A note on the zeros of the Bessel function

By R. Wilson.

(Received 2nd August, 1938. Read 4th November, 1938.)
This note contains an elementary proof of the well-known result that every solution of Bessel's equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0 \tag{1}
\end{equation*}
$$

with a real parameter n has an infinite number of real positive zeros.
We first make the substitution $y=\sqrt{\left(\frac{2}{\pi x}\right) u}$ in (1), to remove the first derivative, giving

$$
\begin{equation*}
u^{\prime \prime}+\left[1+\left(\frac{1}{4}-n^{2}\right) / x^{2}\right] u=0 . \tag{2}
\end{equation*}
$$

This equation approximates, for x sufficiently large, to the form $u^{\prime \prime}+u=0$ associated with the circular functions. In fact, when $n^{2}=\frac{1}{4}$, the solutions of (1) may be written

$$
J_{-\frac{1}{2}}(x)=\sqrt{\left(\frac{2}{\pi x}\right) \cos x, \quad J_{\frac{1}{2}}(x)=\sqrt{\left(\frac{2}{\pi x}\right) \sin x .}}
$$

We employ the simple methods used by Bôcher ${ }^{1}$ in his studies of the Sturm-Liouville equation to exploit these facts.

Suppose first that $n^{2}-\frac{1}{4}<0$, and consider the equation

$$
\begin{equation*}
v^{\prime \prime}+v=0 \tag{3}
\end{equation*}
$$

The solutions of this equation are of the form $A \cos (x+a)$ and the zeros are at intervals of π. Let x_{1}, x_{2} be two consecutive positive zeros of $v(x)$. Multiplying (2) by v and (3) by u, and subtracting, we get

$$
\frac{d}{d x}\left(u^{\prime} v-u v^{\prime}\right)=u^{\prime \prime} v-u v^{\prime \prime}=\left(n^{2}-\frac{1}{4}\right) \frac{u v}{x^{2}}
$$

or

$$
\begin{equation*}
\left[u^{\prime} v-u v^{\prime}\right]_{x_{1}}^{x_{2}}=-\left(\frac{1}{4}-n^{2}\right) \int_{x_{1}}^{x_{2}} u v \frac{d x}{x^{2}} . \tag{4}
\end{equation*}
$$

Two cases are possible: either $v(x)$ is positive between x_{1} and x_{2} with $v^{\prime}\left(x_{1}\right)>0$ and $v^{\prime}\left(x_{2}\right)<0$ or $v(x)$ is negative between x_{1} and x_{2} with $v^{\prime}\left(x_{1}\right)<0$ and $v^{\prime}\left(x_{2}\right)>0$.

[^0]Let us assume that $u(x)$ does not vanish between x_{1} and x_{2}. Then, from (4), in the first case the left-hand side has the same sign as $u(x)$ while the right-hand side has the opposite sign to that of $u(x)$. This contradiction shows that $u(x)$ must vanish at least once between x_{1} and x_{2}. In the second case the left-hand side has the sign of $-u(x)$ while the right-hand side has the sign of $u(x)$, again leading to a contradiction.

Next suppose that $n^{2}-\frac{1}{4}>0$, and consider the equation

$$
\begin{equation*}
v^{\prime \prime}+\left[1-\left(n^{2}-\frac{1}{4}\right) / k^{2}\right] v=0 \tag{5}
\end{equation*}
$$

in which $k^{2}>\left(n^{2}-\frac{1}{4}\right)$. The solutions of this equation have their zeros separated by intervals of $\pi k / \sqrt{ }\left(k^{2}-n^{2}+\frac{1}{4}\right)$. Applying to (2) and (5) the same treatment as before, we get

$$
\left[u^{\prime} v-u v^{\prime}\right]_{x_{1}}^{x_{2}}=-\left(n^{2}-\frac{1}{4}\right) \int_{x_{1}}^{x_{2}} u v\left(\begin{array}{c}
1 \tag{6}\\
k^{2}
\end{array}-\frac{1}{x^{2}}\right) d x
$$

and, provided that $x_{2}>x_{1}>k>0$, the same argument holds as before.
Thus, the real positive zeros of the solutions of (1) and (2) are at least as numerous as those of a cosine function.

Reverting to the case in which $n^{2}-\frac{1}{4}<0$ and making assumptions on $u(x)$ similar to those made on $v(x)$ (following (4)), we can now use (2), (5) and (6) to show that, for x sufficiently large, $v(x)$ vanishes at least once between every pair of consecutive zeros of $u(x)$.

Similarly, we can use (2), (3) and (4) to obtain the same result when $n^{2}-\frac{1}{4}>0$.

The zeros of (5) occur with less frequency than those of (2), when $n^{2}-\frac{1}{4}>0$ and more frequently when $n^{2}-\frac{1}{4}<0$, but, by taking k sufficiently large we can make the period of the solutions of (5) as near to 2π as we like. From this and the remarks following (6) we see that the real and positive zeros of any solution of (1) approximate to those of $\cos (x+\alpha)$, for x sufficiently large, a matter indicated by the nature of the asymptotic expansion ${ }^{1}$ of $J_{n}(x)$.

[^1]
University College,

 Swansea.
[^0]: ${ }^{1}$ M. Bôcher, Leçons sur les Méthodes de Sturm (Paris, 1917), Ch. III. and IV.

[^1]: ${ }^{1}$ T. M. MacRobert, Spherical Harmonics (London, 1927), 274.

