```
P. North
Institut d'Astronomie de l'Université de Lausanne
CH-1290 Chavannes-des-Bois
Switzerland
```

ABSTRACT. Photometrically determined gravities for field and cluster Ap stars, together with published periods, show that conservation of angular momentum alone is responsible for the observed increase of the periods with age. New photometric periods of a few cluster stars are presented which independently confirm this result. No outstanding change with age of the amplitude of lightcurves is noted.

1. RESULTS

1.1. Rotation

1.1.1. Ap stars in clusters. Table 1 lists a few periods of cluster stars recently obtained with the Geneva photometry. They confirm the already noticed lack of magnetic braking on the main sequence for CP2 and CP4 stars (Klochkova and Kopylov, 1984; North, 1984).

Table 1. New photometric periods of cluster Si stars

HD/HDE	CLUSTER	PERIOD	NO, OF MEASURES	LOG AGE	AGE REF,
16605	NGC 1039-37	NOT VARIABLE	19	8.3	North \& Cramer 1981
45583	NGC 2232-9	$\begin{aligned} & 1.177 \mathrm{~d} \\ & \text { OR } 6.60 \\ & \mathrm{D} \end{aligned}$	44	7.35	Mermilliod 1980
66295	NGC 2516-26	2.454	37	8.1	
66318	NGC 2516-24	NOT VARIABLE	38	8.1	North \& Cramer 1981
68074	NGC 2547-5	1.1696 D.	21	7.65	
145102	Upper Sco	$\begin{gathered} 1.42 \mathrm{D} \\ \text { (or } 3.33 \mathrm{D} . ? \end{gathered}$	38	~ 7.0	Klochkova et AL'g81
304847	NGC 3114-234	$\begin{aligned} & 2.3 \\ & \text { D.? } \\ & \text { OR } 4.6 \\ & \text { D.? } \end{aligned}$	25	8.1	North \& Cramer 1981

References to Tab1e 1
Klochkova, V.G., Kopylov, I.M., Kumaigorodskaya, R.N.: 1981, Sov. Astron. Lett. I(3), 203
Mermilliod, J.-C.: 1980, Thesis
North, P., Cramer, N.: 1981, in "Upper Main Sequence CP Stars", 23rd Liège Astrophys. Coll., p. 55
1.1.2 Field (and cluster) Ap stars with known gravity. The Geneva photometry gives a statistically reliable estimate of $\log g$ for most Ap stars, except for a few exceptionally blanketed ones (North \& Cramer, 1984). Gravity is used as an age indicator in Fig. 1 and 2, where all stars with a known period (Catalano \& Renson, 1984) and good Geneva colours are plotted. The gravities are probably less reliable in Fig. 2 because of increased blanketing by metallic lines (Teff being smaller) and because of the sensitivity of the Balmer jump to peculiarity (Gerbaldi et al., 1974). A linear least-squares fit through all 92 points of Fig. 1 yields a correlation at the 99% confidence level ($\mathrm{r}=0.387$). Excluding the four anomalous points - whose initial period would be shorter than 0.5 d , while so short periods have never been observed gives a better correlation ($r=0.553$) and exactly the same slope ($b=-0.64$) as that of the theoretical relation for the rather realistic case of rigid-body rotation (Endal \& Sofia, 1979). The much greater dispersion of the 89 points of Fig. 2 prevents any fit from being done, but the lower envelope is compatible with the theoretical line.

1.1.3 Initial distribution of periods. Neglecting the influence of the initial rotational velocity on its subsequent evolution, one may estimate the period each star had on the ZAMS from its present period and evolutionary state. The distribution of initial periods is shown in Fig. 3 for stars with $M>3 M_{\odot}$ and compared with the distribution for normal dwarfs. It is consistent with the observed periods of Ap stars in young associations.

Fig. 3: Distribution of the
Initial periods of CP2 and CP4
Stars with $M>3 M_{\text {O }}$ deduced
from Fig. 1 . The distribution
OF normal class V stars is shown
for comparison.

1.2. Lightcurve amplitudes

Plots of the peak-to-peak amplitudes of an homogeneous sample of uvby lightcurves of 44 stars with any mass (Mathys \& Manfroid, 1985) vs log g shows no significant trend, except perhaps in the u band, where less variation occurs at small gravities (Tables 2 to 5). More data are clearly needed.

Tables 2 to 5. Contingency tables for amplitudes in the u, v, b and y passbands. The χ^{2} value and corresponding level of significance at which the null hypothesis can be rejected are indicated and show no significant correlation

TABLE 2 : U

LOG G	>3.9	$\leqslant 3.9$	TOTAL
$>.06$	15	3	18
$\leqslant .06$	15	11	26
TOTAL	30	14	44

$$
x^{2}=3.22, \quad-92 \%
$$

TABLE 4 : B

$A(B))^{L O G G}$	>3.9	$\leqslant 3.9$	TOTAL
$\geqslant .035$	17	6	23
$<.035$	13	8	21
TOTAL	30	14	44

$$
x^{2}=0.73, \quad \sim 60 \%
$$

TABLE $3: V$

YOG			
A(v)	>3.9	$\leqslant 3.9$	TOTAL
$\geqslant .03$	16	8	24
$<.03$	14	6	20
TOTAL	30	14	44

$$
\begin{aligned}
x^{2}= & 0.06, \sim 20 \% \\
& \text { TABLE } 5: Y
\end{aligned}
$$

A(Y)	>3.9	$\leqslant 3.9$	TOTAL
$\geqslant .03$	16	5	21
$<.03$	14	9	23
TOTAL	30	14	44

$$
x^{2}=1.19, \sim 70 \%
$$

2. CONCLUSION

No significant braking (magnetic or other) occurs during the MS phase of field as well as cluster magnetic Ap stars in the range 2.5 to $6 \mathrm{M}_{\ominus}$. Conservation of angular momentum alone accounts for the change of period on the MS. Slow rotation of Ap stars is thus related to stellar formation.

REFERENCES

Catalano, F.A., Renson, P.: 1984, Astron. Astrophys. Supp1. 55, 371
Endal, A.S., Sofia, S.: 1979, Astrophys. J. 232, 531
Gerbaldi, M., Hauck, B., Morguleff, N.: 1974, Astron. Astrophys. 30, 105
Klochkova, V.G., Kopylov, I.M.: 1984, in "The Magnetic Stars", (eds.
V.L. Khokhlova, D.A. Ptitsyn, O.A. Lielausis), Salaspils, p. 78

Mathys, G., Manfroid, J.: 1985, Astron. Astrophys. Suppl. 60, 17
North, P.: 1984, Astron. Astrophys. 141, 328
North, P., Cramer, N.: 1984, Astron. Astrophys. Supp1. 58, 387

Discussion appears after the Musielok paper.

