INTERSECTION IRREDUCIBLE IDEALS OF A NON-COMMUTATIVE PRINCIPAL IDEAL DOMAIN

EDMUND H. FELLER

Introduction. Let R always denote a fixed non-commutative principal ideal domain. A right (left) ideal aR (Ra) is termed right (left) \cap irreducible provided it is not the intersection of two right (left) ideals that properly include it. In this case, the element a is called right (left) \cap irreducible.

Since R satisfies the A.C.C. for right ideals every right ideal aR can be written in the form $aR = a_1R \cap a_2R \cap \ldots \cap a_nR$, where a_iR properly include aR and is right \cap irreducible, $i = 1, 2, \ldots, n$. We shall investigate properties (including primary properties) of right \cap irreducible one-sided and two-sided ideals of R. These properties will depend on the results given in (1) and (2, chapter III).

An element a is *irreducible* if it is not zero or a unit and has no proper factors. In this case aR(Ra) is a maximal right (left) ideal.

1. Right \cap irreducible one-sided ideals. From Theorem 2 of (2, p. 31) it follows that the zero ideal is right and left \cap irreducible. This is also trivially true for R. The special case where a is irreducible will be discussed briefly in §3. Hence in this paper, unless otherwise stated, the ideals aR mentioned will not be 0, R or maximal.

THEOREM 1.1. For $aR \subset R$ the following statements are equivalent:

- 1. *a* is right \cap irreducible.
- 2. aR is contained in a unique minimal right overideal not equal to R.
- 3. Ra is contained in a unique maximal left ideal.
- 4. If a = bc = b'c' where c' and c are irreducible then Rc = Rc'.
- 5. If a = bc = b'c' where c' and c are irreducible then bR = b'R.

Proof. 1 \leftrightarrow 2. Let *a* be right \cap irreducible. From Theorem 1 of (2, p. 31) we have that every right ideal has at least one minimal overideal. If *bR* and *dR* are distinct minimal overideals of *aR* then $aR = bR \cap dR$ —a contradiction. Conversely, let *bR* be the unique minimal overideal of *aR*. Suppose $aR = dR \cap eR$ where *dR* and *eR* properly include *aR*. Hence $bR \subseteq dR$ and $bR \subseteq eR$ and $aR \subset bR \subseteq dR \cap eR$ —a contradiction.

In order, we now show that $2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 2$. To show that $2 \rightarrow 3$ let bR be the unique minimal overideal of aR. Then a = bc where c is irreducible (2, p. 34). Hence $Ra \subset Rc$. Suppose $Ra \subset Rc'$ where Rc' is a maximal left ideal. Then a = dc' and $aR \subset dR$. Therefore, $bR \subseteq dR$, that is, b = dk. Hence a = dc' = dkc which implies c' = kc. Thus k is a unit and Rc' = Rc.

Received April 23, 1959.

 $3 \rightarrow 4$. Let Rc be the unique maximal left ideal containing Ra. If a = b'c' = b''c'' where c' and c'' are irreducible, then $Ra \subset Rc'$ and $Ra \subset Rc''$. Hence Rc = Rc' = Rc''.

 $4 \rightarrow 5$. Let a = b'c' = b''c'' where c' and c'' are irreducible. By 4 we have Rc' = Rc''. Hence there exists a unit u such that c' = uc''. Therefore, a = b'uc'' = b''c''. Thus b'u = b'' and b'R = b''R.

 $5 \rightarrow 2$. Suppose bR and b'R are minimal overideals of aR. Then a = bc = b'c' where c and c' are irreducible. By 5 we can conclude that bR = b'R.

From 3 of this theorem the following corollary is immediate.

COROLLARY 1.1. Let aR be right \cap irreducible. If $Ra \subset Rd_1 \subset Rd_2 \subset \ldots \subset Rd_n \subset R$ is a composition series where Rd_n is the unique maximal left ideal containing Ra, then d_i , $i = 1, 2, \ldots, n$, is right \cap irreducible.

From the corollary we have

COROLLARY 1.2. Let a be right \cap irreducible. If a = kd = k'd' where Rd = Rd'then a = kbc = k'b'c' where bR = b'R.

STATEMENT 1.1. Let a be right \cap irreducible. If bR is the unique minimal overideal of aR and a = bc then

$$cR = \{aR|b\}_r = \{x|bx \in aR, x \in R\}.$$

Proof. Certainly $cR \subseteq \{aR|b\}_r$. If $d \in \{aR|b\}_r$ then bd = am = bcm. Hence d = cm and $d \in cR$.

From (2, p. 34) we know that every element may admit several factorizations as a product of irreducible elements. Part 4 of Theorem 1.1 tells us that ais right \cap irreducible if and only if for any two factorizations $a = a_1a_2 \dots a_n = b_1b_2 \dots b_n$ where the a_i 's and b_i 's are irreducible we have $Ra_n = Rb_n$.

2. Primary properties. The ring R can be considered as an A - K module as defined in (1) by taking as A the ring of left multiplications and as K the ring of right multiplications. By Theorems 2.1. and 2.2. of (1) we have the following.

Let aR be right \cap irreducible. The normalizer (centralizer) B of aR is $\{b|ba \in aR\}$. Then $P = \{x|x^n \in aR, x \in B\}$ is a completely prime two-sided ideal of B and $cx \in aR$ for $c \in B, x \notin aR$ implies $c \in P$.

Since aR is a right ideal we may consider R - aR as an R module. Let us now apply Theorem 1 of (3, p. 25) to this R module. Since $R \ni 1$, the module R - aR is cyclic. Then $I = \{x | \overline{1}x = \overline{0}, x \in R\}$ is a right ideal of R where $\overline{1}$ and $\overline{0}$ denotes the cosets of 1 and 0 in R - aR. Certainly I = aR. Since $R \ni 1$ the ideal $K = \{k | kR \subseteq aR, k \in B\} = aR$. Applying the theorem above we have the ring of endomorphisms C of R - aR is B/aR.

Since $a \neq 0$ the module R - aR satisfies both chain conditions for submodules. Since aR is right \cap irreducible certainly R - aR is indecomposable. Applying Theorem 3 of (2, p. 57) then the ring of endomorphisms of R - aR, which is B/aR, is completely primary, that is, if $P = \{x | x^n \in aR, x \in B\}$ then $(B/aR)/(P/aR) \cong B/P$ is a division ring. Hence P is a maximal right ideal of B and we have proved

THEOREM 2.1. If a R is right \cap irreducible and B the normalizer of a R in R, then the radical P of a R in B is a maximal right ideal and B/P is a division ring.

LEMMA 2.1. Let a be right \cap irreducible and P the radical of a R in B. If bR is the unique minimal overideal of a R then $xbR \subseteq aR$ for $x \in P$.

Proof. If $x \in P$ then $x^n \in aR$ for some integer n. If n = 1 the statement is obviously true. Assume n > 1 and $x^n \in aR$, $x^{n-1} \notin aR$. Since $x^{n-1} \notin aR$ then $bR \subseteq x^{n-1}R + aR$. Hence $b = x^{n-1}g_1 + ag_2$, $xb = x^ng_1 + xag_2$. Since $x \in B$ and $x^n \in aR$ we have $xb \in aR$. Hence $xbR \subseteq aR$.

STATEMENT 2.1. Let aR be right \cap irreducible and P be the radical of aR in its normalizer B. If bR is the unique minimal overideal of aR then $P = \{aR|b\}_{l} = \{x|xb \in aR, x \in R\}$.

Proof. By Lemma 2.1 certainly $P \subseteq \{aR|b\}_i$. If $x \in \{aR|b\}_i$ then $xb \in aR$ and $xbR \subseteq aR$. Since $aR \subseteq bR$ certainly $x \in B$. From the discussion at the beginning of this section and since $xb \in aR$, $x \in B$, $b \notin aR$ then $x \in P$.

3. Summary. In the commutative case for a principal ideal domain an ideal aR is \cap irreducible if and only if $aR = c^n R$ where c is irreducible. Here $aR \subseteq cR$, c is irreducible, cR is maximal and cR is called the radical $(aR)^{\frac{1}{2}}$ of aR. (Read (4, chapter 1).)

In the non-commutative case the radical P of aR in B has many of the properties of the radical in the commutative case. These are: (1) if $x \subseteq P$ then $x^n \in aR$. (2) P is maximal in B. (3) $P = \{aR|b\}_i$ by Statement 2.1. (4) If $xd \in aR$, $x \in B$, $d \notin aR$ then $x \in P$.

If Rc is the unique maximal left ideal containing Ra then c has many of the properties of the element which generates the radical in the commutative case. These are: (1) Rc and cR are maximal. (2) c is irreducible. (3) c is right factor of a. (4) $cR = \{aR|b\}_r$ by Statement 1.1.

We shall now consider the case where a is irreducible. Since aR is a maximal right ideal certainly aR is \cap irreducible. By the corollary of (3, p. 26) we have that B/aR is a division ring where B is the normalizer of aR. Hence in this case aR = P, the radical of aR in B.

4. Intersection irreducible two-sided ideals. Suppose $a^*R = Ra^*$ is a two-sided ideal of R which is right \cap irreducible. The normalizer B of a^*R is R. Hence the radical P of a^*R in R is a two-sided ideal of R and R/P is a division ring. Therefore, the unique maximal left ideal Rc^* which contains a^*R is equal to P and is a two-sided ideal. Thus $Rc^* = c^*R = P$. Certainly

594

 c^*R is a unique maximal right ideal containing a^*R . Hence by Theorem 1.1 a^*R is also left \cap irreducible. We have proved

THEOREM 4.1. If $a^*R = Ra^*$ is right \cap irreducible then a^*R is left irreducible. In addition if P is the radical of a^*R in R then R/P is a division ring and $P = c^*R = Rc^*$ where c^* is irreducible.

STATEMENT 4.1. If $p^*R = Rp^*$ where p^* is irreducible then $(p^*)^n R = R(p^*)^n$ is right \cap irreducible for all integers n.

Proof. If n = 1 this is obvious. For n > 1 then $(p^*)^n R \subset p^* R$ and assume $(p^*)^n R \subset Rc$ where c is irreducible and $p^* R \neq Rc$. Then $(p^*)^k \in Rc$ for some integer k. If k = 1 then $p^* R = Rc$ – contradiction. If k > 1 and $(p^*)^{k-1} \notin Rc$, then $R = Rc + R(p^*)^{k-1}$ and thus $1 = d_1c + d_2(p^*)^{k-1}$. Multiplying on the left by p^* we have $p^* = p^* d_1c + p^* d_2(p^*)^{k-1}$. But $p^* d_2 = d_3 p^*$ and $(p^*)^k = d_4c$. Then $p^* = p^* d_1c + d_3d_4c$. Hence $p^* \in Rc$ and $p^* R = Rc$ —a contradiction. Since the assumption that $p^* R \neq Rc$ always leads to a contradiction, we can only conclude that $p^* R = Rc$. Thus $(p^*)^n R$ is contained in a unique maximal left ideal and is, therefore, right \cap irreducible.

From Theorem 2.1 of (1) it follows that $a^*R = Ra^*$ is primary in the sense that $cd \in a^*R$ implies $c^n \in a^*R$ if $d \notin a^*R$ and $d^n \in a^*R$ if $c \notin a^*R$.

THEOREM 4.2. A two-sided ideal $a^*R = Ra^*$ is right \cap irreducible if and only if $a^* = u(p^*)^n$ for some integer n, where u is a unit of R, $p^*R = Rp^*$, and p^* is irreducible.

Proof. Suppose a^*R is right \cap irreducible. Then $a^*R \subset c^*R$ where c^* is irreducible and $(c^*)^n \in a^*R$ for some integer n. If $a^* = bc^*$ and if $c^* \notin a^*R$ then $b \in c^*R$ and $b = dc^*$, $a^* = d(c^*)^2$. This process continues until $a = k(c^*)^n = ea$. Then a = kea and k is a unit. The converse follows from Statement 4.1.

5. An application. If *R* is real closed field then a polynomial f(x) in $R(\sqrt{-1})[x]$ is \cap irreducible if and only if $f(x) = u(x - r)^n$ where *u* is a unit and $r \in R(\sqrt{1-1})$. Thus in this case all the roots of f(x) are equal.

Let Q be the ring of quaternions over a real closed field. From the discussion given in (2, p. 36) a polynomial f(x) inQ[x], where ax = xa for $a \in Q$, is irreducible if and only if it is linear. In addition r is a right-hand root of f(x) if and only if f(x) = q(x) (x - r).

THEOREM 5.1. A polynomial $f(x) \in Q[x]$, where Q denotes the ring of quaternions over a real closed field, is right \cap irreducible if and only if all its right-hand roots are equal.

Proof. Let r_1 and r_2 be right-hand roots of f(x) which is right \cap irreducible. Then $f(x) = q_1(x) (x - r_1) = q_2(x) (x - r_2)$. From Theorem 1.1 then $u(x - r_1) = (x - r_2)$ where u is a unit. Hence $r_1 = r_2$.

EDMUND H. FELLER

Conversely suppose all the right-hand roots of f(x) are equal and let $f(x) = q_1(x)$ $(ax + b) = q_2(x)$ (cx + d). Then $a^{-1}b = c^{-1}d$. Hence $ca^{-1}(ax + b) = (cx + d)$ and by Theorem 1.1 we have f(x) is right \cap irreducible.

If the coefficients of f(x) are in the centre of Q and f(x) is right \cap irreducible we conclude from this section and §4 that $f(x) = u(x - r)^n$ where u is a unit and $r \in Q$.

References

- E. H. Feller, The lattice of submodules of a module over a non-commutative ring, Trans. Amer. Math. Soc., 81 (1956), 342-357.
- 2. N. Jacobson, The theory of rings, Math. Surveys, 2 (1943).
- 3. N. Jacobson, Structure of rings, Amer. Math. Soc. Coll. Publ., 37 (1956).
- 4. D. G. Northcott, *Ideal theory*, Cambridge Tracts in Mathematics and Mathematical Physics, 42 (1953).