix:

cov
(
x, y

)
= E

[ (
x −E[x]

) (
y −E[y]

)ᵀ]
=

∫ ∫ (
x −E[x]

) (
y −E[y]

)ᵀ p(x, y) dxdy.

If x and y are both discrete, we have

E
[
x
]
=

∑
x

∑
y

x p(x, y).

cov
(
x, y

)
=∑

x

∑
y

(
x −E[x]

) (
y −E[y]

)ᵀ
p(x, y).

Finally, the general product rule of probability can be equally applied to
factorize a joint distribution of random vectors as well. p(x, y, z) = p(x) p(y |x) p(z |x, y).

2.2.4 Common Probability Distributions

Here, let us review some popular probability functions often used to rep-
resent the distributions of random variables. For each of these probability
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Figure 2.6: An illustration the binomial
distribution B(r

�� N , p) with p = 0.7 and
N = 20.

functions, we need to know not only its functional form but also what
physical phenomena it can be used to describe. Moreover, we need to
clearly distinguish parameters from random variables in the mathemati-
cal formula and correctly identify the domain of the underlying random
variables (a.k.a. the support of the distribution), as well as the valid range
of the parameters.

Binomial Distribution

The binomial distribution is the discrete probability distribution of the
number of outcomes in a sequence of N independent binary experiments.
Each binary experiment has two different outcomes. We use the binomial
distribution to compute the probabilities of observing r (r ∈ {0, 1, · · · , N})
times of one particular outcome from all N experiments—for example,
the probability of seeing r heads when a coin is tossed N times in a row.
When we use a discrete random variable X to represent the number of
an outcome, and assuming the probability of observing this outcome is
p ∈ [0, 1] in one experiment, the binomial distribution takes the following
formula:

B(r
�� N , p) ∆= Pr(X = r) =

N !
r ! (N − r)!

pr (1 − p)N−r ,

where N and p denote two parameters of the distribution.

We summarize some key properties for the binomial distribution as fol-
lows:

I Parameters: N ∈ N and p ∈ [0, 1].
I Support: The domain of the random variable is r ∈

{
0, 1, · · · N

}
.

I Mean and variance: E[X] = Np and var(X) = Np(1 − p).
I The sum-to-1 constraint:

∑N
r=0 B(r

�� N , p) = 1.

Figure 2.6 shows an example of the binomial distribution for p = 0.7 and
N = 20.When only one binary experiment is done

(N = 1),

B(r
�� N = 1, p) = pr (1 − p)1−r

is also called the Bernoulli distribution,
where r ∈ {0, 1}.

Multinomial Distribution

The multinomial distribution can be viewed as an extension of the bino-
mial distribution when each experiment is not binary but has m distinct
outcomes. In each experiment, the probabilities of observing all possible
outcomes are denoted as {p1, p2, · · · , pm}, where we have the sum-to-1
constraint

∑m
i=1 pi = 1. When we independently repeat the experiment N

times, we introduce m different random variables to represent the number
of each outcome from all N experiments (i.e., {X1, X2, · · · , Xm}). The joint
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distribution of these m random variables is the multinomial distribution,
computed as follows:

Mult
(
r1, r2, · · · , rm

�� N , p1, p2, · · · , pm
)

∆
= Pr(X1 = r1, X2 = r2, · · · , Xm = rm)

=
N !

r1! r2! · · · rm!
pr1

1 pr2
2 · · · prmm ,

where
∑m

i=1 ri = N holds because N experiments are conducted in total.

We summarize some properties for the multinomial distribution as fol-
lows:

I Parameters: N ∈ N; 0 ≤ pi ≤ 1 (∀i = 1, 2, · · · , m) and
∑m

i=1 pi = 1.
I Support (the domain of m random variables):

ri ∈ {0, 1, · · · N} (∀i = 1, · · · , m) and
∑m

i=1 ri = N .
I Means, variances, and covariances:

E
[
Xi

]
= Npi and var(Xi) = Npi(1 − pi) (∀i)

cov(Xi , Xj ) = −Npipj (∀i, j).

I The sum-to-1 constraint:∑
r1 · · ·rm

Mult
(
r1, r2, · · · , rm

�� N , p1, p2, · · · , pm
)
= 1.

As we will learn, the multinomial distribution is the main building block
for constructing any statistical model for discrete random variables in
machine learning.

When we conduct only one experiment
(N = 1),

Mult
(
r1, · · · , rm

�� N = 1, p1, · · · , pm

)
= p

r1
1 pr2

2 · · · p
rm
m

is also called the categorical distribution,
where we have ri ∈ {0, 1} (∀i) and

m∑
i=1

ri = 1.

Beta Distribution

The beta distribution is used to describe a continuous random variable,
X , that takes a probability-like value x ∈ R and 0 ≤ x ≤ 1.The beta
distribution takes the following functional form: The gamma function is defined as fol-

lows:

Γ(x) =

∫ +∞

0
tx−1 e−t dt (∀x > 0).

Γ(x) is often considered as a generaliza-
tion of the factorial to noninteger num-
bers because of the following property:

Γ(x + 1) = x Γ(x)

Beta
(
x
��α, β

)
=
Γ(α + β)

Γ(α)Γ(β)
xα−1 (1 − x)β−1,

where Γ(·) denotes the gamma function, and α and β are two positive
parameters of the beta distribution. Similarly, we can summarize some
key properties for the beta distribution as follows:

I Parameters: α > 0 and β > 0.
I Support (the domain of the continuous random variable):

x ∈ R and 0 ≤ x ≤ 1.

https://doi.org/10.1017/9781108938051.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938051.004


36 2 Mathematical Foundation

Figure 2.7: An illustration of some beta
distributions when two parameters α and
β take different values: (i) α > 1 and β >
1; (ii) 0 < α < 1 < β or 0 < β < 1 < α; (iii)
0 < α, β < 1.

I Mean and variance:

E
[
X
]
=

α

α + β
var(X) =

αβ

(α + β)2(α + β + 1)
.

I The sum-to-1 constraint:∫ 1

0
Beta

(
x | α, β) dx = 1.

We can recognize that the beta distribution shares the same functional
form as the binomial distribution. They differ only in terms of swapping
the roles of the parameters and random variables. Therefore, these two
distributions are said to be conjugate to each other. In this sense, the beta
distribution can be viewed as a distribution of the parameter p in the
binomial distribution. As we will learn, this viewpoint plays an important
role in Bayesian learning (refer to Chapter 14).

Depending on the choices of the two parameters α and β, the beta dis-
tribution behaves quite differently. As shown in Figure 2.7, when both
parameters are larger than 1, the beta distribution is a unimodal bell-
shaped distribution between 0 and 1. The mode of the distribution can be
computed as (α − 1)/(α + β − 2) in this case. It becomes a monotonic distri-
bution when one parameter is larger than 1 and the other is smaller than 1,
particularly monotonically decaying if 0 < α < 1 < β and monotonically
increasing if 0 < β < 1 < α. At last, if both parameters are smaller than
1, the beta distribution is bimodal between 0 and 1, peaking at the two
ends.

Dirichlet Distribution

The Dirichlet distribution is a multivariate generalization of the beta dis-
tribution that is used to describe multiple continuous random variables
{X1, X2, · · · , Xm}, taking values on the probabilities of observing a com-
plete set of mutually exclusive events. As a result, the values of these
random variables are always summed to 1 because these events are com-
plete. For example, if we use some biased dice in a tossing experiment, we
can define six random variables, each of which represents the probability
of observing each digit when tossing a die. For each biased die, these six
random variables take different probabilities, but they always sum to 1 for
each die. These six random variables from all biased dice can be assumed
to follow the Dirichlet distribution.

In general, the Dirichlet distribution takes the following functional form:

Dir
(
p1, p2, · · · , pm

�� r1, r2, · · · , rm
)
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Figure 2.8: An illustration of the three-
dimensional simplex of the Dirichlet dis-
tribution of three random variables.

=
Γ(r1 + · · · + rm)
Γ(r1) · · · Γ(rm)

pr1−1
1 pr2−1

2 · · · prm−1
m ,

where {r1, r2, · · · , rm} denote m positive parameters of the distribution. We
can similarly summarize some key properties for the Dirichlet distribution
as follows:

I Parameters: ri > 0 (∀i = 1, · · · , m).
I Support: The domain of m random variables is an m-dimensional

simplex that can be represented as

0 < pi < 1 (∀i = 1, · · · , m) and
m∑
i=1

pi = 1.

For example, Figure 2.8 shows a three-dimensional simplex for the
Dirichlet distribution of three random variables {p1, p2, p3} when
m = 3.

I Means, variances, and covariances:

E
[
Xi

]
=

ri
r0

var
(
Xi

)
=

ri(r0 − ri)
r2

0 (r0 + 1)

cov
(
Xi , Xj

)
= −

rirj
r2

0 (r0 + 1)
,

where we denote r0 =
∑m

i=1 ri .
I The sum-to-1 constraint holds inside the simplex:∫

· · ·

∫
p1 · · ·pm

Dir
(
p1, p2, · · · pm

�� r1, r2, · · · , rm
)

dp1 · · · dpm = 1.

Figure 2.9: An illustration of three Dirich-
let distributions in the three-dimensional
simplex with various choices of parame-
ters:
1. Regular: r1 = 2.0, r2 = 4.0, r3 = 10.0
2. Symmetric: r1 = r2 = r3 = 4.0
3. Sparse: r1 = 0.7, r2 = 0.8, r3 = 0.9

The shape of a Dirichlet distribution also heavily depends on the choice of
its parameters. Figure 2.9 plots the Dirichlet distribution in the triangle
simplex for three typical choices of its parameters. Generally speaking,
if we choose all parameters to be larger than 1, the Dirichlet distribution
is a unimodal distribution centering somewhere in the simplex. In this
case, the mode of the distribution is located at

[
p̂1 p̂2 · · · p̂m

]ᵀ, where
p̂i = (ri − 1)/(r0 −m) for all i = 1, 2, · · · , m. If we force all parameters to
be the same value, it leads to a symmetric distribution centering at the
center of the simplex. On the other hand, if we choose all parameters to
be smaller than 1, it results in a distribution that yields a large probability
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Figure 2.10: An illustration of two uni-
variate Gaussian distributions with vari-
ous parameters (σ2 > σ1).

mass only near the vertices and edges of the simplex. It is easy to verify
that the vertices or edges correspond to the cases where some random
variables pi take 0 values. In other words, this choice of parameters favors
sparse choices of random variables, leading to the so-called sparse Dirichlet
distribution.

Moreover, we can also identify that the Dirichlet distribution shares the
same functional form as the multinomial distribution. Therefore, these
two distributions are also conjugate to each other. Similarly, the Dirichlet
distribution can be viewed as a distribution of all parameters of a multi-
nomial distribution. Because the multinomial distribution is the main
building block for any statistical model of discrete random variables,
the Dirichlet distribution is often said to be a distribution of all distribu-
tions of discrete random variables. Similar to the beta distribution, the
Dirichlet distribution also plays an important role in Bayesian learning for
multinomial-related models (see Chapter 14).

Gaussian Distribution

The univariate Gaussian distribution (a.k.a. the normal distribution) is often
used to describe a continuous random variable X that can take any real
value in R. The general form of a Gaussian distribution is

N
(
x | µ,σ2) = 1

√
2πσ2

e−
(x−µ)2

2σ2 ,

where µ and σ2 are two parameters. We can summarize some key proper-
ties for the univariate Gaussian distribution as follows:

I Parameters: µ ∈ R and σ2 > 0.
I Support: The domain of the random variable is x ∈ R.
I Mean and variance:

E[X] = µ and var(X) = σ2.

I The sum-to-1 constraint:∫ +∞

−∞

N(x | µ,σ) dx = 1.

Several important identities related to the
univariate Gaussian distribution are as
follows:∫ +∞

−∞

e
−
(x−µ)2

2σ2 dx =
√

2πσ2,

∫ +∞

−∞

x e
−
(x−µ)2

2σ2 dx = µ
√

2πσ2,∫ +∞

−∞

x2 e
−
(x−µ)2

2σ2 dx = (σ2 + µ2)
√

2πσ2. The Gaussian distribution is the well-known unimodal bell-shaped curve.
As shown in Figure 2.10, the first parameter µ equals to the mean, indicat-
ing the center of the distribution, whereas the second parameters σ equals
to the standard deviation, indicating the spread of the distribution.
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Figure 2.11: An illustration of a unimodal
multivariate Gaussian distribution in a
two-dimensional space.

Multivariate Gaussian Distribution

The multivariate Gaussian distribution extends the univariate Gaussian
distribution to represent a joint distribution of multiple continuous ran-
dom variables {X1, X2, · · · , Xn}, each of which can take any real value in
R. If we arrange these random variables as an n-dimensional random
vector, the multivariate Gaussian distribution takes the following compact
form:

N(x | µ,Σ) =
1√

(2π)n |Σ |
e−
(x−µ)ᵀΣ−1(x−µ)

2 ,

where the vector µ ∈ Rn and the symmetric matrix Σ ∈ Rn×n denote two
parameters of the distribution. Note that the exponent in the multivariate
Gaussian distribution is computed as follows:

[
(x − µ)ᵀ

]
1×d

[
Σ−1

]
d×d

[
x − µ

]
d×1

=
[
·
]

1×1.

We can summarize some key properties for the multivariate Gaussian
distribution as follows: Some important identities related to the

multivariate Gaussian distribution are as
follows: ∫

N(x | µ,Σ) dx = 1,∫
xN(x | µ,Σ) dx = µ,∫

xxᵀN(x | µ,Σ) dx = Σ + µµᵀ.

I Parameters: µ ∈ Rn; Σ ∈ Rn×n � 0 is symmetric, positive definite,
and invertible.

I Support: The domain of all random variables: x ∈ Rn.
I Mean vector and covariance matrix:

E
[
x
]
= µ and cov

(
x, x

)
= Σ.

Therefore, the first parameter µ is called the mean vector, and the
second parameter Σ is called the covariance matrix. The inverse co-
variance matrix Σ−1 is often called the precision matrix.

I The sum-to-1 constraint:∫
N(x | µ,Σ) dx = 1.

I Any marginal distribution or conditional distribution of these n
random variables is also Gaussian. (See Exercise Q2.8.)

As shown in Figure 2.11, the multivariate Gaussian is a unimodal distri-
bution in the n-dimensional space, centering at the mean vector µ. The
shape of the distribution depends on the eigenvalues (all positive) of the
covariance matrix Σ.

In order not to make this section further lengthy, the description of other
probability distributions, including the uniform, Poisson, gamma, inverse-
Wishart, and von Mises–Fisher distributions, are provided in Appendix A
as a reference for readers.
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2.2.5 Transformation of Random Variables

Assume we have a set of n continuous random variables, denoted as
{X1, X2, · · · , Xn}. If we arrange their values as a vector x ∈ Rn, we can
represent their joint distribution (p.d.f.) as p(x). We can apply some trans-
formations to convert them into another set of n continuous random
variables as follows:

Y1 = f1(X1, X2, · · · , Xn)

Y2 = f2(X1, X2, · · · , Xn)

...

Yn = fn(X1, X2, · · · , Xn).

We similarly arrange the values of the new random variables {Y1,Y2, · · · ,Yn}
as another vector y ∈ Rn, and we further represent the transformations as
a single vector-valued and multivariate function:x =


x1
x2
...
xn


f
−→ y =


y1
y2
...
yn



y =


y1
y2
...
yn


f −1

−→ x =


x1
x2
...
xn



y = f (x) (x ∈ Rn, y ∈ Rn).

If this function is continuously differentiable and invertible, we can rep-
resent the inverse function as x = f −1(y). Under these conditions, we are
able to conveniently derive the joint distribution for these new random
variables, that is, p(y).

We first need to define the so-called Jacobian matrix for these inverse
transformations x = f −1(y), as follows:

J(y) =
[
∂xi
∂yj

]
n×n

=



∂x1
∂y1

∂x1
∂y2

· · ·
∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

· · ·
∂x2
∂yn

...
...

. . .
...

∂xn
∂y1

∂xn
∂y2

· · ·
∂xn
∂yn


.

According to Bertsekas [21], the joint distribution of the new random
variables can be derived as

p(y) =
�� J(y) �� p(x) =

�� J(y) �� p
(
f −1(y)

)
, (2.3)

where
�� J(y) �� denotes the determinant of the Jacobian matrix.

Example 2.2.4 Assume the joint distribution (p.d.f.) of n continuous ran-
dom variables is given as p(x) (x ∈ Rn), and we use an n × n orthogonal
matrix U to linearly transform x into another set of n random variables
as y = Ux. Show that p(y) = p(x) in this case.

y = Ux =⇒ x = U−1y.
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According to the definition of an orthogonal matrix, we know that U−1 =

Uᵀ. Moreover, because the inverse function is linear, we can verify that
the Jacobian matrix

J(y) = U−1 = Uᵀ.

Because U is an orthogonal matrix, we have |Uᵀ | = |U | = 1. According to
the previous result, we can derive p(y) = p(x) due to

�� J(y) �� = 1. �

An orthogonal matrix (a.k.a. orthonormal
matrix) U is a real square matrix whose
column (or row) vectors are normalized
to 1 and orthogonal to each other. That is,

UᵀU = UUᵀ = I.

An orthogonal matrix represents a spe-
cial linear transformation of rotating the
coordinate system.

An interesting conclusion from this example is that any orthogonal lin-
ear transformation of some random variables does not affect their joint
distribution.

2.3 Information Theory

Information theory was founded by Claude Shannon in 1948 as a discipline
to study the quantification, storage, and communication of information.
In the past decades, it has played a critical role in modern communication
as well as many other applications in engineering and computer science.
This section reviews information theory from the perspective of machine
learning and emphasizes only the concepts and results relevant to machine
learning, particularly mutual information [222] and the Kullback–Leibler (KL)
divergence [137].

2.3.1 Information and Entropy

The first fundamental problem in information theory is how to quanti-
tatively measure information. The most significant progress to address
this issue is attributed to Shannon’s brilliant idea of using probabilities.
The amount of information that a message delivers solely depends on
the probability of observing this message rather than its real content or
anything else. This treatment allows us to establish a general mathematical
framework to handle information independent of application domains. Ac-
cording to Shannon, if the probability of observing an event A is Pr(A), the
amount of information delivered by this event A is calculated as follows:

I(A) = log2

( 1
Pr(A)

)
= − log2

(
Pr(A)

)
.

When we use the binary logarithm log2(·), the unit of the calculated in-
formation is the bit. Shannon’s definition of information is intuitive and
consistent with our daily experience. A small-probability event will sur-
prise us because it contains more information, whereas a common event
that happens every day is not telling us anything new.
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Figure 2.12: An illustration of entropy
H(X) as a function of p for a binary ran-
dom variable.

Shannon’s idea can be extended to measure information for random vari-
ables. As we know, a random variable may take different values in dif-
ferent probabilities, and we can define the so-called entropy for a discrete
random variable X as the expectation of the information for it to take
different values:

H(X) = E
[
− log2 Pr(X = x)

]
= −

∑
x

p(x) log2 p(x),

where p(x) is the p.m.f. of X . Intuitively speaking, the entropy H(X) repre-
sents the amount of uncertainty associated with the random variable X ,
namely, the amount of information we need to fully resolve this random
variable.

The entropy of a continuous random vari-
able X is similarly defined as

H(X) = E
[
− log2 p(x)

]
= −

∫
x
p(x) log2 p(x)dx,

where p(x) denotes the p.d.f. of X.

Example 2.3.1 Calculate the entropy for a binary random variable X
that takes x = 1 in the probability of p and x = 0 in the probability of
1 − p, where p ∈ [0, 1].

x 1 0
p(x) p 1 − p

We define 0 × log2 0 = 0.
H(X) = −

∑
x=0,1

p(x) log2 p(x) = −p log2 p − (1 − p) log2(1 − p).

Figure 2.12 shows H(X) as a function of p and shows that H(X) = 0 when
p = 1 or p = 0. In these cases, the entropy H(X) equals to 0 because X
surely takes the value of 1 (or 0) when p = 1 (or p = 0). On the other hand,
X achieves the maximum entropy value when p = 0.5. In this case, X
contains the highest level of uncertainty because it may take either value
equiprobably. �

Example 2.3.2 Calculate the entropy for a continuous random variable
X that follows a Gaussian distribution N(x | µ0,σ2

0 ).

H(X) = −

∫
x

N(x | µ0,σ2
0 ) log2 N(x | µ0,σ2

0 ) dx

=
log2(e)

2

∫
x

[
log(2πσ2

0 ) +
(x − µ0)

2

σ2
0

]
N(x | µ0,σ2

0 ) dx

=
1
2
[

log2(2πσ
2
0 ) + log2(e)

]
=

1
2

log2(2πeσ2
0 ).

Refer to the identities of the univariate
Gaussian distribution for how to solve
this integral.

And we have

logN(µ0,σ2
0 ) =

log2 N(µ0,σ2
0 )

log2(e)
.

The entropy of a Gaussian variable solely depends on its variance. A larger
variance indicates a higher entropy because the random variable scatters
more widely. Note that the entropy of a Gaussian variable may become
negative when its variance is very small (i.e., σ2

0 < 1/2πe). �

The concept of entropy can be further extended to multiple random vari-
ables based on their joint distribution. For example, assuming the joint
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distribution of two discrete random variables, X and Y , is given as p(x, y),
we can define the joint entropy for them as follows: If X and Y are continuous random vari-

ables, we calculate their joint entropy by
replacing the summations with integrals:

H(X,Y) =

−

∫ ∫
p(x, y) log2 p(x, y) dxdy.

H(X ,Y ) = EX,Y
[
− log2 Pr(X = x,Y = y)

]
= −

∑
x

∑
y

p(x, y) log2 p(x, y).

Intuitively speaking, the joint entropy represents the total amount of
uncertainty associated with these two random variables, namely, the total
amount of information we need to resolve both of them.

Furthermore, we can define the so-called conditional entropy for two ran-
dom variables, X and Y , based on their conditional distribution p(y |x) as
follows:

H(Y |X) = EX,Y
[
− log2 Pr(Y = y |X = x)

]
= −

∑
x

∑
y

p(x, y) log2 p(y |x).

Intuitively speaking, the conditional entropy H(Y |X) indicates the amount
of uncertainty associated with Y after X is known, namely, the amount of
information we still need to resolve Y even after X is known. Similarly,
we can define the conditional entropy H(X |Y ) based on the conditional
distribution p(x |y) as follows:

H(X |Y ) = EX,Y
[
− log2 Pr(X = x |Y = y)

]
= −

∑
x

∑
y

p(x, y) log2 p(x |y).

In the same way, H(X |Y ) indicates the amount of uncertainty associated
with X after Y is known, namely, the amount of information we still need
to resolve X after Y is known.

If X and Y are continuous, we have

H(Y |X) =

−

∫ ∫
p(x, y) log2 p(y |x) dxdy

and
H(X |Y) =

−

∫ ∫
p(x, y) log2 p(x |y) dxdy.

If two random variables X and Y are independent, we have

See Exercise Q2.10.
H(X ,Y ) = H(X) + H(Y )

H(X |Y ) = H(X) and H(Y |X) = H(Y ).

2.3.2 Mutual Information

As we have learned, the entropy H(X) represents the amount of uncer-
tainty related to the random variable X , and the conditional entropy
H(X |Y ) represents the amount of uncertainty related to the same vari-
able X after another random variable Y is known. Therefore, the difference
H(X) − H(X |Y ) represents the uncertainty reduction about X before and
after Y is known. In other words, it indicates the amount of information
another random variable Y can provide for X . We often define this un-
certainty reduction as the mutual information between these two random
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Figure 2.13: An illustration of how mu-
tual information is related to entropy,
joint entropy, and conditional entropy.

variables:If X and Y are continuous,

I (X,Y) =∫ ∫
p(x, y) log2

p(x, y)
p(x)p(y)

dxdy.

I(X ,Y ) = H(X) − H(X |Y )

=
∑
x

∑
y

p(x, y) log2

( p(x, y)
p(x)p(y)

)
.

Of course, we have several different ways to measure the uncertainty
reduction between two random variables, and they all lead to the same
mutual information as defined previously:

See Exercise Q2.11.

I(X ,Y ) = H(Y ) − H(Y |X)

= H(X) + H(Y ) − H(X ,Y ).

In general, we can conceptually describe the relations among all of these
quantities as shown in Figure 2.13. This diagram is useful to visualize all
the aforementioned equations related to mutual information.

In the following discussion, we summarize several important properties
of mutual information:

I Mutual information is symmetrical (i.e., I(X ,Y ) = I(Y , X)).
I Mutual information is always nonnegative (i.e., I(X ,Y ) ≥ 0).
I I(X ,Y ) = 0 if and only if X and Y are independent.

We can easily verify the first property of symmetry from the definition of
mutual information. We will prove the other two properties in the next
section. From these, we can see that mutual information is guaranteed to
be nonnegative for any random variables. In contrast, entropy is nonnega-
tive only for discrete random variables, and it may become negative for
continuous random variables (see Example 2.3.2).

Finally, the next example explains how to use mutual information for
feature selection in machine learning.

Example 2.3.3 Mutual Information for Keyword Selection

In many real-world text-classification tasks, we often need to filter out
noninformative words in text documents before we build classification
models. Mutual information is often used as a popular data-driven
criterion to select keywords that are informative.

Assume we want to build a text classifier to automatically classify a news
article into one of the predefined topics, such as sports, politics, business,
or science. We first need to collect some news articles from each of these
categories. However, these news articles often contain a large number of
distinct words. It will definitely complicate the model learning process
if we keep all words used in the text documents. Moreover, in natural
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languages, there are many common words that are used everywhere, so
they do not provide much information in terms of distinguishing news
topics. In natural language processing, it is a common practice to filter out
all noninformative words in an initial preprocessing stage. Mutual infor-
mation serves as a popular criterion to calculate the correlation between
each word and a news topic for this purpose.

As we have learned, mutual information is defined for random variables.
We need to specify random variables before we can actually compute
mutual information. Let us first pick up a word (e.g., score) and a topic
(e.g., "sports"); we define two binary random variables:

X ∈ {0, 1} : whether a document’s topic is "sports" or not,
Y ∈ {0, 1} : whether a document contains the word score or not.

We can go over the entire text corpus to compute a joint distribution for X
and Y , as shown in the margin. The probabilities in the table are computed
based on the counts for each case. For example, we can do the following
counts: p(x, y) y = 0 y = 1 p(x)

x = 0 0.80 0.02 0.82
x = 1 0.11 0.07 0.18
p(y) 0.91 0.09p(X = 1,Y = 1) =

# of docs with topic "sports" and containing score
total # of docs in the corpus

p(X = 1,Y = 0) =
# of docs with topic "sports" but not containing score

total # of docs in the corpus

p(X = 0,Y = 0) =
# of docs without topic "sports" and not containing score

total # of docs in the corpus

p(X = 0,Y = 1) =
# of docs without topic "sports" but containing score

total # of docs in the corpus
.

I (X,Y) =

0.80 × log2
0.80

0.82 × 0.91

+0.02 × log2
0.02

0.82 × 0.09

+0.11 × log2
0.11

0.18 × 0.91

+0.07 × log2
0.07

0.18 × 0.09
= 0.126

Once all probabilities are computed for the joint distribution, the mutual
information I(X ,Y ) can be computed as

I(X ,Y ) =
∑

x∈{0,1}

∑
y∈{0,1}

p(x, y) log2
p(x, y)

p(x)p(y)
= 0.126.

The mutual information I(X ,Y ) reflects the correlation between the word
score and the topic "sports." If we repeat this procedure for another word,
what, and the topic "sports," we may obtain the corresponding I(X ,Y ) =
0.00007. From these two cases, we can tell that the word score is much
more informative than what in relation to the topic "sports." Finally, we
just need to repeat these steps of mutual information computation for all
combinations of words and topics, then filter out all words that yield low
mutual-information values with respect to all topics. �
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Figure 2.14: An illustration of Jensen’s in-
equality for two points of a convex func-
tion. (Image credit: Eli Osherovich/CC-
BY-SA-3.0.)

2.3.3 KL Divergence

Kullback–Leibler (KL) divergence is a criterion to measure the difference
between two probability distributions that have the same support. Given
any two distributions ( e.g., p(x) and q(x)), if the domains of their underly-
ing random variables are the same, the KL divergence is defined as the
expectation of the logarithm difference between two distributions over
the entire domain:

log
( p(x)
q(x)

)
= log p(x) − log q(x). KL

(
p(x)



 q(x)
)
∆
= Ex∼p(x)

[
log

( p(x)
q(x)

)]
.

Note that the expectation is computed with respect to the first distribution
in the KL divergence. As a result, the KL divergence is not symmetric; that
is, KL

(
q(x) | | p(x)

)
, KL

(
p(x) | | q(x)

)
.By definition, we have

KL
(
q(x)



 p(x))
∆
= Ex∼q(x)

[
log

( q(x)
p(x)

)]
.

For discrete random variables, we can calculate the KL divergence as
follows:

KL
(
p(x)



 q(x)
)
=

∑
x

p(x) log
( p(x)

q(x)

)
.

On the other hand, if the random variables are continuous, the KL diver-
gence is computed with the integral as follows:

KL
(
p(x)



 q(x)
)
=

∫
p(x) log

( p(x)
q(x)

)
dx.

Regarding the property of the KL divergence, we have the following result
from mathematical statistics:

Theorem 2.3.1 The KL divergence is always nonnegative:

KL
(
p(x)



 q(x)
)
≥ 0.

Furthermore, KL
(
p(x)



 q(x)
)
= 0 if and only if p(x) = q(x) holds almost

everywhere in the domain.

Proof:

Step 1: Reviewing Jensen’s inequality

Let’s first review Jensen’s inequality [114] because this theorem can be
derived as a corollary from Jensen’s inequality. As shown in Figure 2.14, a
real-valued function is called convex if the line segment between any two
points on the graph of the function lies above or on the graph. If f (x) is
convex, for any two points x1 and x2, we have

f
(
εx1 + (1 − ε)x2

)
≤ ε f (x1) + (1 − ε) f (x2).
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for any ε ∈ [0, 1]. Jensen’s inequality generalizes the statement that the
secant line of a convex function lies above the graph of the function from
two points to any number of points. In the context of probability theory,
Jensen’s inequality states that if X is a random variable and f (·) is a convex
function, then we have

f
(
E[X]

)
≤ E

[
f (X)

]
The complete proof of Jensen’s inequality is not shown here because its
complexity is beyond the scope of this book.

Step 2: Showing the function − log(x) is strictly convex We have

d2

dx2

(
− log(x)

)
=

1
x2 > 0

for all x > 0.

We know that any twice-differentiable function is convex if it has positive
second-order derivatives everywhere. It is easy to show that − log(x) has
positive second-order derivatives (see margin note).

Step 3: Applying Jensen’s inequality to − log(x)

q(x) satisfies the sum-to-1 constraint be-
cause it is a probability distribution.

KL
(
p(x)



 q(x)
)
= Ex∼p(x)

[
log

( p(x)
q(x)

)]
= Ex∼p(x)

[
− log

( q(x)
p(x)

)]
≥ − log

(
Ex∼p(x)

[ q(x)
p(x)

] )
= − log

( ∫
��p(x)

q(x)

��p(x)
dx

)
= − log

∫
q(x) dx = − log(1) = 0.

According to Jensen’s inequality, equality holds if and only if log
(
p(x)/q(x)

)
is a constant. Because both p(x) and q(x) satisfy the sum-to-1 condition,
this leads to p(x)/q(x) = 1 almost everywhere in the domain. �

Because of the property stated in the theorem, the KL divergence is of-
ten used as a measure of how one probability distribution differs from
another reference probability distribution, analogous to the Euclidean
distance for two points in a space. Intuitively speaking, the KL divergence
KL

(
q(x) | | p(x)

)
represents the amount of information lost when we replace

one probability distribution p(x) with another distribution q(x). However,
we have to note that the KL divergence does not qualify as a formal statis-
tical metric because the KL divergence is not symmetric, and it does not
satisfy the triangle inequality.

In the context of machine learning, the KL divergence is often used as a
loss measure when we use a simple statistical model q(x) to approximate a
complicated model p(x). In this case, the best-fit simple model, denoted as
q∗(x), can be derived by minimizing the KL divergence between them:

q∗(x) = arg min
q(x)

KL
(
q(x) | | p(x)

)
.
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The best-fit model q∗(x) found here is optimal because the minimum
amount of information is lost when a complicated model is approximated
by a simple one. We will come back to discuss this idea further in Chap-
ter 13 and Chapter 14.

Finally, we can also see that mutual information I(X ,Y ) can be cast as the
KL divergence of the following form:

I(X ,Y ) = KL
(
p(x, y)



 p(x)p(y)
)
.

This formulation first proves that mutual information I(X ,Y ) is always
nonnegative because it is a special kind of the KL divergence. We can
also see that I(X ,Y ) = 0 if and only if p(x, y) = p(x)p(y) holds for all x
and y, which implies that X and Y are independent. Therefore, mutual
information can be viewed as an information gain from the assumption
that random variables are independent.

Example 2.3.4 Compute the KL divergence between two univariate
Gaussian distributions with a common variance σ2: N(x | µ1,σ2) and
N(x | µ2,σ2).

Based on the definition of the KL divergence, we have

KL
(
N(x | µ1,σ2)



 N(x | µ2,σ2)
)

=

∫
N(x | µ1,σ2) log

N(x | µ1,σ2)

N(x | µ2,σ2)
dx

= −
1

2σ2

∫
N(x | µ1,σ2)

[
(µ2

1 − µ
2
2) − 2x(µ1 − µ2)

]
dx

= −
1

2σ2

[
(µ2

1 − µ
2
2) − 2µ1(µ1 − µ2)

]
=
(µ1 − µ2)

2

2σ2 .

We can see that the KL divergence is nonnegative and equals to 0 only
when these two Gaussian distributions are identical (i.e., µ1 = µ2). �

Note that∫
xN(x | µ1,σ2) dx = µ1

2.4 Mathematical Optimization

Many real-world problems in engineering and science require us to find
the best-fit candidate among a family of feasible choices in that it satisfies
certain design criteria in an optimal way. These problems can be cast as
a universal problem in mathematics, called mathematical optimization (or
optimization for short). In an optimization problem, we always start with
a criterion and formulate an objective function that can quantitatively
measure the underlying criterion as a function of all available choices. The
optimization problem is solved by just finding the variables that maximize
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or minimize the objective function among all feasible choices. The feasibil-
ity of a choice is usually specified by some constraints in the optimization
problem. The following discussion first introduces a general formulation
for all mathematical optimization problems, along with some related con-
cepts and terminologies. Next, some analytic results regarding optimality
conditions for this general optimization problem under several typical
scenarios are presented. As we will see, for many simple optimization
problems, we can handily derive closed-form solutions based on these
optimality conditions. However, for other sophisticated optimization prob-
lems arising from practical applications, we will have to rely on numerical
methods to derive a satisfactory solution in an iterative manner. Finally,
some popular numerical optimization methods that play an important
role in machine learning, such as a variety of gradient descent methods,
will be introduced.

2.4.1 General Formulation

We first assume each candidate in an optimization problem can be speci-
fied by a bunch of free variables that are collectively represented as a vector
x ∈ Rn, and the underlying objective function is given as f (x). All kinds
of constraints on a feasible choice can always be described by another set
of functions of x, among which we may have equality and/or inequality
constraints. Without losing generality, any mathematical optimization
problem can be formulated as follows: If we need to maximize f (x), we convert

it into minimization as follows:

arg max
x

f (x) ⇔ arg min
x
− f (x).

Similarly, we have

g j (x) ≥ 0 ⇔ −g j (x) ≤ 0.

x∗ = arg min
x

f (x), (2.4)

subject to
hi(x) = 0 (i = 1, 2, · · · , m), (2.5)

gj (x) ≤ 0 ( j = 1, 2, · · · , n). (2.6)

The m equality constraints in Eq. (2.5) and the n inequality constraints
in Eq. (2.6) collectively define a feasible set Ω for the free variable x. We
assume that these constraints are specified in a meaningful way so that the
resultant feasible set Ω is nonempty. An optimization problem essentially
requires us to search for all values of x in Ω so as to yield the best value x∗

that minimizes the objective function in Ω.

This formulation is general enough to accommodate almost all optimiza-
tion problems. However, without further assumptions on the amenability
of the objective function f (x) and all constraint functions {hi(x), gj (x)},
the optimization problem is in general unsolvable [172]. In the history
of mathematical optimization, linear programming is the first category of
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optimization problems that has been extensively studied. The optimiza-
tion is said to be a linear programming problem if all functions in the
formulation, including f (x) and {hi(x), gj (x)}, are linear or affine. Linear
programming problems are considered to be easy to solve, and plenty
of efficient numerical methods have been developed to solve all sorts of
linear programming problems with reasonable theoretical guarantees.

A linear function takes the form of

y = aᵀx,

and an affine function takes the form:

y = aᵀx + b.
During the past decades, the research in mathematical optimization has
mainly focused on a more general group of optimization problems called
convex optimization [28, 172]. The optimization is a convex optimization
problem if the objective function f (x) is a convex function (see Figure 2.14)

A set is said to be convex if for any two
points in the set, the line segment joining
them lies entirely within the set.

and the feasible set Ω defined by all constraints is a convex set (see margin
note). All convex optimization problems have the nice property that a
locally optimal solution is guaranteed to be globally optimal. Because of
this, convex optimization problems can be efficiently solved by many local
search algorithms, which are theoretically guaranteed to converge at a rea-
sonable speed. Compared with linear programming, convex optimization
represents a much wider range of optimization problems, including linear
programming, quadratic programming, second-order cone programming,
and semidefinite programming. Many real-world problems can be formu-
lated or approximated as a convex optimization problem. As we will see,
convex optimization also plays an important role in machine learning. The
learning problems of many useful models are actually convex optimiza-
tion. The nice properties of convex optimization ensure that these models
can be efficiently learned in practice.

2.4.2 Optimality Conditions

Here, we will first review the necessary and/or sufficient conditions for
any x∗ that is an optimal solution to the optimization problem in Eq.
(2.4). These optimality conditions will not only provide us with a good
understanding of optimization problems in theory but also help to derive a
closed-form solution for some relatively simple problems. We will discuss
the optimality conditions for three different scenarios of the optimization
problem in Eq. (2.4), namely, without any constraint, under only equality
constraints, and under both equality and inequality constraints.

Unconstrained Optimization

Let’s start with the cases where we aim to minimize an objective function
without any constraint. In general, an unconstrained optimization problem
can be represented as follows:

x∗ = arg min
x∈Rn

f (x). (2.7)
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Figure 2.15: An illustration of global mini-
mum (maximum) points versus local min-
imum (maximum) points.

Figure 2.16: An illustration of a saddle
point at x = 0, y = 0 on the surface of
f (x, y) = x2 − y2. It is not an extreme
point, but we can verify that the gradi-
ent vanishes there.

For any function f (x), we can define the following concepts relevant to
the optimality conditions of Eq. (2.7):

I Global minimum (maximum)
A point x̂ is said to be a global minimum (or maximum) of f (x) if
f (x̂) ≤ f (x) (or f (x̂) ≥ f (x)) holds for any x in the domain of the
function f (x); see Figure 2.15.

I Local minimum (maximum)
A point x̂ is said to be a local minimum (or maximum) of f (x) if
f (x̂) ≤ f (x) (or f (x̂) ≥ f (x)) holds for all x within a local neighbor-
hood of x̂; that is, ‖x− x̂‖ ≤ ε for some ε > 0, as shown in Figure 2.15.
All local minimum and maximum points are also called local extreme
points.

I Stationary point

x =


x1
x2
...
xn



If a function f (x) is differentiable, we can compute partial derivatives
with respect to each element in x. These partial derivatives are often
arranged as the so-called gradient vector, denoted as follows:

∇ f (x) ∆=
∂ f (x)
∂x

=



∂ f (x)
∂x1
∂ f (x)
∂x2
...

∂ f (x)
∂xn


.

The gradient can be computed for any x in the function domain. If
the gradient ∇ f (x) is nonzero, it points to the direction of the fastest
increase of the function value at x. On the other hand, a point x̂ is
said to be a stationary point of f (x) if all partial derivatives are 0 at
x̂; that is, the gradient vanishes at x̂:

∇ f (x̂) ∆= ∇ f (x)
���
x=x̂
= 0.

I Critical point
A point x̂ is a critical point of a function if it is either a stationary point
or a point where the gradient is undefined. For a general function,
critical points include all stationary points and all singular points
where the function is not differentiable. On the other hand, if the
function is differentiable everywhere, every critical point is also a
stationary point.

I Saddle point
If a point x̂ is a critical point but it is not a local extreme point
of the function f (x), it is called a saddle point. There are usually a
large number of saddle points on the high-dimensional surface of a
multivariate function, as shown in Figure 2.16.

Figure 2.17 summarizes the relationship between all of the previously
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discussed concepts for a differentiable function.

Figure 2.17: A diagram to illustrate all
concepts related to stationary points for a
differentiable function:
1. A =⇒ B means A is B.
2. A 6⇐⇒ B means A and B are not the
same (disjoint).
3. A ⇐⇒ B means A and B are equiva-
lent.

Strictly speaking, only a global minimum point constitutes an optimal so-
lution to the optimization problem in Eq. (2.7). Global optimization methods
aim to find a global minimum for the optimization problem in Eq. (2.7).
However, for most objective functions, finding a global optimal point is an
extremely challenging task, in which the computational complexity often
exponentially grows with the number of free variables. As a result, we
often have to relax to resort to a local optimization strategy, where a local op-
timization algorithm can only find a local minimum for the optimization
problem in Eq. (2.7).

For any differentiable objective function, we have the following necessary
condition for any locally optimal solution:

Theorem 2.4.1 (necessary condition for unconstrained optimization)
Assume the objective function f (x) is differentiable everywhere. If x∗ is a local
minimum of Eq. (2.7), then x∗ must be a stationary point; that is, the gradient
vanishes at x∗ as ∇ f (x∗) = 0.

This theorem suggests a simple strategy to solve any unconstrained op-
timization problem in Eq. (2.7). If we can compute the gradient of the
objective function ∇ f (x), we can vanish it by solving the following:

∇ f (x) = 0,

which results in a group of n equations. If we can solve these equations
explicitly, their solution may be a locally optimal solution to the original
unconstrained optimization problem. Because the previous theorem only
states a necessary condition, the found solution may also be a local maxi-
mum or a saddle point of the original problem. In practice, we will have
to verify whether the solution found by vanishing the gradient is indeed a
true local minimum to the original problem.

If the objective function is twice differentiable, we can establish stronger
optimality conditions based on the second-order derivatives. In particular,
we can compute all second-order partial derivatives for the objective
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Figure 2.18: An illustration of several
different scenarios of a stationary point,
where the curvature of the surface is indi-
cated by the Hessian matrix:
1. Isolated minimum: H(x) � 0
2. Flat valley: H(x) � 0 and H(x) , 0
3. Plateau: H(x) = 0

function f (x) in the following n × n matrix:

H(x) =
[
∂2 f (x)
∂xi∂xj

]
n×n

=



∂2 f (x)
∂x2

1

∂2 f (x)
∂x1∂x2

· · ·
∂2 f (x)
∂x1∂xn

∂2 f (x)
∂x1∂x2

∂2 f (x)
∂x2

2
· · ·

∂2 f (x)
∂x2∂xn

...
...

. . .
...

∂2 f (x)
∂x1∂xn

∂2 f (x)
∂x2∂xn

· · ·
∂2 f (x)
∂x2

n


,

where H(x) is often called the Hessian matrix. Similar to the gradient, we
can compute the Hessian matrix at any point x for a twice-differentiable
function. The Hessian matrix H(x) describes the local curvature of the
function surface f (x) at x.

If we have obtained a stationary point x∗ by vanishing the gradient as
∇ f (x∗) = 0, we can know more about x∗ by examining the Hessian matrix
at x∗. If H(x∗) contains both positive and negative eigenvalues (neither
positive nor negative definite), x∗ must be a saddle point, as in Figure 2.16,
where the function value increases along some directions and decreases
along other directions. If H(x∗) contains all positive eigenvalues (positive
definite), x∗ is a strict isolated local minimum, where the function value
increases along all directions, as in Figure 2.18. If H(x∗) only contains
both positive and 0 eigenvalues (positive semidefinite), x∗ is still a local
minimum, but it is located at a flat valley in Figure 2.18, where the function
value remains constant along some directions related to 0 eigenvalues.
Finally, if the Hessian matrix also vanishes (i.e., H(x∗) = 0), x∗ is located
on a plateau of the function surface.

Based on the Hessian matrix, we can establish the following second-order
necessary or sufficient condition for any local optimal solution of Eq. (2.7)
as follows:

Theorem 2.4.2 (second-order necessary condition) Assume the objective
function f (x) is twice differentiable. If x∗ is a local minimum of Eq. (2.7), then

∇ f (x∗) = 0 and H(x∗) � 0.

Theorem 2.4.3 (second-order sufficient condition) Assume the objective
function f (x) is twice differentiable. If a point x∗ satisfies

∇ f (x∗) = 0 and H(x∗) � 0,

then x∗ is an isolated local minimum of Eq. (2.7).

The proofs of Theorems 2.4.1, 2.4.2, and 2.4.3 are straightforward, and they
are left for Exercise Q2.14.
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Figure 2.19: An illustration of the La-
grange necessary conditions for an objec-
tive function of two free variables f (x, y),
which is displayed with the contours, un-
der one equality constraint h(x, y) = 0,
which is plotted as the red curve.

min
x ,y

f (x, y),

subject to
h(x, y) = 0.

Equality Constraints

Let’s further discuss the optimality conditions for an optimization problem
under only equality constraints, such as

x∗ = arg min
x

f (x), (2.8)

subject to
hi(x) = 0 (i = 1, 2, · · · , m). (2.9)

Generally speaking, stationary points of the objective function f (x) usually
are not the optimal solution anymore because these stationary points may
not satisfy the constraints in Eq. (2.9). The Lagrange multiplier theorem
establishes a first-order necessary condition for the optimization under
equality constraints as follows:

Theorem 2.4.4 (Lagrange necessary conditions) Assume the objective func-
tion f (x) and all constraint functions {hi(x)} in Eq. (2.9) are differentiable.
If a point x∗ is a local optimal solution to the problem in Eq. (2.8), then the
gradients of these functions are linearly dependent at x∗:

∇ f (x∗) +
m∑
i=1

λi ∇hi(x∗) = 0,

where λi ∈ R (i = 1, 2, · · · , m) are called the Lagrange multipliers.

We can intuitively explain the Lagrange necessary conditions with the
simple example shown in Figure 2.19, where we minimize a function
of two variables (i.e., f (x, y)) under one equality constraint h(x, y) = 0
(plotted as the red curve). Looking at an arbitrary point A on the constraint
curve, the negative gradient (i.e., −∇ f (x, y)) points to a direction of the
fastest decrease of the function value, and ∇h(x, y) indicates the norm
vector of the curve at A. Imagine we want to move A along the constraint
curve to further decrease the function value; we can always project the
negative gradient to the tangent plane perpendicular to the norm vector.
If we move A slightly along this projected direction, the function value
will decrease accordingly. As a result, A cannot be a local optimal point
to the original optimization problem. We can continue to move A until
it reaches the point B, where the negative gradient is in the same space
of the norm vector so that the projection is not possible anymore. This
indicates that B may be a local optimal point, and we can verify that the
Lagrange condition holds at B.

The Lagrange necessary conditions suggest a convenient treatment to han-
dle equality constraints in any optimization problem in Eq. (2.8) and Eq.
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Figure 2.20: An illustration of the dis-
tance from any point x0 to a hyperplane
wᵀx + b = 0.

(2.9). For each equality constraint hi(x) = 0, we introduce a new free vari-
able λ, called a Lagrange multiplier, and construct the so-called Lagrangian
function:

L
(
x, {λi}

)
= f (x) +

m∑
i=1

λi hi(x).

If we can optimize the Lagrangian function with respect to the original
variables x and all Lagrange multipliers, we can derive the solution to
the original constrained optimization in Eq. (2.8). We can see that the
Lagrangian function is a useful technique to convert a constrained opti-
mization problem into an unconstrained one.

min
x,{λi }

L
(
x, {λi }

)
=⇒

∂L
(
x, {λi }

)
∂x

= 0.

This further leads to the same Lagrange
conditions in Theorem 2.4.4:

∇ f (x) +
m∑
i=1

λi ∇hi (x) = 0.

Example 2.4.1 As shown in Figure 2.20, compute the distance from a
point x0 ∈ Rn to a hyperplane wᵀx + b = 0 in the space x ∈ Rn, where
w ∈ Rn and b ∈ R are given.

We can formulate this problem as the following constrained optimization
problem:

d2 = min
x
‖x − x0‖

2,

subject to
wᵀx + b = 0.

We introduce a Lagrange multiplier λ for this equality constraint and
further construct the Lagrangian function as follows:

L(x, λ) = ‖x − x0‖
2 + λ

(
wᵀx + b

)
=

(
x − x0

)ᵀ (x − x0
)
+ λ

(
wᵀx + b

)
∂L(x, λ)
∂x

= 0 =⇒ 2
(
x − x0

)
+ λw = 0

=⇒ x∗ = x0 −
λ∗

2
w,

Substituting it into the constraint wᵀx∗ + b = 0, we can solve for λ∗ as
follows:

λ∗ =
2
(
wᵀx0 + b

)
wᵀw

=
2
(
wᵀx0 + b

)
‖w‖2

.

Finally, we have

d2 = ‖x∗ − x0‖
2 =

λ∗2

4
‖w‖2 =

|wᵀx0 + b|2

‖w‖2

=⇒ d =
|wᵀx0 + b|
‖w‖

. �
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Inequality Constraints

In this section, we will investigate how to establish the optimality condi-
tions for the general optimization problems in Eq. (2.4) (copied at left),
which involves both equality and inequality constraints.

x∗ = arg min
x

f (x),

subject to

hi (x) = 0 (i = 1, 2, · · · ,m)

g j (x) ≤ 0 (j = 1, 2, · · · , n).

We assume all these constraints define a
nonempty feasible set for x, denoted as Ω.

First of all, following a similar idea as before, we introduce a Lagrange
multiplier λi (∀i) for each equality constraint function and a nonnegative
Lagrange multiplier νj ≥ 0 (∀ j) for each inequality constraint function to
construct a Lagrangian function as follows:

L
(
x, {λi , νj }

)
= f (x) +

m∑
i=1

= 0︷  ︸︸  ︷
λi hi(x)+

n∑
j=1

≤ 0︷  ︸︸  ︷
νj gj (x)

≤ f (x) (∀x ∈ Ω).

Because of the constraints νj ≥ 0 (∀ j), this Lagrangian is a lower bound
of the original objective function f (x) in the feasible set Ω. We can further
minimize out the original variables x inside Ω so as to derive a function of
all Lagrange multipliers:inf is a generalization of min for open

sets.

L∗
(
{λi , νj }

)
= inf

x∈Ω
L
(
x, {λi , νj }

)
.

This function is often called the Lagrange dual function. From the above
definitions, we can easily show that the dual function is also a lower bound
of the original objective function:

L∗
(
{λi , νj }

)
≤ L

(
x, {λi , νj }

)
≤ f (x) (x ∈ Ω).

In other words, the Lagrange dual function is below the original objective
function f (x) for all x in Ω. Assuming x∗ is an optimal solution to the
original optimization problem in Eq. (2.4), we still have

L∗
(
{λi , νj }

)
≤ f (x∗). (2.10)

An interesting thing to do is to further optimize all Lagrange multipliers to
maximize the dual function in order to close the gap as much as possible,
which leads to a new optimization problem, as follows:

{λ∗i , ν∗j } = arg max
{λi ,νj }

L∗
(
{λi , νj }

)
,

subject to
νj ≥ 0 ( j = 1, 2, · · · , n).

This new optimization problem is called the Lagrange dual problem. In
contrast, the original optimization problem in Eq. (2.4) is called the primal
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Figure 2.21: An illustration of strong du-
ality occurring in a saddle point of the
Lagrangian function.

problem. From Eq. (2.10), we can immediately derive

L∗
(
{λ∗i , ν∗j }

)
≤ f (x∗).

If the original primary problem is convex optimization and some minor
qualification conditions (such as Slater’s condition [225]) are met, the gap
becomes 0, and the equality

L∗
(
{λ∗i , ν∗j }

)
= f (x∗)

holds, which is called strong duality. When strong duality holds, x∗ and
{λ∗i , ν∗j } form a saddle point of the Lagrangian L

(
x, {λi , νj }

)
, as shown in

Figure 2.21, where the Lagrangian increases with respect to x but decreases
with respect to {λi , νj }. In this case, both the primary and dual problems
are equivalent because they lead to the same optimal solution at the saddle
point.

When strong duality holds, we have

f (x∗) = L∗
(
{λ∗i , ν∗j }

)
≤ L

(
x∗, {λ∗i , ν∗j }

)
= f (x∗) +

m∑
i=1

λ∗i hi(x∗)︸    ︷︷    ︸
= 0

+

n∑
j=1

ν∗j gj (x
∗).

From this, we can see that
∑n

j=1 ν∗j gj (x
∗) ≥ 0. On the other hand, by

definition, we have ν∗j gj (x
∗) ≤ 0 for all j = 1, 2 · · · , n. These results further

suggest the so-called complementary slackness conditions:

ν∗j gj (x
∗) = 0 ( j = 1, 2, · · · , n).

Finally, we summarize all of the previous results, called Karush–Kuhn–
Tucker (KKT) conditions [124, 135], in the following theorem:

Theorem 2.4.5 (KKT necessary conditions) If x∗ and {λ∗i , ν∗j } form a saddle
point of the Lagrangian function L

(
x, {λi , νj }

)
, then x∗ is an optimal solution

to the problem in Eq. (2.4). The saddle point satisfies the following conditions:
1. Stationariness: Note that the stationariness condition is

derived as such because the saddle point
is a stationary point, where the gradient
vanishes.∇ f (x∗) +

m∑
i=1

λ∗i ∇hi(x∗) +
n∑
j=1

ν∗j ∇gj (x
∗) = 0.

2. Primal feasibility:

hi(x∗) = 0 and gj (x∗) ≤ 0 (∀i = 1, 2, · · · , m; j = 1, 2, · · · , n).
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3. Dual feasibility:
ν∗j ≥ 0 (∀ j = 1, 2, · · · , n).

4. Complementary slackness:

ν∗j gj (x
∗) = 0 (∀ j = 1, 2, · · · , n).

Next, we will use an example to show how to apply the KKT conditions
to solve an optimization problem under inequality constraints.

Example 2.4.2 Compute the distance from a point x0 ∈ Rn to a half-
space wᵀx + b ≤ 0 in the space x ∈ Rn, where w ∈ Rn and b ∈ R are
given.

Similar to Example 2.4.1, we can formulate this problem as the following
constrained optimization problem:

d2 = min
x
‖x − x0‖

2,

subject to
wᵀx + b ≤ 0.

We introduce a Lagrange multiplier ν for the inequality constraint. As
opposed to Example 2.4.1, because this is an inequality constraint, we
have the complementary slackness and dual-feasibility conditions:

ν∗
(
wᵀx∗ + b

)
= 0 and ν∗ ≥ 0.

Accordingly, we can conclude that the optimal solution x∗ and ν∗ must be
one of the following two cases:

(a) wᵀx∗ + b = 0 and ν∗ ≥ 0,

(b) ν∗ = 0 and wᵀx∗ + b ≤ 0.

For case (a), where wᵀx∗ + b = 0 must hold, we can derive from the
stationariness condition in the same way as in Example 2.4.1:

L(x, ν) = ‖x − x0‖
2 + ν

(
wᵀx + b

)
,

∂L(x, ν)
∂x

= 0 =⇒ ν∗ =
2
(
wᵀx0 + b

)
‖w‖2

.

If wᵀx0 + b ≥ 0, corresponding to the case where the half-space does not
contain x0 (see the left side in Figure 2.22), we have ν∗ ≥ 0 for this case.
This leads to the same problem as Example 2.4.1. We can finally derive
d = (wᵀx0 + b)/‖w‖ for this case. However, if wᵀx0 + b < 0, corresponding
to the case where the half-space contains x0 (see the right side in Figure
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Figure 2.22: An illustration of two cases
when computing the distance from a
point x0 to a half-space wᵀx + b ≤ 0:
1. Left: x0 not in the half-space
2. Right: x0 in the half-space

2.22), then we have ν∗ < 0. This result is invalid because it violates the
dual-feasibility condition.

Moreover, let us consider case (b), where ν∗ = 0 and wᵀx∗ + b ≤ 0 must
hold. After substituting ν∗ = 0 into the stationariness condition, we can
derive x∗ = x0 and d = 0 immediately for this case. This is the correct result
for the case where the half-space contains x0 in the right side of Figure
2.22.

Finally, we can summarize these results as follows:

d =

{
wᵀx0+b
‖w‖ if wᵀx0 + b ≥ 0
0 if wᵀx0 + b ≤ 0.

�

2.4.3 Numerical Optimization Methods

For many optimization problems arising from real-world applications, the
analytic methods based on the optimality conditions do not always lead
to a useful closed-form solution. For these practical problems, we have to
rely on numerical methods to derive a reasonable solution in an iterative
fashion. Depending on what information is used in each iteration of these
numerical methods, they can be roughly classified into several categories,
namely, the zero-order, first-order, and second-order methods. In this section,
we will briefly review some common methods from each category but
focus more on the first-order methods because they are the most popular
choices in machine learning. For simplicity, we will use the unconstrained
optimization problem

arg min
x∈Rn

f (x)

as an example to introduce these numerical methods, but many numerical
methods can be easily adapted to deal with constraints. For example, we can project an uncon-

strained gradient into the feasible set for
all first-order methods, leading to the so-
called projected gradient descent method.Zero-Order Methods

The zero-order methods only rely on the zero-order information of the
objective function, namely, the function value f (x). We usually need to
build a coordinate grid for all free variables in f (x) and then use the grid
search strategy to exhaustively check the function value at each point
until a satisfactory solution is found. This method is simple, but it suffers
from the curse of dimensionality because the number of points in a grid
exponentially grows with the number of free parameters. In machine
learning, the zero-order methods are mainly used only for the cases where
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Figure 2.23: An illustration of the gradi-
ent descent method, where two trajecto-
ries indicate two initial points used by the
algorithm.

Figure 2.24: An illustration of how a large
step size may affect the convergence of
the gradient descent method.

we have a small number of variables (less than 10), such as hyperparameter
optimization.

First-Order Methods

The first-order methods can access both the zero-order and the first-order
information of the objective function, namely, the function value f (x) and
the gradient ∇ f (x). As we have learned, the gradient ∇ f (x) points to a
direction of the fastest increase of the function value at x. As shown in
Figure 2.23, starting from any point on the function surface, if we move
a sufficiently small step along the direction of the negative gradient, it is
guaranteed that the function value will be more or less decreased. We can
repeat this step over and over until it converges to any stationary point.
This idea leads to a simple iterative optimization method, called gradient
descent (a.k.a. steepest descent), shown in Algorithm 2.1.

Algorithm 2.1 Gradient Descent Method

randomly choose x(0), and set η0
set n = 0
while not converged do

update: x(n+1) = x(n) − ηn ∇ f (x(n))
adjust: ηn → ηn+1
n = n + 1

end while

Because the gradient cannot tell us how much we should move along the
direction, we have to use a manually specified step size ηn for each move.
The key in the gradient descent method is how to properly choose the step
size for each iteration. If the step sizes are too small, the convergence will
be slow because it needs to run too many updates to reach any stationary
point. On the other hand, if the step sizes are too large, each update may
overshoot the target and cause the fluctuation shown in Figure 2.24. As we
come close to a stationary point, we usually need to use an even smaller
step size to ensure the convergence. As a result, we need to follow a
schedule to adjust the step size at the end of each iteration. When we
run gradient descent Algorithm 2.1 from any starting point x(0), it will
generate a trajectory

{
x(0), x(1), x(2), · · ·

}
on the function surface, which

gradually converges to a stationary point of the objective function. As
shown in Figure 2.23, each trajectory heavily depends on the initial point.
In other words, if we start from a different initial point x(0) at the beginning,
we may eventually end up with a different solution. Choosing a good
initial point is another key factor in ensuring the success of the gradient
descent method.
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The gradient descent method is conceptually simple and only needs to use
the gradient, which can be easily computed for almost any meaningful
objective function. As a result, the gradient descent method becomes a
very popular numerical optimization method in practice. If the objective
function is smooth and differentiable, we can theoretically prove that the
gradient descent algorithm is guaranteed to converge to a stationary point
as long as a sufficiently small step size is used at each iteration (see Exercise
Q2.16). However, the convergence rate is relatively slow (a sublinear rate).
If we want to achieve ‖∇ f (x(n))‖ ≤ ε , we need to run at least O(1/ε2)

iterations. However, if we can make stronger assumptions on the objective
function, such as f (x) is convex and at least twice differentiable and its
derivatives are sufficiently smooth, we can prove that the gradient descent
algorithm is guaranteed to converge to a local minimum x∗ if small enough
steps are used. Under these conditions, the gradient descent method can
achieve a much faster convergence rate (a linear rate). If we want to achieve
‖x(n) − x∗‖ ≤ ε , we just need to run approximately O(ln(1/ε)) iterations.

If a sequence {xk } converges to the limit
x∗: limk→∞ xk = x∗. The rate of conver-
gence is defined as

µ = lim
k→∞

|xk+1 − x
∗ |

|xk − x∗ |
.

The convergence is said to be


superlinear if µ = 0,
linear if 0 < µ < 1,
sublinear if µ = 1.

Example 1: For a sequence of exponen-
tially decaying errors:

|xk − x
∗ | = C ρk ,

where 0 < ρ < 1. We can verify its conver-
gence rate is linear because

µ =
|xk+1 − x

∗ |

|xk − x∗ |
= ρ.

For any error tolerance ε > 0, if we want
to achieve |xk − x∗ | ≤ ε , we have to ac-
cess xk with

k ≥
lnC + ln 1

ε

ln 1
ρ

≈ O
(
ln

1
ε

)
.

Example 2: For another sequence of de-
caying errors:

|xk − x
∗ | =

C
√
k

,

its convergence rate is sublinear as

µ = lim
k→∞

√
k

√
k + 1

= 1.

To achieve |xk − x∗ | ≤ ε , we need

k ≥
C2

ε 2 ≈ O(
1
ε 2 ).

In machine learning, we often need to optimize an objective function that
can be decomposed as a sum of many homogeneous components:

f (x) =
1
N

N∑
i=1

fi(x).

For example, the objective function f (x) represents the average loss mea-
sured on all samples in a training set, and each fi(x) indicates the loss
measure on each training sample. If we use the gradient descent Algo-
rithm 2.1 to minimize this objective function, at each iteration, we need to
go through all training samples to compute the gradient as follows:

∇ f (x) =
1
N

N∑
i=1

∇ fi(x).

If the training set is large, this step is extremely expensive. To address this
issue, we often adopt a stochastic approximation strategy to compute the
gradient, where the gradient is approximated as ∇ fk (x) using a randomly
chosen sample k rather than being averaged over all samples. This idea
leads to the well-known stochastic gradient descent (SGD) method [24],
as shown in Algorithm 2.2.

In Algorithm 2.2, each ∇ fk (x) can be viewed as a noisy estimate of the true
gradient ∇ f (x). Because ∇ fk (x) can be computed in a relatively cheap way
in SGD, we can afford to run much more iterations using a much smaller
step size than in the regular gradient descent method. By doing so, the
SGD algorithm can converge to a reasonable solution, even in a much
shorter training time. Moreover, many empirical results have shown that
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Algorithm 2.2 Stochastic Gradient Descent (SGD) Method

randomly choose x(0), and set η0
set n = 0
while not converged do

randomly choose a sample k
update: x(n+1) = x(n) − ηn ∇ fk (x(n))
adjust: ηn → ηn+1
n = n + 1

end while

small noises in gradient estimation can even help to converge to a better
solution because small noises make the algorithm escape from poor local
minimums or saddle points.

Along these lines, an enhanced SGD version is proposed in Algorithm 2.3,
where the gradient is estimated at each step, not using only a single sample
but from a small subset of randomly chosen samples. Each subset is often
called a mini-batch. The samples in a mini-batch are randomly chosen every
time to ensure all training samples are accessed equally. In Algorithm 2.3,
called mini-batch SGD, we can choose the size of all mini-batches to control
how much noise is injected into each gradient estimation.

Algorithm 2.3 Mini-Batch SGD

randomly choose x(0), and set η0
set n = 0
while not converged do

randomly shuffle all training samples into mini-batches
for each mini-batch B do

update: x(n+1) = x(n) − ηn
|B |

∑
k∈B ∇ fk (x)

|B | denotes the number of samples in B. adjust ηn → ηn+1
n = n + 1

end for
end while

The mini-batch SGD algorithm is a very flexible optimization method
because we can always choose several key hyperparameters properly,
such as the mini-batch size, the initial learning rate, and the strategy to
adjust the learning rate at the end of each step, to make the optimization
process converge to a reasonable solution for a large number of practical
problems. Therefore, the mini-batch SGD is often regarded as one of the
most popular optimization methods in machine learning.
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Second-Order Methods

The second-order optimization methods require the use of the zero-order,
first-order, and second-order information of the objective function, namely,
the function value f (x), the gradient ∇ f (x), and the Hessian matrix H(x).

For a multivariate function f (x), we can use Taylor’s theorem to expand it
around any fixed point x0, as follows:

f (x) = f (x0) +
(
x − x0)

ᵀ∇ f (x0) +
1
2
(
x − x0)

ᵀH(x0)
(
x − x0) + o

(
‖x − x0‖

2) .
We first compute the gradient as

∇ f (x) =
∂ f (x)
∂x

= ∇ f (x0) +H(x0)
(
x − x0).

Then we vanish the gradient ∇ f (x) = 0:

∇ f (x0) +H(x0)
(
x − x0) = 0

=⇒ x∗ = x0 −H−1(x0)∇ f (x0).

If we ignore all high-order terms, we can derive the stationary point by
vanishing the gradient x∗, as follows:

∇ f (x) =
∂ f (x)
∂x

= 0 =⇒ x∗ = x0 −H−1(x0) ∇ f (x0).

If f (x) is a quadratic function, no matter where we start, we can use this
formula to derive the stationary point in one step. For a general objective
function f (x), we can still use the updating rule

x(n+1) = x(n) −H−1(x(n)) ∇ f (x(n))

in an iterative algorithm, as in Algorithm 2.1, which leads to the Newton
method. If the objective function is convex and at least twice differentiable
and its derivatives are sufficiently smooth, the Newton method is guaran-
teed to converge to a local minimum x∗, and it can achieve a superlinear rate.
If we want to achieve ‖x(n) − x∗‖ ≤ ε , we just need to run approximately
O(ln ln(1/ε)) iterations.

The Newton method is fast in terms of how many iterations are needed
to converge. However, each iteration in the Newton method is actually
extremely expensive because it involves computing, maintaining, and
even inverting a large Hessian matrix. In most machine learning problems,
it is impossible to handle the Hessian matrix because we usually have a
large number of free variables in x. This is why the Newton method is
seldom used in machine learning. Alternatively, there are many approx-
imate second-order methods, called quasi-Newton methods, that aim to
approximate the Hessian matrix in certain ways (e.g., using some diago-
nal or block-diagonal matrices to approximate the real Hessian so as to
make matrix inversion possible in the updating formula). The popular
quasi-Newton methods include the DFP [65], the BFGS [65], Quickprop
[60], and the Hessian-free method [175, 160].
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Exercises

Q2.1 Given two matrices, A ∈ Rm×n and B ∈ Rm×n, prove that

tr(AᵀB) = tr(ABᵀ) = tr(BAᵀ) = tr(BᵀA) =
m∑
i=1

n∑
j=1

ai jbi j ,

where ai j and bi j denote an element in the matrices A and B, respectively.

Q2.2 For any two square matrices, X ∈ Rn×n and Y ∈ Rn×n, show that

a. tr(XY) = tr(YX), and
b. tr(X−1YX) = tr(Y) if X is invertible.

Q2.3 Given two sets of m vectors, xi ∈ Rn and yi ∈ Rn for all i = 1, 2, · · · , m, verify that the summations∑m
i=1 xix

ᵀ
i and

∑m
i=1 xiy

ᵀ
i can be vectorized as the following matrix multiplications:

m∑
i=1

xix
ᵀ
i = XXᵀ and

m∑
i=1

xiy
ᵀ
i = XYᵀ,

where X =
[
x1 x2 · · · xm

]
∈ Rn×m and Y =

[
y1 y2 · · · ym

]
∈ Rn×m.

Q2.4 Given x ∈ Rn, z ∈ Rm, and A ∈ Rm×n (m < n),

a. prove that zᵀAx = tr
(
x zᵀA

)
,

b. compute the derivative (∂/∂x) ‖z −Ax‖2, and
c. compute the derivative (∂/∂A) ‖z −Ax‖2.

Q2.5 For any matrix A ∈ Rn×n, if we use ai (i = 1, 2, . . . , n) to denote the ith column of the matrix A and use
gi j = | cos θi j | = |ai · aj |/(‖ai ‖‖aj ‖) to denote the absolute cosine of the angle θi j between any two vectors
ai and aj (for all 1 ≤ i, j ≤ n), show that

∂

∂A

( n∑
i=1

n∑
j=i+1

gi j

)
= (D −B)A,

where D is an n × n matrix with its elements computed as di j = sign(ai · aj )/(‖ai ‖‖aj ‖) (1 ≤ i, j ≤ n), and
B is an n × n diagonal matrix with its diagonal elements computed as bii = (

∑
j=1 gi j )/‖ai ‖2 (1 ≤ i ≤ n).

Q2.6 Consider a multinomial distribution of m discrete random variables as follows:

Pr(X1 = r1, X2 = r2, . . . , Xm = rm) = Mult
(
r1, r2, . . . , rm

�� N , p1, p2, . . . , pm
)

=
N !

r1! r2! · · · rm!
pr1

1 pr2
2 · · · prmm

a. Prove that the multinomial distribution satisfies the sum-to-1 constraint
∑

X1,· · · ,Xm
Pr(X1 = r1, X2 =

r2, · · · , Xm = rm) = 1.
b. Show the procedure to derive the mean and variance for each Xi (∀i = 1, 2, . . . , m) and the covariance

for any two Xi and Xj (∀i, j = 1, 2, . . . , m).
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Q2.7 Assume m continuous random variables {X1, X2, . . . , Xm} follow the Dirichlet distribution as follows:

Dir
(
p1, p2, · · · , pm

�� r1, r2, . . . , rm
)
=
Γ(r1 + · · · + rm)
Γ(r1) · · · Γ(rm)

pr1−1
1 × pr2−1

2 × · · · × prm−1
m .

Derive the following results:

E[Xi] =
ri
r0

var(Xi) =
ri(r0 − ri)
r2

0 (r0 + 1)
cov

(
Xi , Xj

)
= −

rirj
r2

0 (r0 + 1)
,

where we denote r0 =
∑m

i=1 ri .
Hints: Γ(x + 1) = x · Γ(x).

Q2.8 Assume n continuous random variables {X1, X2, · · · , Xn} jointly follow a multivariate Gaussian distribu-
tion N(x | µ, Σ).

a. For any random variable Xi (∀i), derive its marginal distribution p(Xi).
b. For any two random variables Xi and Xj (∀i, j), derive the conditional distribution p(Xi |Xj ).
c. For any subset of these random variables S, derive the marginal distribution for S.
d. Split all n random variables into two disjoint subsets S1 and S2, and then derive the conditional

distribution p(S1 |S2).

Hints: Some identities for the inversion and determinant of a symmetric block matrix, where Σ11 ∈ Rp×p ,
Σ12 ∈ Rp×q , Σ22 ∈ Rq×q , are as follows:[

Σ11 Σ12
Σ
ᵀ
12 Σ22

]−1

=

[
Σ−1

11 −NM−1Nᵀ −NM−1

−
(
NM−1)ᵀ M−1

]
����� [Σ11 Σ12
Σ
ᵀ
12 Σ22

] ����� = ��Σ11
�� ��M��,

where M =
(
Σ22 − Σ

ᵀ
12Σ
−1
11Σ12

)
, and N = Σ−1

11Σ12.

Q2.9 Assume a random vector x ∈ Rn follows a multivariate Gaussian distribution (i.e., p(x) = N
(
x
�� µ, Σ

)
).

If we apply an invertible linear transformation to convert x into another random vector as y = Ax + b
(A ∈ Rn×n and b ∈ Rn), prove that the joint distribution p(y) is also a multivariate Gaussian distribution,
and compute its mean vector and covariance matrix.

Q2.10 Show that any two random variables X and Y are independent if and only if any one of the following
equations holds:

H(X ,Y ) = H(X) + H(Y )

H(X |Y ) = H(X)

H(Y |X) = H(Y )
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Q2.11 Show that mutual information satisfies the following:

I(X ,Y ) = H(X) − H(X |Y )

= H(Y ) − H(Y |X)

= H(X) + H(Y ) − H(X ,Y ).

Q2.12 Assume a random vector x =
[

x1
x2

]
follows a bivariate Gaussian distribution: N(x | µ,Σ), where µ =[

µ1
µ2

]
is the mean vector and Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
is the covariance matrix. Derive the formula to

compute mutual information between x1 and x2 (i.e., I(x1, x2)).

Q2.13 Given two multivariate Gaussian distributions: N(x | µ1,Σ1) and N(x | µ2,Σ2), where µ1 and µ2 are the
mean vectors, and Σ1 and Σ2 are the covariance matrices, derive the formula to compute the KL divergence
between these two Gaussian distributions.

Q2.14 Prove Theorems 2.4.1, 2.4.2, and 2.4.3.

Q2.15 Compute the distance of a point x0 ∈ Rn to

a. the surface of a unit ball: ‖x‖ = 1;
b. a unit ball ‖x‖ ≤ 1;
c. an elliptic surface xᵀAx = 1, where A ∈ Rn×n and A � 0; and
d. an ovoid xᵀAx ≤ 1, where A ∈ Rn×n and A � 0.

Hints: Give a numerical procedure if no closed-form solution exists.

Q2.16 Assume a differentiable objective function f (x) is Lipschitz continuous; namely, there exists a real constant
L > 0, and for any two points x1 and x2,

�� f (x1) − f (x2)
�� ≤ L ‖x1 − x2‖ always holds. Prove that the gradient

descent Algorithm 2.1 always converges to a stationary point, namely, limn→∞ ‖∇ f (x(n))‖ = 0, as long as
all used step sizes are small enough, satisfying ηn < 1/L.
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