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A Multiplier Theorem on Anisotropic
Hardy Spaces

Li-an Daniel Wang

Abstract. We present a multiplier theorem on anisotropic Hardy spaces. When m satisûes
the anisotropic, pointwise Mihlin condition, we obtain boundedness of the multiplier operator
Tm ∶H

p
A(R

n) → Hp
A(R

n), for the range of p that depends on the eccentricities of the dilation A
and the level of regularity of amultiplier symbol m. _is extends the classical multiplier theorem of
Taibleson andWeiss.

1 Introduction

We present amultiplier theorem (_eorem 1.2) on anisotropicHardy space Hp
A(Rn).

_is space was ûrst studied by Bownik [4] and generalizes the classical Hardy space
of Feòerman and Stein [13] as well as the parabolic Hardy spaces of Calderón and
Torchinsky [10] with a geometry and quasinorm induced by an expansive matrix A.
Since the introduction of Hp

A, the anisotropic structure has been extended to a num-
ber of settings: Besov [6] andTriebel–Lizorkin spaces [7],weighted anisotropicHardy
spaces [8], variableHardy–Lorentz spaces [1], and pointwise variable anisotropy [11],
to name just a few. However, the study of the Fourier transform on these further gen-
eralizations is still incomplete, given that analysis of the Fourier transform becomes
substantially harder.

To state our multiplier theorem, we require a few deûnitions; more details are in
Section 2. Let A be an n× n matrix, and ∣detA∣ = b. We say that A is a dilation matrix
if all eigenvalues λ of A satisfy ∣λ∣ > 1. If λ1 , . . . , λn are the eigenvalues of A, ordered
by their norm from smallest to largest, then deûne λ− and λ+ to satisfy 1 < λ− < ∣λ1∣
and ∣λn ∣ < λ+. Associated with A is a sequence of nested ellipsoids {B j} j∈Z such that
B j+1 = A(B j) and ∣B0∣ = 1. If A∗ is the adjoint of A, then A∗ is also a dilation matrix
with the same determinant b and eigenvalues,with its own nested ellipsoids {B∗k}k∈Z.

We use f̂ and f̌ to denote the Fourier and inverse Fourier transforms of f , respec-
tively. We say a measurable function m ∈ L∞ is a multiplier on Hp

A if its associated
multiplier operator, initially deûned by Tm f = ( f̂m)̌ for f ∈ L2 ∩ Hp

A, is bounded
Hp
A → Hp

A. We reserve ξ for the independent variable in the frequency domain, and
∂ξ denotes diòerentiation with respect to ξ. For a dilation matrix A, we deûne the
dilation operator by DA f (x) = f (Ax). Henceforth, C will denote a general constant
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AMultiplier _eorem on Anisotropic Hardy Spaces 391

that may depend on the dilation matrix A and any scalar parameters n, p, q, andmay
change from line to line, but is independent of f ∈ Hp

A. _e regularity requirement of
amultiplier m will be given by the following Mihlin condition.

Deûnition 1.1 Let Abe a dilationmatrix. Let N ∈ N∪{0} and let m ∈ CN(Rn/{0}).
We saym satisûes the anisotropicMihlin condition of orderN if there exists a constant
C = CN such that for all multi-indices β, ∣β∣ ≤ N , all j ∈ Z, and all ξ ∈ B∗j+1/B∗j ,

∣D− j
A∗∂

β
ξD

j
A∗m(ξ)∣ ≤ C .(1.1)

We can now state our main result. For r ∈ R, the (integer) �oor of r is given by ⌊r⌋.

_eorem 1.2 Let A be a dilation matrix, N ∈ N, and denote

L = (N log λ−
log b

− 1) log b
log λ+

.

If m satisûes the Mihlin condition of order N and Tm is the corresponding multiplier
operator, then Tm ∶Hp

A → Hp
A is bounded provided p satisûes

0 ≤ 1
p
− 1 < ⌊L⌋ (log λ−)2

log b log λ+
.(1.2)

Remark 1.3 We have implicitly ûxed λ− and λ+, determining the eccentricities of
our dilation matrix. However, we can always “tighten” the eccentricities by deûning
λ̃− and λ̃+ so that 1 < λ− < λ̃− < ∣λ1∣ ≤ ⋅ ⋅ ⋅ ≤ ∣λn ∣ < λ̃+ < λ+ . In the proof of_eorem
1.2, we will exploit this simple fact.

Remark 1.4 An instructive example for the dilation matrix is by setting A = 2In , so
λ− = λ+ = 2 and b = 2n . _en (1.2) is equivalent to n

N−1 < p ≤ 1, thus recovering the
classical case.

As an essential class of singular integral operators,multiplier operators have been
well studied for the classical Hardy space Hp and its various extensions. We brie�y
discuss four classical multiplier theorems that are related to _eorem 1.2.
First, our proof of_eorem 1.2 most closely resembles that of Peetre [16] in that if

m satisûes a classical pointwiseMihlin condition with respect to the Euclidean norm
(which condition (1.1) generalizes), then it is a multiplier on Triebel–Lizorkin and
Besov–Lipschitz spaces. Second, this pointwiseMihlin condition is stronger than an
integral Hörmander condition on m, used in Taibleson and Weiss [17] and paired
with molecular decomposition of Hp to prove the boundedness of Tm . _ird, this
Hörmander condition is equivalent to a Herz norm condition on the inverse Fourier
transforms of smooth truncations of themultiplier m, which Calderón and Torchin-
sky [10] used to prove themultiplier theorem in the parabolic setting. Lastly, Baern-
stein and Sawyer [2] further generalized this with a weaker Herz norm condition,
generalizing the previous threemultiplier theorems.
For our multiplier theorem, we will assume the (strongest) Mihlin condition on

m in order to overcome the issues native to the anisotropic setting. _is approach
was ûrst considered by Benyi and Bownik [3] in the study of symbols associated
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with pseudo-diòerential operators. Our _eorem 1.2 is closely related to their re-
sult, though we requireminimal regularity requirement on m, and we obtain amore
precise range of exponents p for which multiplier operators are bounded in terms of
eccentricity of the dilation A, asmeasured by log λ−/log λ+ and logλ−/log b. Ding and
Lan [12] extended the multiplier theorems of [2] to the spaces T ∶Hp

A → Lp , though
with an additional requirement that the dilation A is symmetric.

_e rest of the paper will be organized as follows. In Section 2, we give the back-
ground information on anisotropic Hardy spaces Hp

A. In Section 3, we give the lem-
mas needed for the proof of _eorem 1.2, from which the theorem follows imme-
diately. In Section 4, we provide the proofs of the lemmas as well as the molecular
decomposition of Hp

A.

2 Anisotropic Hardy Spaces and Multiplier Operators

We now introduce the anisotropic structure and the associated Hardy spaces. Given
a dilation matrix A, we can ûnd a (non-unique) homogeneous quasi-norm, that is, a
measurablemapping ρA∶Rn → [0,∞) with a doubling constant c satisfying:

ρA(x) = 0 exactly when x = 0,
ρA(Ax) = bρ(x) for all x ∈ Rn ,
ρA(x + y) ≤ c(ρA(x) + ρA(y)) for all x , y ∈ Rn .

Note that (Rn , dx , ρA) is a space of homogeneous type (dx denotes the Lebesgue
measure), and any two quasi-norms associated with Awill give the same anisotropic
structure. In the isotropic setting, the “basic” geometric object is the Euclidean ball
B(x , r), centered at x ∈ Rn with radius r. _is has the nice property that whenever
r1 < r2, we have B(x , r1) ⊂ B(x , r2). But for a dilation matrix A, we do not expect
B(x , r) ⊂ A(B(x , r)). Instead, one can construct “canonical” ellipsoids {Bk}k∈Z, as-
sociated with A such that for all k, Bk+1 = A(Bk), Bk ⊆ Bk+1, and ∣Bk ∣ = bk . _ese
nested ellipsoids will serve as the basic geometric object in the anisotropic setting.
Moreover,we can use the ellipsoids to deûne the canonical quasinorm associatedwith
A as follows:

ρA(x) =
⎧⎪⎪⎨⎪⎪⎩

b j if x ∈ B j+1/B j ,
0 if x = 0.

By setting ω to be the smallest integer so that 2B0 ⊂ AωB0 = Bω , ρA is a quasi-
norm with the doubling constant c = bω . Once A is ûxed, we will drop the subscript
and ρ will always denote the step norm. _e anisotropic quasi-norm is related to the
Euclidean structure by the following lemma of Lemarie–Rieusset [14].

Lemma 2.1 Suppose ρA is a homogeneous quasi-norm associated with dilation A.
_en there is a constant cA such that:

(2.1)
1
cA

ρA(x)ζ− ≤ ∣x∣ ≤ cAρA(x)ζ+ if ρA(x) ≥ 1,
1
cA

ρA(x)ζ+ ≤ ∣x∣ ≤ cAρA(x)ζ− if ρA(x) < 1.

where cA depends only on the eccentricities of A ∶ ζ± = ln λ±
ln b .
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Lastly, we observe that if A∗ is the adjoint of A, then A∗ is also a dilation matrix
with its own (canonical) norm ρ∗, though A∗ and A have the same eigenvalues and
eccentricities.

We let S be the Schwartz space, and let S′ be the space of tempered distributions.
Supposewe ûx φ ∈ S such that ∫ φ dx /= 0. If k ∈ Z,we denote the anisotropic dilation
by φk(x) = bkφ(Akx). _en the radial maximal function on f ∈ S′ is given by

M0
φ f (x) = sup

k∈Z
∣ f ∗ φk(x)∣.

_e anisotropic Hardy space Hp
A consists of all tempered distributions f ∈ S′ so that

Mφ f ∈ Lp ,with ∥ f ∥Hp
A
≃ ∥Mφ f ∥Lp . Analogous to the isotropic setting, this deûnition

is independent of the choice of φ and is equivalent to the grand maximal function
formulation (see [4,_eorem 7.1]).

We now present the atomic and molecular decompositions of Hp
A, which greatly

simplify the analysis ofHardy spaces. For a ûxed dilation A, we say that (p, q, s) is an
admissible triple if p ∈ (0, 1], 1 ≤ q ≤∞ with p < q, and s ∈ N satisûes

s ≥ ⌊( 1
p
− 1) ln b

ln λ−
⌋ .

For the rest of this article, (p, q, s) will always denote an admissible triple. A (p, q, s)
atom is a function a supported on x0 + B j for some x0 ∈ Rn and j ∈ Z, satisfying size
condition ∥a∥q ≤ ∣B j ∣1/q−1/p , and vanishing moments condition: For ∣α∣ ≤ s,

∫
Rn
a(x)xαdx = 0.

_e following theorem is the atomic decomposition of Hp
A; see [4,_eorem 6.5].

_eorem 2.2 Suppose p ∈ (0, 1] and (p, q, s) is admissible. _en f ∈ Hp
A(Rn) if and

only if
f =∑

i
λ ia i ,

for some sequence (λ i)i ∈ ℓp and (a i) a sequence of (p, q, s) atoms. Moreover,

∥ f ∥Hp
A
≃ inf{∥(λ i)∥ℓp ∶ f =∑

i
λ ia i} ,

where the inûmum is taken over all possible atomic decompositions.

We can also decompose f ∈ Hp
A with molecules, which generalize the notion of

atoms.

Deûnition 2.3 Let (p, q, s) be admissible, and ûx d satisfying

d > s ln λ+
ln b

+ 1 − 1
q
,(2.2)

anddeûne θ = ( 1
p −

1
q )/d. _enwe say a functionM is a (p, q, s, d)molecule centered

at x0 ∈ Rn if it satisûes the following size and vanishing moments conditions:
(i) N(M) = ∥M∥1−θ

q ∥ρ(x − x0)dM∥θ
q <∞,
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(ii) ∫ xβM(x)dx = 0 for all ∣β∣ ≤ s.

_e quantity N(M) is themolecular norm ofM. We say the quadruple (p, q, s, d)
is admissible if the triple (p, q, s) is an admissible triple and d satisûes (2.2). If we say
that M is a molecule, then it implicitly has an admissible quadruple. A straightfor-
ward computation shows that if a is an atom, then N(a) ≤ C, where C is a uniform
constant.

_e following theorem gives the molecular decomposition of Hardy spaces. It is
notnew, since the crucial ideas are implicit in [4,Lemma 9.3], though our deûnition of
molecules is more general than what is used there. For completeness, we will include
the proof in the last section.

_eorem 2.4 Every moleculeM is in Hp
A and satisûes

∥M∥Hp
A
≤ CN(M),(2.3)

where C = C(A, p, q, s, d). Moreover, f ∈ Hp
A(Rn) if and only if there exist (p, q, s, d)

molecules {M j} j such that f = ∑ j M j in S′, and ∑ j N(M j)p < ∞. In this case, we
have

∥ f ∥p
Hp
A
≤ C∑

j
N(M j)p .

3 Proof of the Multiplier Theorem 1.2

In proving that themultiplier operator is bounded on Hp
A, we will follow this outline.

(a) Show that ourmultiplier operator is a convolution operator of a certain regularity.
_is is the key result of this paper, given by Lemma 3.2.

(b) As is o�en the case with Hardy spaces, we show it suõces to verify the action
of operators on atoms. As we will see in Lemma 3.3, we only need to consider
(p,∞, s) atoms.

(c) Lastly, by Lemma 3.4, we show that the action of this operator on atoms will pro-
duce molecules whose (molecular) norms are uniformly bounded. By _eorem
2.4, this completes the proof of_eorem 1.2.

In this section, we state these lemmas, and provide a proof of _eorem 1.2 (which
follows immediately). _e proofs of these lemmas are in the next section.

We start by generalizing the notion of regularity to the anisotropic setting, taken
from [4].

Deûnition 3.1 Let (p, q, s) be admissible, let R ∈ N satisfy

R > max{( 1
p
− 1) log b

log λ−
, s log λ+

log λ−
} ,(3.1)

and let K ∈ CR(Rn/{0}). We say K is a Calderón–Zygmund convolution kernel of
order R if there exists a constant C such that for all multi-indices α with ∣α∣ ≤ R, and
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all k ∈ Z, x ∈ Bk+1/Bk ,

∣D−k
A ∂αxDk

AK(x)∣ ≤ C
ρ(x) .(3.2)

If K is such a kernel, we say K satisûes CZC-R and its associated singular integral
operator T is deûned by T f = K ∗ f .

_e following lemma is our key result.

Lemma 3.2 Let N ∈ N and m ∈ L1
loc(Rn/{0}). Suppose m satisûes the Mihlin

condition (1.1) of order N , and deûne K by K = m̌. _en K is a Calderón–Zygmund
convolution kernel of order R provided R ∈ N and satisûes

0 ≤ R < (N ln λ−
ln b

− 1) ln b
ln λ+

.(3.3)

_e general method in proving that an operator T ∶Hp
A → Hp

A is bounded is to
show that T is uniformly bounded on all (p, q, s) atoms, that is, ∥Ta∥Hp

A
≤ C where

a is a (p, q, s) atom. However, as we see in [5], in general it is not suõcient to deal
with (p,∞, s) atoms, though by the work of Meda et al [15], it suõces if q < ∞.
_is suggests that we simply need to show that our operator satisûes ∥Ta∥Hp

A
<∞ for

(p, 2, s) atoms.
However, this approachwill notwork for us, because of the following complication.

Observe that we have the inclusions of the subspaces

Hp,2
fin ⊆ L2 ∩Hp

A ⊆ Hp
A.

Suppose we use the approach outlined above, and a�er verifying ∥Ta∥Hp
A
≤ C for all

(p, 2, s) atoms, we can then extend T ∶Hp,2
fin → Hp

A to the unique bounded extension
T̃ ∶Hp

A → Hp
A. Next, consider the operator Tm on the (middle) subspace L2 ∩ Hp

A,
which we initially deûned by Tm f = (m f̂ )̌. It is not clear that the extension T̃ will
agree with Tm on (L2 ∩ Hp

A)/H
p,2
fin . Because of this uncertainty, we cannot conclude

that T̃ is indeed the extension of Tm on Hp
A.

Fortunately, for multiplier operators, we have another approach, aided by a regu-
larity result of [9,_eorem 1]. _is approach also shows that it suõces, at least in our
case, to verify uniform boundedness of (p,∞, s) atoms.

Lemma 3.3 Suppose that (p,∞, s) is an admissible triple, m ∈ L∞ and Tm is the
associated multiplier operator initially deûned on L2 ∩ Hp

A. _en Tm has a a unique,
bounded extension T̃m ∶Hp

A → Hp
A if for all (p,∞, s) atoms, ∥Tma∥Hp

A
≤ C, where C is

independent of the atom a.

_is last lemma (and the regularity condition (3.2)) ûrst appeared in [4, _eo-
rem 9.8] for the more general Calderón–Zygmund operators. We give an alternate
proof using _eorem 2.4.

Lemma 3.4 Let R ∈ N. Suppose T is a singular integral operator whose kernel K is
a Calderón–Zygmund convolution kernel of order R. _en T ∶Hp

A(Rn) → Hp
A(Rn) is
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bounded provided p satisûes

0 < 1
p
− 1 < R( (log λ−)2

log b log λ+
) .(3.4)

Now that all the pieces are here, we can prove_eorem 1.2.

Proof of_eorem 1.2 Supposem is amultiplier satisfying theMihlin condition (1.1)
of order N , and L /∈ N. _en by Lemma 3.2, we have a kernel K of order R, satisfying
(3.3) such that K̂ = m. _en by Lemma 3.4, the operator T f = K ∗ f satisûes the
bound ∥Ta∥Hp

A
≤ C for all (p,∞, s) atoms, which by Lemma 3.3, gives a unique ex-

tension T̃ ∶Hp
A → Hp

A, provided p is in the range (3.4), which implies the range given
in _eorem 1.2.

However, if L ∈ N, then ⌈L − 1⌉ ≤ ⌊L⌋. To make the above argument hold, recall
Remark 1.3, and let λ̃− and λ̃+ be deûned such that

1 < λ− < λ̃− < ∣λ1∣ ≤ ⋅ ⋅ ⋅ ≤ ∣λn ∣ < λ̃+ < λ+ ,
so that the new L̃, deûned in terms of the new eccentricities, is slightly larger and no
longer an integer. However, ⌊L̃⌋ = ⌊L⌋, and we can repeat the above argument and
obtain the bound (1.2).

4 Proofs of Lemmas and the Molecular Decomposition

In this section, we give the proofs of Lemma 3.2–3.4, as well as the proof of_eorem
2.4. Lemma 3.2 is the key result of this paper. Lemma 3.4 and_eorem 2.4 originally
appear in [4], and we reprove them here with our notion ofmolecules.

4.1 Proof of Lemmas

Proof of Lemma 3.2 Let m satisfy theMihlin condition of order N and let R satisfy
(3.3). Fix Ψ ∈ S(Rn) such that Ψ̂ is supported on B∗1 /B∗−1, and for all ξ /= 0,

∑
j∈Z

Ψ̂(A− jξ) = 1.

By setting Ψj(x) = b jΨ(A jx), we have the identity

Ψ̂j(ξ) = D− j
A∗ Ψ̂(ξ) = Ψ̂((A∗)− j)ξ) ,

and Ψ̂j is supported on B∗j+1/B∗j−1. We deûne m j = mΨ̂j , which is supported on
B∗j+1/B∗j−1, and deûne K j = (m j )̌. _en we have

m =∑
j∈Z

m j holds pointwise and in S′ , and K =∑
j∈Z

K j in S′ .

We will see that the equality for K also holds pointwise. We make the following re-
ductions to prove the CZC-R condition (3.2). First, it suõces to show that for all
multi-index β such that ∣β∣ ≤ R, k ∈ Z, and x ∈ B1/B0, ∣∂αxDk

AK(x)∣ ≤ C/bk , which
follows from the absolute convergence

∑
j∈Z

∣∂βxDk
AK j(x)∣ ≤

C
bk .
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To prove this, it suõces to prove the above convergence for k = 0:

∑
j∈Z

∣∂βxK j(x)∣ ≤ C .(4.1)

Indeed, suppose (4.1) holds. _en if k ∈ Z, and m has the Mihlin property, then so
does Dk

A∗m, with the same constant C. _erefore, if ξ ∈ B∗j+1/B∗j , then (A∗)k ξ ∈
B∗j+k+1/B∗j+k , so

∣ (D− j
A∗ ∂βξ D

j
A∗)(D

k
A∗m)(ξ)∣ = ∣ (D− j−k

A∗ ∂βξ D
j+k
A∗ m((A∗)k ξ)∣ ≤ Cβ .

To prove (4.1), we decompose the sum using a well-chosen integer M. Denote λ∗max
as the eigenvalue of A∗ with the largest norm and ∥ ⋅ ∥op as the operator norm on
Rn → Rn . By the spectral theorem,

λ∗max = lim sup
j→∞

∥A∗ j∥1/ j
op .

Let є > 0. _en there exists an integer M > 0 such that for all j > M,

∥A∗ j∥1/ j
op ≤ (1 + є)λ∗max ≤ (1 + є)λ+ .

With this M, we write

∑
j∈Z

∣∂βxK j(x)∣ = ∑
j≤M

∣∂βxK j(x)∣ + ∑
j>M

∣∂βxK j(x)∣ = SL + SH .

We call SL and SH the low and high spatial terms, respectively. Starting with the high
spatial terms, we ûx j > M and x ∈ B−1/B0. _en we can ûx another multi-index α
satisfying ∣α∣ = N such that there exists a constant c depending only on n such that
∣(A jx)α ∣ ≥ c∣A jx∣N . _is can be done by picking α = Ne i where e i is the i-th unit vec-
tor in the canonical basis ofRn and the direction i iswhereA jx has the largest value in
norm. Deûne w(u) = (A∗ ju)βm(A∗ ju)Ψ̂(u). Using Parseval’s identity, integration
by parts, and a change of variables, we have

∂βxK j(x) = cβb j ∫
B∗1 /B

∗
−1

(∂αuw)(u) e
2πi⟨A jx ,u⟩

(2πiA jx)α du,

which we estimate using the bound from the spectral theorem.
_en the product rule gives

(∂αw)(u) = ∑
γ≤α

(α
γ
) ∂α−γ(D j

A∗m ⋅ Ψ̂)(u)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I1

⋅ ∂γ((A∗ ju)γ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I2

.(4.2)

By another application of the product rule, we have a uniform constant c′, indepen-
dent of m, j, u such that

I1 ≤ c sup
δ≤γ

∣∂δD j
A∗m)(u)∣ = c sup

δ≤γ
∣ (D− j

A∗∂
δD j

A∗m)(A∗ ju)∣ ≤ c′ .

We now bound I2. With u ∈ B∗1 /B∗−1, elementary considerations from expressing
(A∗ ju)β as a sum ofmonomials show that there exists c depending only on N , such
that by our choice of M and j > M,

I2 = ∣∂γ(A∗ ju)β ∣ ≤ c∥A∗ j∥∣β∣op ≤ c( λ∗+(1 + є)) j∣β∣ ,
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Combining our estimates of I1 and I2 in (4.2), we have a constant C, depending on
the past constants, such that

∣ (∂αw)(u)∣ ≤ C( λ∗+(1 + є)) j∣β∣ .

_en we have

∣∂βK j(x)∣ ≤ b j ∫
B∗1 /B

∗
−1

∣ (∂αw)(u)
(2πiA jx)α ∣du ≤ C( b

j(λ∗+(1 + є)) j∣β∣

∣A jx∣∣α∣ )

≤ C( b
j(λ∗+(1 + є)) j∣β∣

b j∣α∣ζ−
) .

Note that with our choice of α and (2.1), we can sum ∣∂βK j(x)∣ for j > M if

b(λ∗+(1 + є))∣β∣
b∣α∣ζ−

< 1, that is, ∣β∣ < ( N log λ−
log b

− 1) log b
log(λ∗+(1 + є)) .

Indeed, for ∣β∣ ≤ R, there exists є > 0 such that the series below converges. For C1
depending only on A, n,Ψ, β,M, we have

∞

∑
j=M+1

∣∂βK j(x)∣ ≤ C
∞

∑
j=M+1

( b(λ
∗
+(1 + є))∣β∣
b∣α∣ζ−

)
j
≤ C1 .

Turning our attention to SL ,we startwith Parseval’s identity and a change of variables.
With C a dimensional constant, we have

∣∂βxK j(x)∣ = ∣∫
B∗j+1/B

∗
j−1

(2πiξ)βm j(ξ)e2πi⟨x ,ξ⟩dξ∣

≤ cb j ∫
B∗1 /B

∗
−1

∣(A∗ ju)β ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

J1

⋅ ∣m j(A∗ ju)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

J2

du ≤
⎧⎪⎪⎨⎪⎪⎩

Cb j(1+∣β∣ζ+) if j ≥ 0,
Cb j(1+∣β∣ζ−) if j < 0.

Indeed, for u in the unit annulus B∗1 /B∗−1, we have A∗ ju ∈ B∗j+1/B∗j−1, J1 ≤ c∣A∗ ju∣∣β∣ ≤
Cb jζ±ρ∗(u)ζ± , with the eccentricity ζ± depending on the sign of j. Sincem ∈ L∞ and
J2 ≤ C(m,Ψ), we obtain the above estimate. Returning to SL , we have a constant C,
depending only on n,A,N ,Ψ,M such that

SL ≤
−1

∑
j=−∞

∣∂βxK j(x)∣ +
M

∑
j=0

∣∂βxK j(x)∣ ≤ C
−1

∑
j=−∞

b j(1+∣β∣ζ−) + C
M

∑
j=0
b j(1+∣β∣ζ+) ≤ C2 ,

with C2 = C2(n,A,N ,Ψ,M). _is completes the estimate (4.1) and this proof.

For the proof of Lemma 3.3, we need the following result from [9].

_eorem 4.1 ([9, _eorem 1]) Let p ∈ (0, 1]. If f ∈ Hp
A, then f̂ is a continuous

function and satisûes
∣ f̂ (ξ)∣ ≤ C∥ f ∥Hp

A
ρ∗(ξ)

1
p−1 .

In particular, if f = ∑ j λ ja j , then f̂ (ξ) = ∑ j λ j â j(ξ) almost everywhere and in S′.
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Proof of Lemma 3.3 If a is a (p,∞, s) atom, it is compactly supported, so that it is
in L2 ∩ Hp

A, and Tma = (mâ)̌ is well deûned. Now let f ∈ L2 ∩ Hp
A, with an inûnite

atomic decomposition f = ∑ j λ ja j using (p,∞, s) atoms. We ûrst establish Tm can
pass through the inûnite sum:

Tm f = Tm(∑
j
λ ja j) =∑

j
λ jTma j .(4.3)

Observe that passing the operator through the inûnite sum is the main issue raised
by [5] and the rationale as to why the result of [15] is needed for a general sublinear
operator. In our case, where our operator is amultiplier, we show that we can do this
directly. If we denote the right-hand term above by g = ∑ j λ jTma j , then (4.3) holds
if we can show (Tm f )∧ = m f̂ = ĝ in S′. To show (4.3), we note that by Lemma 4.1,
for ξ ∈ Rn almost everywhere, we have (m f̂ )(ξ) = ∑ j λ jm(ξ)â j(ξ). _en

ĝ = (∑
j
λ jTma j)

∧ =∑
j
λ j(Tma j)∧ =∑

j
λ j(mâ j) = m∑

j
λ j â j = m f̂ .

Since ĝ = m f̂ = (Tm f )∧ in S′ and pointwise, we must also have that g = Tm f , thus
establishing equality (4.3). _e boundedness of Tm ∶ L2 ∩ Hp

A → Hp
A follows immedi-

ately:

∥Tm f ∥p
Hp
A
= ∥∑

j
λ jT(a j)∥

p

Hp
A

≤∑
j
∣λ j ∣p∥T(a j)∥p

Hp
A
≤ C∑

j
∣λ j ∣p .

Taking the inûmum over all possible atomic decompositions, we have ∥Tm f ∥Hp
A
≤

C∥ f ∥Hp
A
. Lastly, with L2 ∩ Hp

A a dense subset of Hp
A, there exists a unique bounded

extension T̃m ∶Hp
A → Hp

A such that T̃m = Tm on L2 ∩Hp
A.

Proof of Lemma 3.4 Let p satisfy (3.4) and let (p, q, s) be an admissible triple. Let
a be a (p, q, s) atom supported on the ellipsoid x0 + Br for some x0 ∈ Rn and r ∈ Z.
_e boundedness of T follows once we establish the uniform bound of themolecular
norm N(Ta) = ∥Ta∥1−θ

q ∥ρ(x − x0)dTa(x)∥θ
q ≤ C. Note that since (Rn , dx , ρ) is a

space of homogeneous type, T is bounded from Lq to Lq for q > 1. _ere is a C,
depending only on T , q, and θ, such that

∥Ta∥1−θ
q ≤ C∥a∥1−θ

q ≤ Cbr( 1
q −

1
p )(1−θ) .

By Minkowski’s inequality,

∥ρ(x − x0)dTa(x)∥q ≤ ( ∫
x0+Br+2ω

∣ρ(x − x0)dqTa(x)∣qdx)
1/q

+ ( ∫
(x0+Br+2ω)c

∣ρ(x − x0)dqTa(x)∣qdx)
1/q = I1 + I2 .

_e estimate for I1 is immediate:

I1 ≤ bd(r+2ω)(∫
x0+Br+2ω

∣Ta(x)∣qdx)
1/q

≤ bd(r+2ω)∥Ta∥q

≤ Cbdrbr( 1
q −

1
p ) = Cbr(d+ 1

q −
1
p ) .

To estimate I2,we require the following pointwise estimate from [4, Lemma 9.5]. Sup-
pose T is a singular integral operatorwhose kernel k isCZC-R,with R satisfying (3.1).
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_en there exists a constantC such that for every (p, q, s) atom awith support x0+Br ,
all l ≥ 0 and x ∈ x0 + (Br+l+2ω+1/Br+l+2ω),

∣Ta(x)∣ ≤ Cb−lRζ−−l ∣Br ∣−1/p .

With this estimate, we have

I2 =
∞

∑
j=0
∫
xo+(Br+2ω+ j+1/Br+2ω+ j)

ρ(x − xo)dq ∣Ta(x)∣qdx

≤ Cb−
rq
p

∞

∑
j=0
b− jq(1+Rζ−)(∫

xo+Br+2ω+ j+1/Br+2ω+ j

ρ(x − xo)dqdx)

= Cb−
rq
p

∞

∑
j=0
b− jq(1+Rζ−)b(dq+1)(r+2ω+ j) = Cbr(dq+1− q

p )
∞

∑
j=0
b j(dq+1−q(1+Rζ−)) .

_e geometric series converges exactly when R satisûes (3.4). Taking the power θ/q
on both sides, we have

∥ ρ(x − xo)dTa(x)∥
θ
q ≤ Cb

rθ(d+ 1
q −

1
p ) .

All together, we have N(Ta) ≤ Cbk( 1
q −

1
p )(1−θ)bkθ(d+ 1

q −
1
p ) = C, as the exponent is

exactly 0.

4.2 Proof of Theorem 2.4

We need a few preliminary results on projections andmolecules,whichwe statewith-
out proof as they are implicit in the proof of [4, Lemma 9.3]. To deûne the projections
needed, recall that given a dilation A, {B j} j∈Z denotes the “canonical” ellipsoids so
that for all j ∈ Z, A(B j) = B j+1. We also deûne ∥ f ∥L1(B) = ∫B ∣ f (x)∣dx.

Deûnition 4.2 Let s ∈ N and B = {x + B j ∶ x ∈ Rn , j ∈ Z}. Deûne Ps to be the
space of polynomials on Rn of degree at most s. If B ∈ B, we deûne πB as the natural
projection deûned by the Riesz Lemma:

∫
B
(πB f (x))Q(x)dx = ∫

B
f (x)Q(x)dx , for all f ∈ L1(B) and Q ∈ Ps .

With theseprojections,wemake some elementaryobservations. LetQ = {Qα}∣α∣≤s
be an orthonormal basis of Ps in L2(B0)-norm, that is,

⟨Qα ,Qβ⟩ = ∫
B0

Qα(x)Qβ(x)dx = δα ,β .

_en the projection πB0 ∶ L1(B0)→ Ps is given by

πB0 f = ∑
∣α∣≤s

(∫
B0
f (x)Qα(x)dx)Qα .

Generally, if j ∈ Z, then πB j ∶ L1(B j)→ Ps is given by

πB j f = (D− j
A πB0D

j
A) f .
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If B = y + B j , then πB ∶ L1(B) → Ps is given by πB f = (TyπB jT−y) f , where Ty f =
f (x − y) is the translation operator, and there exists C0, depending only on s and Q,
such that for all B ∈ B, given x ∈ B,

∣πB f (x)∣ ≤ C0 ∫
B
∣ f ∣ dx∣B∣ .

Let π̃B = Id − πB be the complementary projection. _en for all B ∈ B, π̃B ∶ Lq(B) →
Lq(B) is bounded, with

∥π̃B( f )∥Lq(B) ≤ (1 + C0)∥ f ∥Lq(B) .

Furthermore, for all α with ∣α∣ ≤ s, we have ∫B xα ⋅ (π̃B f )(x)dx = 0.

Lemma 4.3 Let M be a (p, q, d) molecule centered at x0.
(i) _en ∥π jM∥L1(B j) → 0 as j →∞.
(ii) Deûne g j = (π̃B jM)1B j = (M − πB jM)1B j . _en g j → M in L1 as j →∞.

Proof of_eorem 2.4 We ûrst prove estimate (2.3). Let M be a (p, q, d) molecule.
Without loss of generality, we assume that N(M) = ∥M∥1−θ

q ∥M(u)ρ(u)d∥θ
q = 1. De-

ûne the quantity σ by ∥M∥q = σ 1/q−1/p and choose k ∈ Z such that bk ≤ σ < bk+1.
From Lemma 4.3, we have the following expression for M, with convergence in L1:

M = gk +
∞

∑
j=k

(g j+1 − g j).

Note that for each j, g j has vanishing moments of order up to s, and has compact
support. We will decompose M by setting gk = µkak and g j+1 − g j = µ ja j , where
(µ j)∞j=k ∈ ℓp has a uniform norm independent of M and (a j)∞j=k is a sequence of
(p, q, s) atoms. We start with gk = (M − πkM)1Bk . With C0 as in Deûnition 4.2, we
have

∥gk∥Lq(Bk) ≤ ∥M∥Lq(Bk) + ∥πkM∥Lq(Bk) ≤ (1 + C0)∥M∥Lq(Bk) .

Scaling themeasure, we obtain

∥gk∥Lq( χBk
∣Bk ∣

dx) = (∫
Bk

∣gk(x)∣q
dx
∣Bk ∣

)
1/q

≤ (1 + C0)∥M∥Lq( dx
∣Bk ∣
) .

Note that because 1
q −

1
p < 0, we have σ ≥ bk ⇒ σ

1
q −

1
p ≤ bk( 1

q −
1
p ). Continuing our

estimate using the deûnition of σ , we have

∥M∥Lq( dx
∣Bk ∣
) = ∣Bk ∣−1/q∥M∥q = ∣Bk ∣−1/qσ

1
q −

1
p ≤ ∣Bk ∣−

1
q ∣Bk ∣

1
q −

1
p = ∣Bk ∣

1
p .

_erefore, we have ∥gk∥q ≤ (1 + C0)∣Bk ∣
1
q −

1
p , which gives gk = µkak where ak is a

(p, q, s) atom and µk = 1 + C0. For j > k, we have

g j+1 − g j = 1B j+1/B jM − πB j+1M + πB jM .
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Estimating the ûrst term, we have

∥M1B j+1/B j∥Lq( dx
∣B j+1 ∣ )

= ∣B j+1∣−
1
q b− jd(∫

B j+1/B j

∣M(x)∣qρ(x)dqdx)
1/q

≤ bd ∣B j+1∣−
1
q ∣B j+1∣−d∥M(x)ρ(x)d∥q = bd ∣B j+1∣−

1
q −d∥M∥

θ−1
θ

q

≤ bd ∣B j+1∣−
1
p b(k− j)d(1−θ) .

Setting r = d(1−θ) > 0,we obtain the estimate ∥M1B j+1/B j∥q ≤ bd ∣B j+1∣
1
q −

1
p b( j−k)(−r).

Next, we estimate πB jM with Minkowski’s inequality:

∥πB jM∥Lq(B j) = ∥ ∑
∣α∣≤s

(∫
B j

M(u)Qα(A− ju)du
b j )Qα(A− jx)∥

Lq(B j)

≤ ∑
∣α∣≤s

b− j∣∫
B j

M(u)Qα(A− ju)du∣ ∥D− j
A Qα∥Lq(B j) .

Let C(Q) a uniform bound for ∥Qα∥Lq(B0). By a change of variables, we have

∥D− j
A Qα∥Lq(B j) = b

j
q ∥Qα∥Lq(B0) ≤ C(Q)b

j
q .

Next, since M has vanishing moments and 1
q +

1
q′ = 1,

∣∫
B j

M(u)Qα(A− ju)du∣

= ∣∫
Bcj

M(u)Qα(A− ju)du∣ ≤ ∫
Bcj

∣M(u)∣∣Qα(A− ju)∣du

≤ C(Q)∫
Bcj

∣M(u)∣∣A− ju∣sdu ≤ C(Q)cA∫
Bcj

∣M(u)∣ρ(A− ju)sζ+du

≤ C(Q)cAb− jsζ+(∫
Bcj

∣M(u)∣qρ(u)dqdu)
1/q

(∫
Bcj

ρ(u)q′(sζ+−d)du)
1/q′

.

_e ûrst integral in the last expression can be computed as follows:

(∫
Bcj

∣M(u)∣qρ(u)dqdu)
1/q

≤ ∥M(x)ρ(x)d∥q = ∥M∥
θ−1
θ

q = σ(
1
q −

1
p )(

θ−1
θ )

= σ d(1−θ) ≤ bkr .
_e second integral fromHolder’s inequality can be computed directly as a geometric
series. With C a constant depending only on A, q, s, and d, and d > sζ+1− 1

q , we have

∫
Bcj

ρ(u)q′(sζ+−d)du =
∞

∑
m= j
∫
Bm+1/Bm

ρ(u)q′(sζ+−d)du = Cb j(1+q′(sζ+−d)) .

_is gives

∣∫
B j

M(u)Qα(A− ju)du∣ ≤ Cb− jsζ+bkrb j(1− 1
q +sζ+−d) = Cbkrb j(1− 1

q −d) .

_en we have the following estimate on ∥πB jM∥Lq :

∥πB jM∥Lq ≤ Cb− jbkrb j(1− 1
q −d)b

j
q = Cb− jdb−k(−r) = Cb j( 1

q −
1
p )b( j−k)(−r) .
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Finally, returning to the estimate on g j+1 − g j , we have

∥g j+1 − g j∥q ≤ ∥M1B j+1/B j∥q + ∥πB j+1M∥q + ∥πB jM∥q ≤ C∣B j+1∣
1
q −

1
p b( j−k)(−r) .

_erefore, if j > k, g j+1 − g j = µ ja j , with µ j = Cb( j−k)(−a) and where a j is a (p, q, s)
atom supported on B j+1. Summing the coeõcients, we have

∞

∑
j=k

∣µ j ∣p = µk +
∞

∑
j=1
C pb− jr p = (1 + C0) +

C
1 − b−r p .

_is establishes (2.3) with C depending only on A, p, q, s, d and the cube Q, and is
independent of M.

Lastly, we prove themolecular decomposition. If f ∈ Hp
A, then its atomic decom-

position∑ j λ ja j can be seen as amolecular decomposition with M j = λ ja j . _en by
(2.3), we have

∥ f ∥p
Hp
A
≤∑

j
∥λ ja j∥p

Hp
A
≤ C∑

j
N(λ ja j)p ≤ C′∑

j
λp

j <∞,

where in the penultimate inequality, we used the fact that the molecular norm of
atoms are uniformly bounded.
As for the converse, suppose f ∈ S′ has the molecular decomposition f = ∑ j M j

with∑ j N(M j)p <∞. _en again by (2.3), we have

∥ f ∥Hp
A
= ∥∑

j
M j∥p

Hp
A
≤∑

j
∥M j∥p

Hp
A
≤ C∑

j
N(M j)p <∞.

So f ∈ Hp
A, and this completes our proof.
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