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67084 Strasbourg Cedex, France
e-mail: bugeaud@math.u-strasbg.fr

(Received 21 June, 2001; accepted 8 March, 2002)

Abstract. Let α be an irrational number. We determine the Hausdorff dimension
of sets of real numbers which are close to infinitely many elements of the sequence
({nα})n ≥ 1.
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1. Introduction. Let α be an irrational real number. It is a well-known fact that,
if {·} denotes the fractional part, the sequence ({nα})n≥1 is uniformly distributed in
[0, 1]. In their book, Bernik & Dodson [4, p. 105] consider sets of real numbers which
are close to infinitely many elements of it. They prove that, for any v > 1, the Hausdorff
dimension of the set

Vv(α) :=
{
ξ ∈ R : ‖nα − ξ‖ <

1
nv

holds for infinitely many n ∈ N
}

satisfies

1
wv

≤ dim Vv(α) ≤ 1
v
, (1)

where w ≥ 1 is any real number for which we have

‖nα‖≥ 1
nw

(2)

for all sufficiently large integers n. Here, and in the sequel, ‖ · ‖ denotes the distance to
the nearest integer.

The upper bound in (1) is a straightforward consequence of the Borel–Cantelli
lemma, while the lower bound depends on precise estimates for the discrepancy of
the sequence ({nα})n≥1. A metrical result of Khintchine asserts that for almost all real
numbers α (in the sense of the Lebesgue measure) inequality (2) is satisfied for any
w > 1 and any n sufficiently large, in terms of α and w. Thus, it immediately follows
from (1) that dim Vv(α) = 1/v for almost all real numbers α. However, (1) provides no
non-trivial lower bound when α is a Liouville number, and is also weak when α is well
approximable by rational numbers.

The purpose of the present note is to prove that the exact value of the Hausdorff
dimension of Vv(α) equals 1/v, and thus does not depend on α. We also discuss a
natural generalization of these sets.
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2. Statement of the result. Our main result provides the exact value of the
Hausdorff dimension of the sets Vv(α).

THEOREM 1. Let α be an irrational real number and let v > 1 be real. Then we have

dim Vv(α) = 1
v
.

The proof of Theorem 1 depends on the notion of regular system, first introduced
by Baker & Schmidt [2] (see also [4, p. 99]). Here, and in the sequel, we denote by |I|
the length of a bounded real interval I .

DEFINITION 1. Let I be a real interval. Let Γ be a countable set of real numbers
in I and N : Γ → R be a positive function. The pair (Γ ,N ) is called a regular system
if there exists a positive constant c1 = c1(Γ ,N ) with the following property: for any
bounded interval J ⊂ I , there exists a positive number K0 = K0(Γ ,N , J) such that, for
any K ≥ K0, there are γ1, . . . , γt in Γ ∩ J such that

N (γj) ≤ K, |γj − γk| ≥ K−1 (1 ≤ j < k ≤ t)

and

t ≥ c1|J|K.

Baker & Schmidt have shown that, for any integer n ≥ 1, the set Γ n of real algebraic
numbers of degree less than or equal to n, together with a suitable function Nn, is a
regular system. This enabled them to determine the exact Hausdorff dimension of sets
of real numbers close to infinitely many algebraic numbers of degree less than or equal
to n.

However, to get their final result, it would have been sufficient to show that (Γ n,
Nn) is a weakly regular system, a concept introduced by Rynne [9, Definition 4].

DEFINITION 2. Let I be a real interval. Let Γ be a countable set of real numbers
in I and N : Γ → R be a positive function. The pair (Γ ,N ) is called a weakly regular
system if there exist a strictly increasing sequence of positive integers (Kr)r≥1 and a
positive constant c2 = c2(Γ ,N ) with the following property: for any bounded interval
J ⊂ I , there exists a positive number r0 = r0(Γ ,N , J) such that, for any r ≥ r0, there are
γ1, . . . , γt in Γ ∩ J such that

N (γj) ≤ Kr, |γj − γk| ≥ K−1
r (1 ≤ j < k ≤ t) (3)

and

t ≥ c2|J|Kr.

For our purpose, this is a crucial remark. Indeed, we shall establish that, for
any irrational real number α, the sequence ({nα})n≥1 together with the function Nλ :
{nα} 	→ max{(n − 5)/3, 1} is a weakly regular system.

REMARK 1. It follows from a theorem of Cassels [6] that, for any real irrational α

and for any real ξ /∈ Z + αZ, the inequality

‖nα − ξ‖<
1
n
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holds for infinitely many n ∈ N. A trivial consequence is that the set

V1(α) :=
{
ξ ∈ R : ‖nα − ξ‖<

1
n

holds for infinitely many n ∈ N
}

has full Lebesgue measure. A natural problem is then to replace the function n 	→ n−v

occurring in the definition of the sets Vv(α) by any decreasing positive function Ψ and
to consider the set

VΨ (α) := {ξ ∈ R : ‖nα − ξ‖< Ψ (n) holds for infinitely many n ∈ N}.

It easily follows from the Borel–Cantelli lemma that the Lebesgue measure of VΨ (α)
is zero whenever the series

∑
n≥1 Ψ (n) converges. However, is it possible to provide

a nontrivial lower bound for the Lebesgue measure of VΨ (α) ∩ [0, 1] when the series∑
n≥1 Ψ (n) diverges?

It seems to us that the answer to this question heavily depends on α, and, more
precisely, on the partial quotients in the continued fraction expansion of α. For instance,
when α has bounded partial quotients, one can prove that there exists a constant c > 0
such that the infinite sequence (Nr)r≥1 of integers satisfying (4) below is such that
Nr+1 ≤ cNr for any r ≥ 1. Arguing then as in the proof of Theorem 2 of Beresnevich [3],
one can give an affirmative answer to our question, by showing that the set VΨ (α) has
full Lebesgue measure whenever the series

∑
n≥1 Ψ (n) diverges. Moreover, Theorem 3

of [5] yields the generalized Hausdorff measure of the set VΨ (α) when the series∑
n≥1 Ψ (n) converges. However, we suspect that these results are no longer true for a

general irrational α.

REMARK 2. Dodson [7] and Levesley [8] have determined the Hausdorff dimension
of two sets which are closely related to Vv(α). Namely, for any v ≥ 1, they have,
respectively, established that

dim{(α, ξ ) ∈ R2 : ‖nα − ξ‖< n−v holds for infinitely many n ∈ N} = 1 + 2
v + 1

and, for any given real number ξ , that

dim{α ∈ R : ‖nα − ξ‖< n−v holds for infinitely many n ∈ N} = 2
v + 1

,

which can be viewed as a ‘dual’ form of Theorem 1. The difference in the Hausdorff
dimension of Vv(α) is interesting to notice.

The above-quoted results of Dodson and Levesley are special cases of general
theorems for systems of linear forms. In a further work, we plan to study whether the
approach followed here can be extended to simultaneous approximation and to linear
forms.

3. Proof. Let α be an irrational real number and set Γ := ({nα})n≥1. Denote by
N the function defined on Γ by

N (nα) = max
{

n − 5
3

, 1
}
.
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Our aim is to prove that (Γ ,N ) is a weakly regular system. Then, in order to get
Theorem 1, it suffices to apply Theorem 3.2 of [9] (whose proof is similar to that of
Lemma 1 of [2]), which we quote as Proposition 1.

PROPOSITION 1. Suppose that the system (Γ ,N ) is weakly regular and denote by
(Kr)r≥1 the sequence occurring in Definition 2. Let Ψ : R>0 → R>0 be a decreasing function
with limx→∞ Ψ (x) = 0. Assume that Ψ (Kr) ≤ 1/(2Kr) for large r and let δ be the supremum
of the set of δ′ for which

lim sup
r→∞

KrΨ (Kr)δ
′ = ∞

holds. Then the Hausdorff dimension of the set

{ξ ∈ R : ‖ξ − γ ‖< Ψ (N (γ )) holds for infinitely many γ ∈ Γ }
is at least equal to δ.

Let us now prove that (Γ ,N ) is a weakly regular system. Let N ≥ 12 be an integer.
The well-known Three Distance Theorem (see for instance [11], [10] or [1](∗) ) asserts
that the points {α}, {2α}, . . . , {Nα} divide the interval [0, 1] in N + 1 intervals, denoted
by I1, . . . IN+1, whose lengths take at most three distinct values, one of these being
the sum of the two others. Denoting the three values by d1(N), d2(N), d3(N), where
d1(N) < d2(N) < d3(N), one has

d3(N + 1) = d3(N), d2(N + 1) = d2(N), d1(N + 1) = d1(N),

or

d3(N + 1) = d2(N), d2(N + 1) = d2(N) − d1(N), d1(N + 1) = d1(N),

or

d3(N + 1) = d2(N), d2(N + 1) = d1(N), d1(N + 1) = d2(N) − d1(N), (4)

according as d2(N) < 2d1(N) or not. Since α is irrational, (4) holds for infinitely many
values of N. For each of these values, we have d2(N) < 2d1(N), thus

d3(N) = d2(N) + d1(N) < 3d1(N).

Consequently, there are infinitely many integers N such that d3(N) < 3d1(N). For such
values of N, any closed subinterval of [0, 1] of length d3(N) contains at least one of
the points {α}, {2α}, . . . , {Nα}. Further, since the sum of the lengths of the intervals Ij,
1 ≤ j ≤ N + 1, is equal to 1, we get

1 ≥ (N + 1)d1(N) ≥ N + 1
3

d3(N),

whence

d3(N) ≤ 3
N + 1

. (5)

(∗) There is a misprint in the statement of the Three Distance Theorem in [1]: ηk is the smallest length, not
the largest one.
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Denote by (Nr)r ≥ 1 the strictly increasing sequence of integers N ≥ 12 satisfying (4),
and thus (5). For any r ≥ 1, let Kr be the greatest even integer smaller than (Nr + 1)/3. We
divide the interval [0,1] into the Kr intervals Jm := [m/Kr, (m + 1)/Kr], for 0 ≤ m < Kr.
By (5) and the definition of Kr, for any integer 1 ≤ m ≤ Kr/2, there exist βm ∈ J2m−1 and
1 ≤ j ≤ Nr such that βm = {j α}. Now, we see that the Kr/2 points β1, . . . βKr/2 satisfy
|βj − β�| ≥ 1/Kr whenever 1 ≤ j < �≤ Kr/2. Recall that we have defined the function N
on Γ by

N ({nα}) = max
{

n − 5
3

, 1
}
.

We observe that N (βm) ≤ Kr for any 1 ≤ m ≤ Kr/2.
Further, let J be a subinterval of [0, 1]. Let r be a positive integer such that

Kr ≥ 12|J|−1, (6)

and denote by r0(J) the smallest positive integer with this property. At least
A := |J|Kr/2 − 2 intervals J2m−1 with 1 ≤ m ≤ Kr/2 are completely included in J. By
(6), we get

A ≥ 1
3
|J|Kr,

whence at least |J|Kr/3 numbers among {α}, . . . , {Nrα} belong to J. Denoting these
numbers by γ1, . . . , γt, we have N (γj) ≤ Kr and |γj − γ�| ≥ 1/Kr whenever 1 ≤ j < �≤ t,
as was already noticed above. Consequently, for any interval J in [0, 1] and any integer
r ≥ r0(J), there are at least |J|Kr/3 elements of Γ ∩ J satisfying (3). Since (Kr)r≥1

contains a strictly increasing subsequence, this proves that (Γ ,N ) is a weakly regular
system.

Let v > 1 and ε > 0. By applying Proposition 1 to (Γ ,N ) with the function
Ψ : x 	→ x−v−ε, we obtain that dim Vv(α) ≥ 1/(v + ε). Since ε can be arbitrarily small,
we then have dim Vv(α) ≥ 1/v, as claimed.

As was kindly pointed out to me by the referee, the original form of ubiquity
(see [9] for the definition) gives the lower bound for the Hausdorff dimension of
Vv(α) straightforwardly, once the inequality (5) for infinitely many positive integers
is established. Namely, the {nα}, n ≥ 1, are the resonant points, and, for each
integer N ≥ N1, the ‘ubiquity’ function λ may be defined by λ(N) = 3/(Nr + 1), where
Nr ≤ N < Nr+1. The desired result follows then from [9, Theorem 2.1].
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