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Abstract
Results concerning a class of lacunary sets are generalized from compact
abelian to compact nonabelian groups. This class was introduced for compact
abelian groups by Bozejko and Pytlik; it includes thep-Sidon sets of Edwards
and Ross. A notion of test family is introduced and is used to give necessary
conditions for a set to be lacunary. Using this, it is shown that y<B(2) has
no infinite p-Sidon sets for

Subject classification (Amer. Math. Soc. (MOS) 1970): 42 A 44, 43 A 14.

1. Introduction

In the recent literature there has been considerable interest in the existence of
certain types of lacunary or "thin" subsets of the dual objects of compact non-
abelian groups, since in the abelian case, these have proved to be a useful tool.
But the results have been disappointing; many well-behaved non-abelian groups,
even compact connected Lie groups, can fail to have infinite central Sidon sets in
their dual object (Price, 1971; Rider, 1972).

Bozejko and Pytlik (1972), in the case of an abelian group, provided a unifying
concept for lacunary sets (their sets of type Sp g and S%tQ include most types of
lacunary sets previously considered) and at the same time introduced some a
priori new families of lacunary sets. Edwards and Ross (1974) show that some of
their families are strictly larger than previously known famines of lacunary sets,
but only for the abelian case. So it is natural to enquire whether their ideas give
any interesting results in the non-abelian case.

This article is the first of a series in which I shall consider this question. In later
articles I shall be principally interested in results for compact connected Lie
groups—here I shall deal mostly with the case of an arbitrary compact group.

Closer examination of Bozejko and Pytlik (1972) shows that many of the
results therein (in particular Theorems 1 and 2) have straightforward generali-
zations to the non-abelian case—I summarize these in Section 3. Section 4 is
devoted to central and local central analogues of these sets (cf. Parker (1972)).
In Section 5, I consider ^-Sidon and central #-Sidon sets, giving a generalization
of the theorem that a Sidon set is A(p) for all p > 1. Section 6 contains some
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necessary conditions for a set to be of type A(p,q) in terms of the hypergroup
structure on the dual. In particular, the notion of a test family is extended from the
abelian case. This yields an improvement to a theorem of Benke (1974), and as an
application, it is shown that Sftf£(2) has no infinite /7-Sidon sets for 1 ^p < 2.

I remark here that there are many interesting questions left unanswered by this
article. For example, the method of Cecchini (1972) for showing that the dual
objects of compact Lie groups admit no infinite local central A(4) sets has no
extension to sets of type A(p,q), and other methods have to be developed. Rider's
proof (1972) that compact connected semi-simple Lie groups have no infinite
central Sidon sets appears to admit no generalization to central p-Sidon sets
(1 <p<2). I shall deal with these questions in future articles.

2. Notation

R denotes the set of real numbers. If pe[l,co], p'e[l,co] is such that
O//0+ 0 / P ' ) = !• Unless specified otherwise, G will be a compact Hausdorff group
with Haar measure AG. The symbol LP(G) (1 ^p < oo) will denote the usual
Z,p-spaces, C(G) the continuous functions, T(G) the trigonometric polynomials on
G, M(G) the space of Radon measures on G. If A c M(G), ZA will denote the
convolution centre of A. The dual object of G, denoted 2, is a maximal set of
pairwise inequivalent irreducible representations. For a e S , let da denote the
degree of a, X(r the character of a. If a, rj e 2 we may write x* Xv = 2g 6 s «*-,(0 • x&
corresponding to the decomposition of the tensor product o®i), where nan{Q is
a positive integer. The (finite) support of nan is written ax-q. For any ./?££, let
^(R) (1 ^p < oo) be the spaces introduced in Section 28 of Hewitt and Ross (1972).
2££v(IC) is the set of elements of&p(R) which commute with every element of£*(R)
under multiplication. Note that 2£gv(R) = {A e&*(R)\ for oeR, Aa is a multiple
of the identity}; the map (aa Ida~} \-^-d%". aa is an isometric isomorphism of 3£SP{K)
onto 1*>(R). For neM(G), /xe^°°(2), defined by £(</) = lo5{x)dlx(x), is its Fdurier
transform. If A £ M(G), R^ 2, AR = {p. e A | /x(er) = 0 for a $ R}.

Further clarification of these concepts may be found in Hewitt and Ross (1972),
as may any unexplained notation or terminology.

3. Definitions and elementary properties; sets of type V(p,q) and A(p,q)

(3.1) DEFINITION. Let G be a compact group, / J s S , and suppose p,qe[l,co].
Then R is of type V(p,q) if

(i) there exists K S R such that for all feTR(G),

R is of type A(p,q) if
(ii) there exists #ceR such that for all feTR(G),
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For typographical and historical reasons, I have preferred to alter the notation
of Bozejko and Pytlik (1972). The correspondence is given by

R is of type Spq if and only if R is of type V(p',q');

tf is of type 5* g if and only if R is of type A(p', q').

Notice that for p > 2, R is of type A(p) if and only if R is of type A(p, 2), and
also that R is of type A(2) if and only if there exists p > 2 such that R is of type
V(p, 2). Every set of type A(p) (p < 2) is also of type V(oo,p).

The proofs of the following theorems may safely be left to the reader familiar
with Bozejko and Pytlik (1972), Edwards and Ross (1974) and Section 37 of
Hewitt and Ross (1972).

(3.2) THEOREM. Let G be a compact group, p,qe[l,co], qj^ 1, and suppose that
.RsS. The following propositions are pairwise equivalent:

(0 R is of type V{p,q).
(ii) There is *eR such that for all feCB(G) (or LB'(G)), / e ^ ( S ) and

(iv) (Z,P) |̂B2<f«(/?) (or «fo(i?) ifp =\andq = oo).

(3.3) THEOREM. Let G be a compact group, p,qe[\,<x>], pj^co, and suppose that
s 2 . The following statements are pairwise equivalent:

(0 R is of type A(p,q).
(ii) There is KER such that for allfeCR(G) (or Z,g(G)),/e<f9(S) implies that

l
(Hi) (only for p^ 1). There is xeR such that for allveM(G), ve£9(R) (or «?0(2?)

ifq = oo) implies that veU>(G) and ||v||p</c||i5||g.

(v) (D>T\R^#*(R) (ifp = \
Ifp = oo, one has that (i) implies (iv) and that (iv) and (v) are equivalent.
Various other equivalent statements are available in certain cases (for example,

for p = 1 or oo in (3.2)).

(3.4) REMARKS. The above theorems show that every set of type A(p, q) is also
of type V(p, q). It is clear also that each type is hereditary, that is, a subset of a
set of type V(p,q) or A(p,q) is of the same type. Furthermore, it is easily seen that
if Px^P, qi^q then every set of type V(p,q) (respectively A(p,q)) is also of type
*Xft.»ft) (respectively A(p1,q1)).

Of course, for many values of (p,q) the class of sets of type V(p,q) is trivial;
either it includes all subsets of £ or it includes only finite sets (which are clearly of
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type V(p,q) for all (p,q)). A consequence of the Hausdorff-Young inequality is
that every subset of 2 is of type A(p,p') for all 2^p<oo. Also note here that the
preceding theorems show 2 to be of type V(p,q) if and only if 2 is of type A(p,q).

4. Central and local central sets

(4.1) DEFINITION. Following Parker (1972), I shall say that i ? s 2 is of type
central V(p,q) if (3.1)(i) holds for all feZTR(G). R is of type local central V(p,q)
if (3.1) (i) holds as/runs through all irreducible characters of G. In a similar way,
one defines sets of type central A(p,q) and local central A(p,q).

(4.2) REMARKS. Analogues of Theorems (3.2) and (3.3) hold for sets of type
central V(p,q) and central A(p,q) (one replaces, in the statements, T(G), C(G),
D>(G), M(G) and S*(2) by ZT(G), ZC(G), ZU>(G), ZM(G) and ^T^(G)). Again,
the proofs are similar to those of Bozejko and Pytlik (1972), using Lemma 1.1 of
Parker (1972) where necessary. It is clear that R is of type V(p,q) implies that R
is of type central V(p,q) and this implies that R is of type local central V(p,q),
and similarly for type A(p,q).

(4.3) LEMMA. Let ae 2.

(ii)

PROOF. Let r e 2 . Then

0 if a £ T.

Hence \\x\\q = ^2-*>/a = rfJ.-2/«\ The statement (ii) follows from (i) by the
Hausdorff-Young inequality and its converse.

(4.4) PROPOSITION. (i) 2 is of type local central V(\,q)for allqe[l,oo].
(ii) Suppose thatp e ] 1,2], q e ]2, oo] andp >q'. Then ifRs 2 is of type local central

V(p,q), sup {da\aeR}< oo. Further, if R is of type central V(p,q), R is finite.
(Hi) Suppose that qe[l,oo]. Then if i ? s 2 is of type local central A(co,q),

sup {d^l a eR}<oo. If R is of type central A(oo, q), R is finite.

PROOF. By (4.3) (i),sup{||^||9-/||x<rL|<T£S}<sup{rf-2/«|c7e2}<l. This proves
(i). To show (ii), first notice that if R is of type local central V(p,q) for/»<2, then

aeR}<oo. By (4.3) (ii), this implies that

and so either p^q' or sup{da\aeR}<co.
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Suppose now that R is in infinite set of type central A(p,q)(p^2,p>q'). Then
sup {da\ oeR}<co,so by Theorem 2.4 and Corollary 3.4 of Parker (1972), we may
assume that R is of type central A(p'). Then ZE*(R) 2 (ZLgT = (ZZ.|T = Z£\R).
This implies that R is finite or that q < 2. The latter is impossible.

(iii) is similar, except that one uses the fact that any infinite set of uniformly
bounded degree contains an infinite central Sidon set (see Parker (1972), Corollary
3.4).

(4.5) REMARK. Suppose that q e ]2, oo], p e ]1,2], and suppose that R is an infinite
set of type central V(p,q). Then the argument of (ii) shows that R contains no
infinite set of type central A(p'). If G is abelian, every infinite set contains such a
subset. However, in the nonabelian case, not every infinite set need contain an
infinite central A(p') set (Cecchini (1972), Theorem 3; Rider (1972), Example 1).

5. Some results on g-Sidon sets

Sets of type (central) V(\,q') are said to be (central) q-Sidon sets. These sets were
discussed for G abelian by Edwards and Ross (1974) and L.-S. Hahn. By the
Hausdorff-Young inequality, £ is #-Sidon for all q^2. Hence I shall consider
only l^q<2. (Central) 1-Sidon sets are (central) Sidon sets.

(5.1) THEOREM. Let # s S be q-Sidon. Then
(0 R is of type V(<x>,2q/Oq-2)).
(ii) R is of type A(r,2q/(3q — 2))for all re[l,oo[; in fact there is KGR such that

for allfe T^G) and for every re [I, co[, ||/||r < Kr* ||/||29/(3a_2).

PROOF, (i) is proved as in Theorem 2.1 of Edwards and Ross (1974). The proof
relies on the fact that JK(C(G), <?«(£)) = gwu-a (£).

A version of (ii) for abelian groups is proved by Bozejko and Pytlik (1972),
Theorem 2. Using methods of Figa-Talamanca and Rider (1966), I shall indicate
how to extend this proof to the non-abelian case.

Let <S = n ^ u ^ W r ) ; let/eTfl(G), and 0<a< 1. Define

C: (x, W)^ 2
ireK

Note that for We<g, a^W*|/(a)|ae<%„(£). Since R is tf-Sidon, there exists «
(independent of/) and there exists gweL\G) (depending on / ) such that

(1) &w(°)=W*\f(p)Y and lkn4<*ll»'*l/|«Nla'-
It is easy to see that [(/„(-, W)T-gw](0 =/(£> for all £e2, so that

/= /« ( • , W)*giV.
Hence, for 1 < r < oc,
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If a^l/q, (D.41) and (D.48) of Hewitt and Ross (1972) show that for oeR,
IKI / ( " )Hl t = H/(")|IS& and so (1) implies that

0) UwWi^Wfta-
Combining (2) and (3) and integrating over @, one obtains

Ja J®
(4)

Since R, considered as a subset of the dual 2(^) of'S, is a Sidon set (Hewitt and
Ross, 1972 (36.1)), there exists BeR, independent of/, such that for all re[2,oo)
and for each x e G,

provided that 1 — a ̂  J. Now (4) and (5) give

provided that (1—a)^| and ocq'^l. Choosing a such that <xq' = 2(l— a), it is
easily established that aq' = 2q/(3q—2), which completes the proof.

(5.2) REMARK. I do not know whether (5.1) (i) has any analogue for central #-Sidon
sets (even those with uniformly bounded degree). I can show that a central ̂ -Sidon
set of uniformly bounded degree satisfies (5.1) (ii) with "/eTB(G)" replaced by
"feZTR(G)". Parker (1972) has shown that a central Sidon set of uniformly
bounded degree is actually A(p) for all p.

6. Test families for non-abelian groups

(6.1) DEFINITION. For R^Z, let v(R) = S ( r e i e ^ If G is abelian, v(R) is simply
the cardinality of R.

(6.2) LEMMA. Let P, Q be non-empty finite subsets ofL. There exists keZT(G)
such that

(ii) k(a) = 0, aeS\CPx Q x Q);
(in) 0 < k(a) ̂  Id<j for all

(Here, PxQ denotes the set U<rep,7eQax V-)

PROOF. Le t /= 2 , e 0 <*,*,, g = S C P X O ^ X C . a n d

) , e 0 C e P X 5 * tLce»xc
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It is easily seen that

JePxQ

Notice that n,f(a) = n^Q, and for ozP^eQ, S e 6 p x Q ^ " ^ O = dadr Hence,
(i) follows from (1). (iii) also follows from (1) because for any a e 2,

(ii) results from (1) together with the fact that for afPxQxQ, and for any
T?eg, £ePx Q, «^(a) = 0. Finally,

(6.3) DEFINITION. Let MeR, Af> 1. A family Q of finite non-empty subsets of
S is called a test family of order M if sup{v(i>xPxJP)/v(P)|PeQ}<oo.

This is a generalization of the definition given by Edwards and Ross (1974).

(6.4) THEOREM. Let Q.be a test family of order M, and suppose that i ? s S is of
type central Mr,s) for some r,s e [I, co) with constant K. Then for any PeCl,

v(R nP)^K*M (s72» [v(P)Ylr.

PROOF. Choose a function k<zZT(G) satisfying (6.2) (i)-(iv), with P — Q. Let
rX<r- l t i s c I e a r t h a t

Now Ul^^Rapdlf'^viRnPyo. Thus iiRnPY"4K\\k\\,. But by
Holder's inequality,

since v(P x ̂ ) < v(P x P x P)). This completes the proof.
Theorem (6.4) combines with (5.1) (ii) to prove:

(6.5) COROLLARY. Let Q. be a test family of order M. If Ris ap-Sidon set then
there is /ceR such that for every PeO with

v(R HP)^KM p / (

(6.6) EXAMPLE. Recall that a subset P of S is called a subhypergroup if P^P
and PxP^P. Let O be the family of all finite subhypergroups of S. Then Q is a
test family of order 1.
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(6.7) NOTATION. Let a e 2 . Denote by an the subset a x ... x a (n times) of 2. Let

SJP)= U °*xo*, W = {1}

the trivial representation, and let Pm(cr) = U?=o ̂ r- Notice that Pn(o) contains
U?=o ffr- T n e latter set is denoted A(o, n) by Benke (1972). The two sets are equal if
a = of. If G is abelian, Pn(a) is the arithmetic progression of length n generated by a.

(6.8) LEMMA. For each a e S , there is a polynomial p with degree at most 2d\
such that, for n sufficiently large, v(Pn(a)) =/>(«). If a — 5, the degree of p is at
most dt.

PROOF. Let J^L\G) be the two-sided convolution ideal generated by
(1 +XO-+XT)- It is n o t n a r d to see that 3a is the linear span of the function 1 together
with the coordinate functions atj, a., i,j — 1, ....c^. Thus dimJa<,2d* + l (if

Let J™ be the subspace of L2 spanned by functions of the form <f>± •... • (f>n,
^•eJ^. Notice that/™ is spanned by co-ordinate functions of the representations 1
and o>®5k, 1 ^j+k^n and hence dim/JJ = Sjepn(CT)^| = v(Pni.

a))- JZ a s a vector
space is isomorphic to the vector space of polynomials of degree n in dimJ^
variables. Thus by Lemma 8.9 of Mayer (1967), there exists a polynomial p of
degree d i m ^ - l ) such that dim/™ =p(n).

(6.9) PROPOSITIONS. {Pn(o)\neN} is a test family.

PROOF. NOW Pn(&) = Pn{a), and one has Pn(a) x Pn(o) x Pn(o) = P3n(a). By (6.8),
for n sufficiently large,

(6.10) REMARKS. Applying (6.4) to (6.9) gives:
Let o-eS, and suppose that i ? s S is of type central A(r,s), r,se[l,ao). Then there

exists K e R such that v(R n Pn(o)) < Kn^^'v for all n; if a = 5,

In particular, if R is a central A(/?) set (p>2), v(RnPn(a))^Knid"'/p for all «.
Benke (1972) shows that if R is a central A(/>) set, card (R n V4(<T, «)) < O(nid°'iv).
The above is an improvement of his result, since Pn(a)^A(a,n) and also, for any
set R, v(R)^caTdR, equality prevailing if and only if da = 1 for all

(6.11) PROPOSITION. Let G be an infinite compact group. Then S has an infinite
test family.
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PROOF. If there is a a e 2 such that [a] is infinite, then (6.9) provides such a
test family. If not, for every a e 2 , [a] is finite. In this case, the family of finite
subhypergroups of 2 is an infinite test family.

Applying the above to (6.4) gives

(6.12) COROLLARY. Let G be an infinite compact group. Then 2 is never of type
central A(p,q)forp>q'.

(6.13) PROPOSITION. 2(^^/(2)) contains no infinite sets of type central Mj>,q)
forp>%q',p,qe[l,cc[.

PROOF. Let a, be the (unique) irreducible representation of ^^(2) of dimension
21+1,le{0, i, 1,...} (Hewitt and Ross, 1972 (29.13)). Then for neN,

Suppose that R = {ani\2nt eN} is an infinite set of type A(p,q). One has

and

Thus by (6.10) there is a constant K such that for all /,

Since R is infinite, this implies that p < f q'.
Hence, by (5.1)(ii), 2 (^^(2) ) contain no infinite ^-Sidon sets for any/>e[l,2[.
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