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Introduction. Let R always denote a fixed non-commutative principal 
ideal domain. A right (left) ideal aR (Ra) is termed right (left) C\ irreducible 
provided it is not the intersection of two right (left) ideals that properly in
clude it. In this case, the element a is called right (left) C\ irreducible. 

Since R satisfies the A.C.C. for right ideals every right ideal aR can be 
written in the form aR = a,\R C\ a2R r\ . . . r\ anR, where atR properly in
clude aR and is right C\ irreducible, i = 1,2, . . . ,n. We shall investigate pro
perties (including primary properties) of right Pi irreducible one-sided and 
two-sided ideals of R. These properties will depend on the results given in (1) 
and (2, chapter in) . 

An element a is irreducible if it is not zero or a unit and has no proper fac
tors. In this case aR (Ra) is a maximal right (left) ideal. 

1. Right C\ irreducible one-sided ideals. From Theorem 2 of (2, p. 31) 
it follows that the zero ideal is right and left C\ irreducible. This is also trivially 
true for R. The special case where a is irreducible will be discussed briefly in 
§3. Hence in this paper, unless otherwise stated, the ideals aR mentioned 
will not be 0, R or maximal. 

THEOREM 1.1. For aR C R the following statements are equivalent: 
1. a is right C\ irreducible. 
2. aR is contained in a unique minimal right overideal not equal to R. 
3. Ra is contained in a unique maximal left ideal. 
4. If a = be = b'c' where c' and c are irreducible then Re = Re'. 
5. If a = be = b'c' where c' and c are irreducible then bR = b'R. 

Proof. 1 «-» 2. Let a be right P\ irreducible. From Theorem 1 of (2, p. 31) 
we have that every right ideal has at least one minimal overideal. If bR and 
dR are distinct minimal overideals of aR then aR = bR H\ dR—a contradic
tion. Conversely, let bR be the unique minimal overideal of aR. Suppose aR — 
dR C\ eR where dR and eR properly include aR. Hence bR C dR and bR CZ eR 
and aR C bR C dR P\ eR—a contradiction. 

In order, we now show that 2-^3—-» 4 —̂  5 —> 2. To show that 2 —» 3 let 
bR be the unique minimal overideal of aR. Then a = be where c is irreducible 
(2, p. 34). Hence Ra C Re. Suppose Ra C Re' where Re' is a maximal left 
ideal. Then a = dc' and aR C dR. Therefore, bR Ç dR, that is, b = dk. 
Hence a = dc' = dkc which implies c' = kc. Thus k is a unit and Re' = Re. 
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3 —> 4. Let Re be the unique maximal left ideal containing Ra. If a = b'd = 
b"c" where d and d' are irreducible, then Ra C Rd and Ra C Rd'. Hence 
Re = Rd = Rd'. 

4 —» 5. Let a = b'd — b"d' where d and c" are irreducible. By 4 we have 
Rd = ifc". Hence there exists a unit w such that d = wc". Therefore, 
a = & W = Ô'V. Thus ô'w = 6" and VR = 6"i?. 

5—^2. Suppose bRand b'Rare minimal overideals of aR. Then a = be = 6 V 
where £ and d are irreducible. By 5 we can conclude that bR — bfR. 

From 3 of this theorem the following corollary is immediate. 

COROLLARY 1.1. Let aR be right C\ irreducible. If Ra C Rdi C Rd2 C • • • C 
Rdn C R is a composition series where Rdn is the unique maximal left ideal con
taining Ra, then du i = 1, 2, . . ., n, is right P\ irreducible. 

From the corollary we have 

COROLLARY 1.2. Let a be right C\ irreducible. If a = kd = k'df where Rd = Rd' 
then a = kbc — k'b'd where bR = b'R. 

STATEMENT 1.1. Let a be right C\ irreducible. If bR is the unique minimal 
overideal of aR and a = be then 

cR = {aR\b}r = {x\bx £ aR, x G R}. 

Proof. Certainly cR C {aR\b}r. If d 6 {aR\b}r then bd = am = bcm. 
Hence d = cm and d G cR. 

From (2, p. 34) we know that every element may admit several factoriza
tions as a product of irreducible elements. Part 4 of Theorem 1.1 tells us that a 
is right C\ irreducible if and only if for any two factorizations a = a\a^ . . . an = 
b\bi. . . bn where the az's and 6/s are irreducible we have Ran = Rbn. 

2. Primary properties. The ring R can be considered as an A — K 
module as denned in (1) by taking as A the ring of left multiplications and as 
K the ring of right multiplications. By Theorems 2.1. and 2.2. of (1) we have 
the following. 

Let aR be right C\ irreducible. The normalizer (centralizer) B of aR is 
[b\ba G aR}. Then P = {x\xn G aR, x Ç B] is a completely prime two-sided 
ideal of B and ex G aR for c G B, x $ aR implies c G P. 

Since aR is a right ideal we may consider R — aR as an i? module. Let us 
now apply Theorem 1 of (3, p. 25) to this R module. Since R 3 1, the module 
R — aR is cyclic. Then / = {x\lx = Ô, x G R} is a right ideal of R where 
T and D denotes the cosets of 1 and 0 in R — aR. Certainly / = aR. Since 
R 3 1 the ideal K = {k\kR C aR, k G B] = aR. Applying the theorem above 
we have the ring of endomorphisms C of R — aR is B/aR. 

Since a ^ O the module i^ — aR satisfies both chain conditions for sub-
modules. Since aR is right Pi irreducible certainly R — aR is indecomposable. 
Applying Theorem 3 of (2, p. 57) then the ring of endomorphisms of R — aR, 
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which is B/aR, is completely primary, that is, if P = {x\x11 G aR, x G B} then 
(B/aR)/ (P/aR) = B/P is a division ring. Hence P is a maximal right ideal 
of B and we have proved 

THEOREM 2.1. If ai? is ngfe P\ irreducible and B the normalizer of aR in 
R, then the radical P of aR in B is a maximal right ideal and B/P is a division 
ring. 

LEMMA 2.1. Let aR be right P\ irreducible and P the radical of aR in B. If 
bR is the unique minimal overideal of aR then xbR Ç aRfor x G P. 

Proof. If x G P then xn G aR for some integer n. If n = 1 the statement is 
obviously true. Assume n > 1 and xn (z aR, xn~l $ ai?. Since xw-1 (jf ai? then 
bR C xw_1P + ai?. Hence 6 = xw_1gi + agi, #6 = xwgi + xagz. Since x G B 
and xw G ai? we have xb G ai?. Hence xbR C ai?. 

STATEMENT 2.1. Le£ ai? 6e n'gfej P\ irreducible and P be the radical of aR in its 
normalizer B. If bR is the unique minimal overideal of aR then P = {aR\b\ t = 
{x|x£ G ai?, x G P } . 

Proof. By Lemma 2.1 certainly P Ç {aP|6} z. If x G {ai?|Z>}j then x& G ai? 
and xbR C ai?. Since ai? C Ji? certainly x G JB. From the discussion at the 
beginning of this section and since xb G aR, x G B, b QaR then x G P . 

3. Summary. In the commutative case for a principal ideal domain an 
ideal aR is Pi irreducible if and only if aR = cwi? where c is irreducible. Here 
aR C ci?, c is irreducible, ci? is maximal and cR is called the radical (aR)* of 
ai?. (Read (4, chapter i).) 

In the non-commutative case the radical P of aR in B has many of the 
properties of the radical in the commutative case. These are: (1) if x Ç P 
then xwG aR. (2) P is maximal in B. (3) P = \aR\b\ i by Statement 2.1. 
(4) If xd G ai?, x G B, d ( aR then x G P . 

If Re is the unique maximal left ideal containing Ra then c has many of the 
properties of the element which generates the radical in the commutative case. 
These are: (1) Re and cR are maximal. (2) c is irreducible. (3) c is right factor 
of a. (4) cR = {ai?|6}r by Statement 1.1. 

We shall now consider the case where a is irreducible. Since aR is a maximal 
right ideal certainly aR is P\ irreducible. By the corollary of (3, p. 26) we have 
that B/aR is a division ring where B is the normalizer of aR. Hence in this 
case aR = P , the radical of aR in i?. 

4. Intersection irreducible two-sided ideals. Suppose a*P = Pa* is 
a two-sided ideal of P which is right P\ irreducible. The normalizer P of 
a*P is P . Hence the radical P of a*P in P is a two-sided ideal of P and P / P 
is a division ring. Therefore, the unique maximal left ideal Pc* which contains 
a^R is equal to P and is a two-sided ideal. Thus Pc* = c*P = P . Certainly 
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c*R is a unique maximal right ideal containing a*R. Hence by Theorem 1.1 
a*R is also left P\ irreducible. We have proved 

THEOREM 4.1. If a*R = Ra* is right C\ irreducible then a*R is left irreducible. 
In addition if P is the radical of a*R in R then R/P is a division ring and P = 
c*R = Re* where c* is irreducible. 

STATEMENT 4.1. / / p*R = Rp* where p* is irreducible then (p*)nR = 
R(p*)n is right C\ irreducible for all integers n. 

Proof. If n = 1 this is obvious. For n > 1 then (p*)nR C P*R and assume 
(p*)nR C Re where c is irreducible and p*R ^ Re. Then (p*)k £ Re for some 
integer k. If k = 1 then p*R = Re - contradiction. If k > 1 and {p*)k~l i 
Re, then R = Re + R(p*)k~l and thus 1 = dxc + d2ip*)k~l. Multiplying on 
the left by p* we have p* = p* dxc + p*d2{p*)k-\ But p*d2 = dzp* and 
(p*y = d,c. Then p* = p*dYc + dzdAc. Hence p* £ Re and ^*i^ = Re—a 
contradiction. Since the assumption that p*R 9e Re always leads to a contra
diction, we can only conclude that p*R = Re. Thus (p*)nR is contained in a 
unique maximal left ideal and is, therefore, right Pi irreducible. 

From Theorem 2.1 of (1) it follows that a*R = Ra* is primary in the sense 
that cd e a*R implies cn G a*R if d $ a*R and dn Ç. a*R if c $ a*R. 

THEOREM 4.2. A two-sided ideal a*R = Ra* is right C\ irreducible if and only 
if a* = u(p*)n for some integer n, where u is a unit of R, p*R = Rp*, and p* 
is irreducible. 

Proof. Suppose a*R is right C\ irreducible. Then a*R C c*R where c* is 
irreducible and (c*)n G a*R for some integer n. If a* = be* and if c* $ a*R 
then b £ c*R and b = de*, a* = d(c*)2. This process continues until a = 
k(c*)n = ea. Then a = kea and k is a unit. The converse follows from Statement 
4.1. 

5. An application. If R is real closed field then a polynomial f(x) in 
R(\/—l)[x] is O irreducible if and only if f(x) = u(x — r)n where u is a 
unit and r Ç i ^ ( V l ~ ) • Thus in this case all the roots of f(x) are equal. 

Let Q be the ring of quaternions over a real closed field. From the discussion 
given in (2, p. 36) a polynomial f(x) inQ[x], where ax = xa for a G Q, is 
irreducible if and only if it is linear. In addition r is a right-hand root of f(x) 
if and only if f(x) = q{x) (x — r). 

THEOREM 5.1. A polynomial f(x) Ç Q[x], where Q denotes the ring of 
quaternions over a real closed field, is right P\ irreducible if and only if all its 
right-hand roots are equal. 

Proof. Let r\ and r2 be right-hand roots olf(x) which is right P\ irreducible. 
Then fix) = Qiix) (x — ri) = q2{x) (x — r2). From Theorem 1.1 then 
u(x — ri) = (x — r2) where u is a unit. Hence r± = r2. 
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Conversely suppose all the right-hand roots of f(x) are equal and let/(x) = 
g_i(x) (ax + b) = q<i(x) (ex + d). Then arlb = e~ld. Hence car1 (ax + b) = 
(ex + d) and by Theorem 1.1 we have f(x) is right P\ irreducible. 

If the coefficients olf(x) are in the centre of Q and/(x) is right r\ irreducible 
we conclude from this section and §4 tha t / (x) = u(x — r)n where u is a unit 
and r £ Q. 
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