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Sufficient conditions for the absolute summability (A)1 of a
Fourier series have been given by J. M. Whittaker2 and B. N. Prasad3.
They obtained theorem 1 below in the cases a = 0 and a = 1 respec-
tively. Theorem 1 is contained in theorem 2, which was given by
Prasad4 in the case a = 0.

We suppose / (t) to be defined and integra'ble L in (— n, IT) and
periodic outside, and write <f> (t) = | { / ( 0 + t) +f(9 — t) — 2s}.\ We
define <J>a (t) as the Riemann-Liouville integral of order a (not
necessarily an integer) of </> (I), and we suppose throughout that t >> 0.
Then

«(0 = fTT-x f {t-uy-1 cf>(u)du, a > 0 ,
A (a)Jo (1)

I t is well known that, if /? > 0,

'0

Accordingly we define <3>a (t), for — 1 < a < 0, by

<pa (£) = Oa+i (<)• (3)

We define the mean value </>a (t) of ^ (<) by

^(t) = T(a + l)«-°Oa(0. (4)
We also write

1~2an is said to be absolutely summable (A) il^Onx.n converges to A (x) for
0 ; a ; « l and A(x) is of bounded variation in (0, 1). The sum is then lim A (x).

z->l -0
See Whittaker, 4.

2 Whittaker, 4.
3 Prasad, 2, 3.
4 Prasad, 2, 3.
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and extend this, for 0 < a < 1, by

f . ( < ) = ^ ^ a + l(0-1 (6)

Theorem 1. / / , for some a ^ 0 and -q > 0,

K o o , (7)
o t

then the Fourier series of f(t) is absolutely summable (A) for t= 6 to
the sum s.

This is included in

Theorem 2. / / , for some a ̂  0, <f>a(t) is of bounded variation in (0, rf)
and <f>a (0 ~* 0 as t-> 0, then the Fourier series of f (t) is absolutely
summable (A) for t = 8 to the sum s.

We use the following lemmas.

Lemma 1, If a > 0, then
r(a + 1) t - Ta (t) = a # . _ ! (*) - <j>a (t)} = U/>'a (t). (8)

This follows easily from the definitions.2

Lemma 2. / / Fa (t) is the a-th integral off(t) and a ̂  0, then

(9)

is a non-increasing function of a.
We have, for )3 > a,

3 r. ̂  u:
4-f^; r. ̂  i: <—>--

which proves the lemma.

1 If <f>(t) is the integral of its derivative, ¥„(*) is the o-th integral of t<f>'(t). The
relation of the function t<f> (t) to cj> (t) is analogous to that of the sequence nan to
oo + . . .+ a».

2 Of. Bosanquet, 1, lemma 2.
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14 L. S. BOSANQTJBT

Lemma 3. / / <j>a (t) is of bounded variation in (0, 77) for a given
a 2£ 0, then this is true if a is replaced by /? > a.

If a > 0, we have, by lemma 1,

o

and the result follows from lemma 2. The case a = 0 may be left to
the reader.

Let

(10)
1 — 2x cost -\-x2

Then we have the following two lemmas.
Lemma 4. / / 0 < t < \n, 0 < x < 1, and r is a non-negative integer, then

gr+\
(x, t)

At-'2~r

8x8tT

when A is independent of x and t.
It is easily verified by induction that

PIT r

x)-2t~T, (11)

where Px (<) is a trigonometrical polynomial. Hence it is easy to
see1 that

j( - 2a; cos t
uniformly in x and t.
Now

1 - 2x cost + x2 = (x - cos*)2 4- sin2<^ sin2*. (12)
Therefore

l r
K (x, t) = S 0{sin ' -»

On the other hand
1 - 2a; cos t + x2 = (1 - a;)2 + 4a; sin2§* ̂  (1 - xf. (13)

Therefore by (12) and (13),
fir + l r

±—K(x,l) = 2 0{(l-x)-« sin'-»-*('-*)«}

which completes the proof.

1 Since PK(t) (\ = 0,l, . . . r) and C1 ~"=)(^~cos*) a r e bounded. The last fact
l-2a; cos*H-a;a

follows from (12) and (13).
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Lemma 5. If 0 < Z < £77, 0 < c c < l , and r is a non-negative integer,
then

where A is independent of x and t.

If r — 0 we have

8 2 sint
1 — 2x cos t + x

from which the result follows. On the other hand, if r > 0,

f «' f£- K (x, u)du = f -?—; K (x, t)
Jo ox 8ur ox ov L

(t Qr
v I nit — 1 K Iv 1l\ fill
r I u -— 1 -n. ^x, M̂  Hit,

Jo ox our J

and the result follows from lemma 4 by induction.

Proof of theorem 2. If
Q0

Ja0 + £ (am cos nt + 6n sin w<) (15)

is the Fourier series of f(t), and
00

P{x) = \ao+ S (an cos %0 + bn sin nd)xn, (16)

then, for 0 < a; < 1,

Q (a;) = P (x) — s

= — \<j>(t)K(x, t)dt. (17)
77 Jo

To show that (15) is absolutely summable (A) for t = 9 we must
show that

[1\Q'(x)\dx<cc. (18)
0

Let

77 [ Jo J-i) J

Then Whittaker and Prasad have remarked that we need only prove
that

f1 \Q\(x)\dx <<*>, (19)
Jo

and we may suppose that 0 < rj ^ J77.
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16 L. S. BOSANQUBT

By lemma 3 we may suppose that a = K is a positive integer.
Now integration by parts gives

Q\{x)= \v<f>(t) d^
Jo ox

dt

dxdP
^K(x,t)J

and

't)dt=l> K {x, u) du

Hence
IT, ci S<+i

(i'. (0 dt W 1-^— K (x, u) du.
oY Jo dzdu' v

oT+T) \\d* 11 ̂  WId< I { >
The first two terms are finite by the first inequalities in (11) and (14)
respectively, with t = r\. Therefore

\ \ \
o x \K~rl) Jo

where A denotes some constant.
Now write

dxdW
K (x, u) du

-t

Then, by lemma 5, we have, uniformly for 0 <t<-q,

71=f t 0{(l-x)-2}dx = 0(l)
Jo

and

Since

(19) now follows.

72= f t-1O(l)dx =J
i - t

\\<f>'K{t)\dt
Jo

<
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To complete the proof we must show that

lim Q(x)=O. (20)
>0

This may be deduced from the hypothesis <f>a(l)->s as t -> 0 by
analysis of a similar nature to that already used. On the other hand
it is well known that this hypothesis implies the summability (C) of
the Fourier series to the sum s, and thus its summability (A) to the
same sum.

Finally, to deduce theorem 1 from theorem 2, it is only necessary
to observe that, by lemma 1,

by lemma 2. Thus <£a+1 (t) is of bounded variation in (0, rj), and so-
tends to a limit as t -> 0. Since ^a+1 (t)/t is integrable this limit must
be zero.

Added 13th November 1933. More precise results may be obtained
by employing absolute summability (C), which itself implies absolute
summability (.4). It is true, for instance, that a necessary and
sufficient condition that the Fourier series should be absolutely summable
(G) for t = 6 is that <f>a (t) should be of bounded variation in (0, 77) for
some a.1

x A preliminary account of these results will be published in the Mathematical
Gazette.
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